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Neurobiological Evidence (Fedorenko et al. 2012)

Different neural activity for Jabberwocky sentences versus non-word lists
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Neurobiological Evidence (Ding et al. 2015)
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Unsupervised Parsing
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Grammar Induction for Unsupervised Parsing

Classic approach: Hypothesize a formal grammar that generates natural language

(Parse tree implied by the grammar)
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Goal of Grammar Induction

Learning the syntax of human language

Longstanding problem in AI/NLP
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Review: Context-Free Grammars (CFG) for Natural Language
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Review: CFG Formal Description

G = (S,N ,P,Σ,R) where

N : Set of nonterminals (constituent labels)

P : Set of preterminals (part-of-speech tags)

Σ : Set of terminals (words)

S : Start symbol

R : Set of rules

Each rule r ∈ R is one of the following:

S → A A ∈ N

A→ B C A ∈ N , B, C ∈ N ∪ P

T → w T ∈ P, w ∈ Σ



14/75

Review: CFG Formal Description

G = (S,N ,P,Σ,R) where

N : Set of nonterminals (constituent labels)

P : Set of preterminals (part-of-speech tags)

Σ : Set of terminals (words)

S : Start symbol

R : Set of rules

Each rule r ∈ R is one of the following:

S → A A ∈ N

A→ B C A ∈ N , B, C ∈ N ∪ P

T → w T ∈ P, w ∈ Σ



15/75

Review: Probabilistic Context-Free Grammars (PCFG)

Associate probabilities π = {πr}r∈R for each rule r ∈ R.

Probability of a tree t is given by multiplying the probabilities of rules used in the

derivation

pπ(t) =
∏
r∈tR

πr

where tR is set of rules used to derive t
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Review: PCFG Example

S

A1

A3

T7

nothing

T2

knows

T4

Jon

Ai: nonterminals

Tj : preterminals

tR = {S → A1, A1 → T4A3,

A3 → T2 T7, T4 → Jon,

T2 → knows, T7 → nothing}

pπ(t) = πS→A1 × πA1→T4 A3 × πA3→T2 T7×

πT4→Jon × πT2→knows × πT7→nothing
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Review: Grammar Induction with PCFGs

Specify broad grammar structure: number of nonterminals (|N | = 30), preterminals

(|P| = 60), set of context-free rules

Maximize log likelihood (Expectation-Maximization)

Given corpus of sentences x(1), . . .x(N),

max
π

N∑
n=1

log pπ(x(n))

Sum over unobserved trees,

pπ(x) =
∑
t∈T (x)

pπ(t)

where T (x) =set of trees whose leaves are x.
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Results from PCFG Induction

Unlabeled F1 against gold trees on PTB.

Model F1

Random Trees 19.5

PCFG 35.0

Right Branching 39.5

Neural PCFG 52.6



19/75

Results from PCFG Induction

Unlabeled F1 against gold trees on PTB.

Model F1

Random Trees 19.5

PCFG 35.0

Right Branching 39.5

Neural PCFG 52.6

Long history of work showing that MLE with PCFGs fails to discover linguistically

meaningful tree structures [Lari and Young 1990].

Common wisdom: “MLE with PCFGs doesn’t work”
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Rich Prior Work on Unsupervised Constituency Parsing

Modified objectives [Klein and Manning 2002, 2004; Smith and Eisner 2004].

Use priors/nonparametric models [Liang et al. 2007; Johnson et al. 2007].

Handcrafted features [Huang et al. 2012; Golland et al. 2012].

Other types of regularization (e.g. on recursion depth) [Noji et al. 2016; Jin et al. 2018].

Activation analysis from neural language models [Shen et al. 2018, 2019]
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This Talk: Revisit Core Assumptions about Grammar Induction

1 PCFG with an embedding parameterization can induce meaningful grammars with

MLE.

2 Develop more flexible grammars through auxiliary sentence vector + neural variational

inference.

3 Learn structured language models with induced trees.
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Simple Modification: PCFG Parameterization

Scalar Parameterization: Associate probabilities πr to each rule such that they are

valid probability distributions.

πT→w ≥ 0
∑
w′∈Σ

πT→w′ = 1

“Neural” Parameterization: Associate symbol embeddings wN to each symbol N on

left hand side of a rule.

πT→w = NeuralNet(wT ) =
exp(u>w f(wT ))∑

w′∈Σ exp(u>w′ f(wT ))

(Similar parameterizations for A→ BC)
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Simple Modification: Neural PCFG

πT→w ∝ exp
(

u>w︸︷︷︸
output emb.

shared neural net︷ ︸︸ ︷
f( wT︸︷︷︸

input emb.

)
)

Model parameters θ given by input embeddings, output embeddings, and parameters of

neural net f .

Analogous to count-based vs neural language models: parameter sharing through

distributed representations (word embedding vs symbol embedding).

Same model assumptions, different parameterization.
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Neural PCFG: Training

Maximum likelihood (EM) with dynamic programming for marginalization.

Practical details: Stochastic gradient ascent on log marginal likelihood with

Inside algorithm + Autodiff

θnew = θold + λ∇θ log pθ(x)︸ ︷︷ ︸
inside algorithm

(PyTorch-Struct includes GPU-optimized implementations of these (and many other)

algorithms.)
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Neural PCFG: Results

Model F1

Random Trees 19.5

Right Branching 39.5

Scalar PCFG 35.0

Neural PCFG 52.6

(English Penn Treebank)
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Neural PCFG Results

Model F1 Training/Test PPL

Random Trees 19.5 −
Right Branching 39.5 −
Scalar PCFG 35.0 ≈ 350

Neural PCFG 52.6 ≈ 250
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This Talk: Revisit Core Assumptions about Grammar Induction

1 PCFG with an embedding parameterization can induce meaningful grammars with

MLE.

2 Develop more flexible grammars through auxiliary sentence vector + neural

variational inference.

3 Learn structured language models with induced trees.
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Review: Limitations of simple PCFGs

No sensitivity to lexical context

(example from http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/lexpcfgs.pdf)

http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/lexpcfgs.pdf
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Review: Limitations of simple PCFGs

No sensitivity to lexical context
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Review: Limitations of simple PCFGs

No sensitivity to structural context

(example from http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/lexpcfgs.pdf)

http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/lexpcfgs.pdf
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Review: Limitations of simple PCFGs

Johnson et al. [2007]: Supervised PCFG + Unsupervised fine tuning decreases parsing

accuracy while corpus likelihood improves!

“It is easy to demonstrate that the poor quality of the PCFG models is the cause of these

problems rather than search or other algorithmic issues. If one initializes either the IO or

Bayesian estimation procedures with treebank parses and then runs the procedure using the

yields alone, the accuracy of the parses uniformly decreases while the (posterior) likelihood

uniformly increases with each iteration, demonstrating that improving the (posterior)

likelihood of such models does not improve parse accuracy.”
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Classic Solutions: Lexicalization

No sensitivity to lexical context =⇒ Lexicalized PCFGs [Collins 1997]

Rules are lexicalized, e.g.

A→ BC =⇒ A(w)→ B(w)C(h)

w, h ∈ Σ

Integrates notion of headedness
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Classic Solutions: Higher-order Grammars

No sensitivity to structural context =⇒ Horizontal/Vertical Markovization [Klein and

Manning 2003]

Richer dependencies through grandparents/siblings.



36/75

Classic Solutions: Enriching PCFGs

Lexicalized PCFG [Collins 1997]

Horizontal/Vertical Markovization [Klein and Manning 2003]

Latent Variable PCFG [Petrov et al. 2006]

Expensive to apply in the unsupervised case due to explosion in number of rules.
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Compound PCFG

Goal: Capture these in a soft manner.

Compound generative process (Bayesian PCFG):

(1) z ∼ N (0, I)

(2) πz = NeuralNetwork([wN ; z]), for example,

πz,T→w =
exp(u>w f([wT ; z]))∑

w′∈Σ exp(u>w′ f([wT ; z]))

(3) t ∼ pcfg(πz)

(4) x = yield(t)
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Compound PCFG

πz,T→w ∝ exp( u>w f([wT︸ ︷︷ ︸
fixed across sents

;

varies︷︸︸︷
z ]))

Input/output embeddings and neural net f shared across sentences, but rule

probabilities for each sentence can vary through z

Intuition: z can encode lexical/structural information specific to the sentence.
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Neural PCFG vs. Compound PCFG
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Neural PCFG vs. Compound PCFG

The model reduces to a PCFG conditioned on z
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Compound PCFG: Training and Inference

For maximum likelihood, log marginal likelihood given by

log pθ(x) = log
(∫ ∑

t∈T (x)

pθ(t | z)

︸ ︷︷ ︸
pθ(x | z)

p(z) dz
)

Intractable due to integral over z.
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Compound PCFG: Training and Inference

Variational Inference: Introduce variational posterior for z

log pθ(x) ≥ E qφ(z |x)

[
log

∑
t∈T (x)

pθ(t | z)

︸ ︷︷ ︸
pθ(x | z)

]
−KL[ qφ(z |x) ‖ p(z) ]

Inference network over x produces parameters for the Gaussian variational posterior

qφ(z |x).

Given a sample z, can calculate with dynamic programming

pθ(x | z) =
∑
t∈T (x)

pθ(t | z)
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Compound PCFG: Training and Inference

Collapsed Variational Inference

log pθ(x) ≥ E qφ(z |x)︸ ︷︷ ︸
reparameterized sample

[ log pθ(x | z)︸ ︷︷ ︸
inside algorithm

]− KL[ qφ(z |x) ‖ p(z) ]︸ ︷︷ ︸
analytic KL between 2 Gaussians

“VAE with a PCFG decoder”
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Compound PCFG: Results on PTB

Model F1 Training/Test PPL

Random Trees 19.5 −
Right Branching 39.5 −
Scalar PCFG 35.0 ≈ 350

Neural PCFG 52.6 ≈ 250

Compound PCFG 60.1 ≈ 190
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Compound PCFG: Comparison against other unsupervised parsers

Model English (PTB)

PRPN [Shen et al. 2018] 38.1

Ordered Neurons [Shen et al. 2019] 49.4

DIORA [Drozdov et al. 2019] 58.9

Constituency Tests [Cao et al. 2020] 62.8

Right Branching 39.5

Scalar PCFG 35.0

Neural PCFG 52.6

Compound PCFG 60.1
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Compound PCFG: Results on other languages

Model English Chinese Japanese

Random Trees 19.5 16.0 15.3

Left Branching 8.7 9.7 25.5

Right Branching 39.5 20.0 1.2

Scalar PCFG 35.0 15.0 15.7

Neural PCFG 52.6 29.5 44.6

Compound PCFG 60.1 39.8 47.4
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Parsing Klingon
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Model Analysis: Nonterminal Alignment (|N | = 30)
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Model Analysis: Nonterminal Alignment (|N | = 30)
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Model Analysis: Preterminal Alignment (|P| = 60)
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Model Analysis: What does z learn?

Nearest neighbors based on variational posterior mean vector

〈unk〉 corp. received an N million army contract for helicopter engines

boeing co. received a N million air force contract for developing cable systems for the 〈unk〉 missile

general dynamics corp. received a N million air force contract for 〈unk〉 training sets

grumman corp. received an N million navy contract to upgrade aircraft electronics

thomson missile products with about half british aerospace ’s annual revenue include the 〈unk〉 〈unk〉 missile family

already british aerospace and french 〈unk〉 〈unk〉 〈unk〉 on a british missile contract and on an air-traffic control radar system
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Model Analysis: What does z learn?
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This Talk: Revisit Core Assumptions about Grammar Induction

1 PCFG with an embedding parameterization can induce meaningful grammars with

MLE.

2 Develop more flexible grammars through auxiliary sentence vector + neural variational

inference.

3 Learn structured language models with induced trees.
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Compound PCFG as a Language Model

Model F1 Test PPL

Scalar PCFG 35.0 ≈ 350

Neural PCFG 52.6 ≈ 250

Compound PCFG 60.1 ≈ 190

LSTM LM − 86.2
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Compound PCFG as a Language Model

Model F1 Test PPL

Scalar PCFG 35.0 ≈ 350

Neural PCFG 52.6 ≈ 250

Compound PCFG 60.1 ≈ 190

RNN LM − 86.2

Good parser, poor language model.
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Review: Recurrent Neural Network Grammars (RNNG) [Dyer et al. 2016]

Structured joint generative model of sentence x and tree z

pθ(x, z)

Generate next word conditioned on partially-completed syntax tree

Like RNN LM, no independence assumptions.
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Review: RNN LMs

“Flat” left-to-right generation

xt ∼ pθ(x |x1, . . . , xt−1) = softmax(Wht−1 + b)
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RNNG [Dyer et al. 2016]

Introduce binary variables z = [z1, . . . , z2T−1] (unlabeled binary tree)

Sample action zt ∈ {generate,reduce} at each time step:

zt ∼ Bernoulli(pt) pt = σ(w>hprev + b)
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RNNG [Dyer et al. 2016]

If zt = generate

Sample word from context representation
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RNNG [Dyer et al. 2016]

(Similar to standard RNNLMs)

x ∼ softmax(Whprev + b)
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RNNG [Dyer et al. 2016]

Obtain new context representation with ehungry

hnew = LSTM(ehungry,hprev)
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RNNG [Dyer et al. 2016]

hnew = LSTM(ecat,hprev)
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RNNG [Dyer et al. 2016]

If zt = reduce
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RNNG [Dyer et al. 2016]

If zt = reduce

Pop last two elements
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RNNG [Dyer et al. 2016]

Obtain new representation of constituent

e(hungry cat) = TreeLSTM(ehungry, ecat)
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RNNG [Dyer et al. 2016]

Move the new representation onto the stack

hnew = LSTM(e(hungry cat),hprev)
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Compound PCFG + RNNG

Compound PCFG to parse training set, train an RNNG on induced trees, fine-tune with

unsupervised RNNG.

Model Test PPL

Neural PCFG 252.6

Compound PCFG 196.3

RNN LM 86.2

URNNG + Compound PCFG 83.7

URNNG + Gold Trees 78.3
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Syntactic Evaluation [Marvin and Linzen 2018]

Two minimally different sentences:

The senators near the assistant are old

*The senators near the assistant is old

Model must assign higher probability to the correct one.
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Syntactic Evaluation [Marvin and Linzen 2018]

Model Test PPL Syntactic Eval.

RNN LM 86.2 60.9%

URNNG + Compound PCFG 83.7 76.1%

URNNG + Gold Trees 78.3 76.1%
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Compound PCFG Extensions

Lexicalized Compound PCFG [Zhu et al. 2020]

Visually Grounded Compound PCFG [Zhao and Titov 2020]



74/75

Discussion

Limitations

Can be slower to train due to DP.

Latent vector to approximate richer grammars.

“We assume that the goal of learning a context-free grammar needs no justification.”

[Carroll and Charniak 1992]

What is the role of grammars (and other linguistic structures) in ELMo/BERT era?
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Future Work

Separation of “what to say” from “how to say it” for structured generation.

Some languages are provably not context-free =⇒ neural parameterizations of mildly

context-sensitive formalisms (e.g. tree-adjoining grammars).

Investigate why MLE with scalar parameterization fails but neural parameterization

works.
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