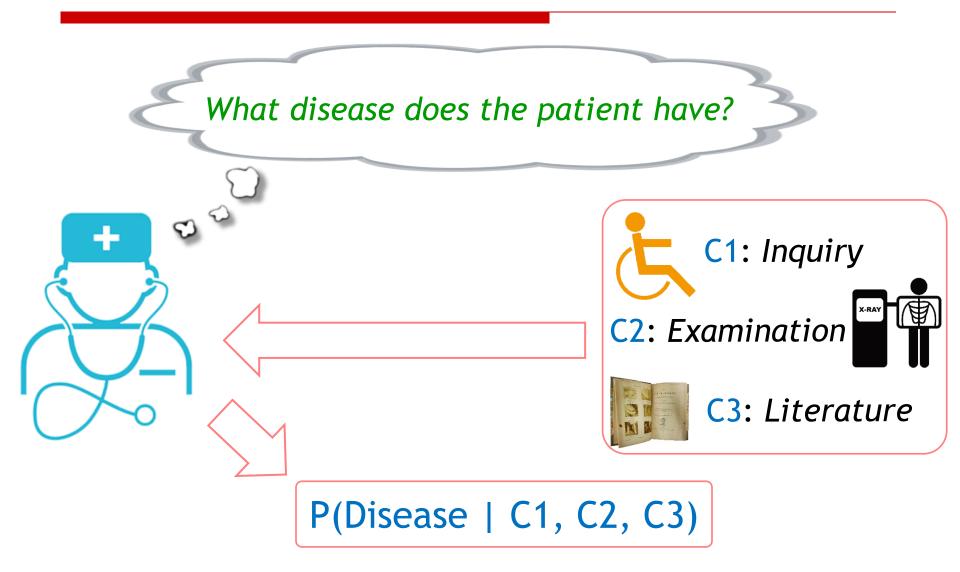
Towards Democratizing Data Science with AI-Powered Knowledge Engines

Yu Su

Microsoft Semantic Machines

The Ohio State University

Data-Driven Decision Making



Growing Gap between Human and Data

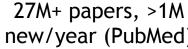
What disease does the patient have?

- EMR => Similar patients?
- Literature => New discoveries?
- Gene sequence => Suspicious mutations?

Ad-hoc information needs for on-demand decision making

Massive, heterogeneous data

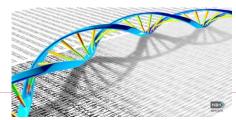
86.9% adoption (NEHRS 2015)



\$1000 gene sequencing

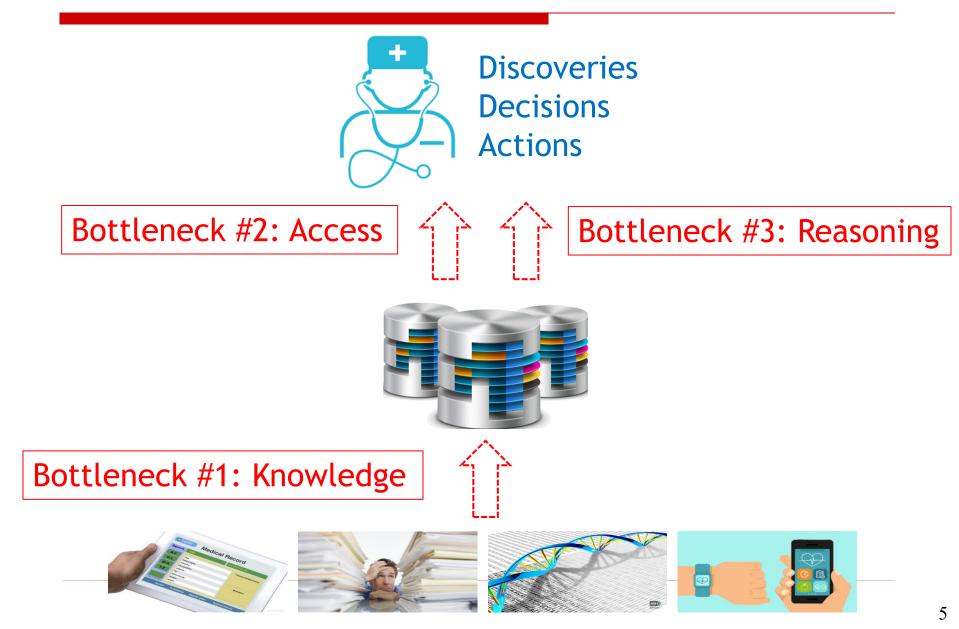
24x7 monitoring

new/year (PubMed)

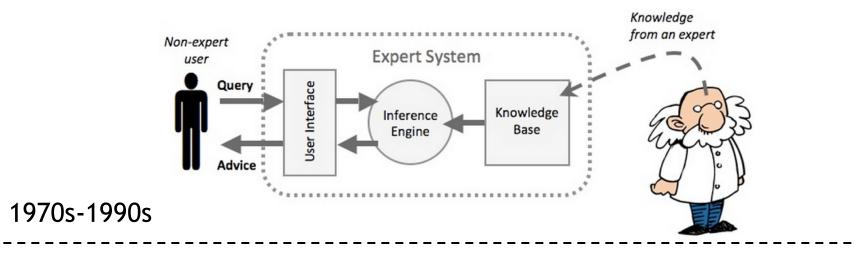


How to **Democratize** Data Science?

AI-Powered Knowledge Engine



Knowledge Base

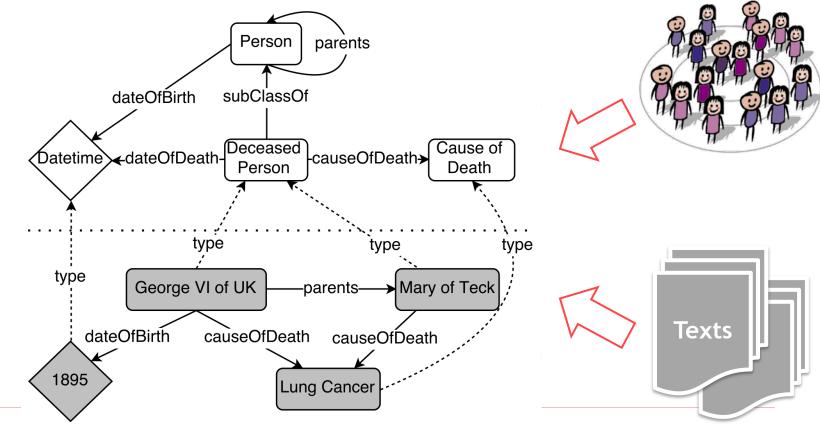


2000s-present

6

Knowledge Base

- Encyclopedic knowledge about concepts, entities and their relationships (facts)
 - Google Knowledge Graph: 570M entities and 18B facts (2014)



Methodology: Deep Learning with Weak Supervision

Knowledge

Strong Supervision

□ In-domain, on-task

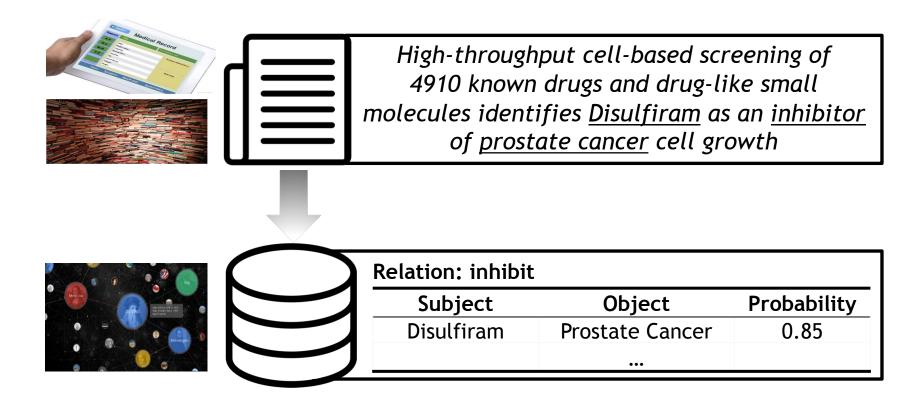
Weak Supervision

- □ In-domain, off-task
- □ Out-of-domain, on-task
- □ Out-of-domain, off-task

KNOWLEDGE HARVESTING FROM MASSIVE TEXT

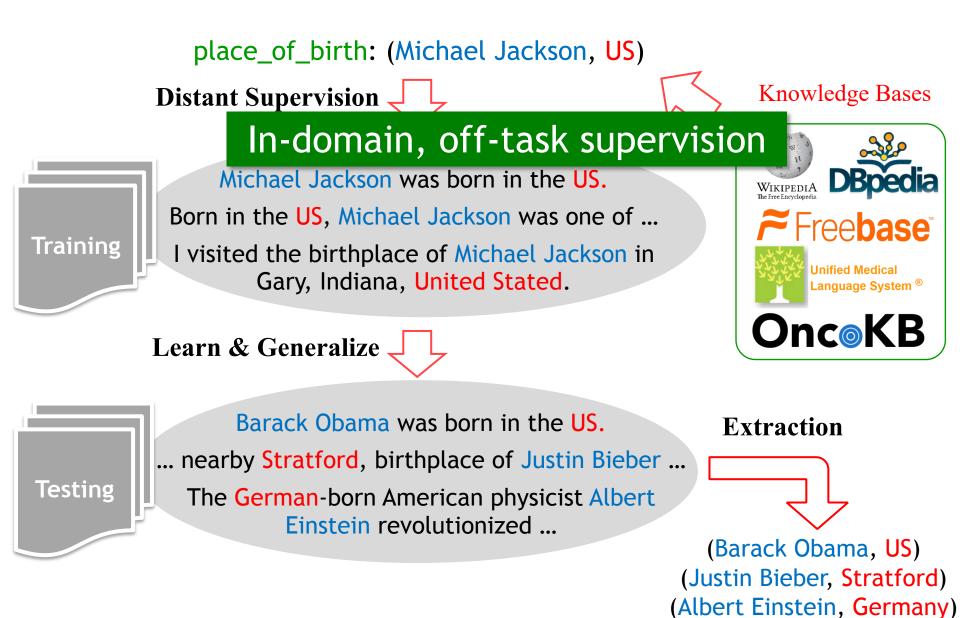
Knowledge Base Construction from Text

- Entity recognition and linking
- Relation extraction: binary, n-ary (event)



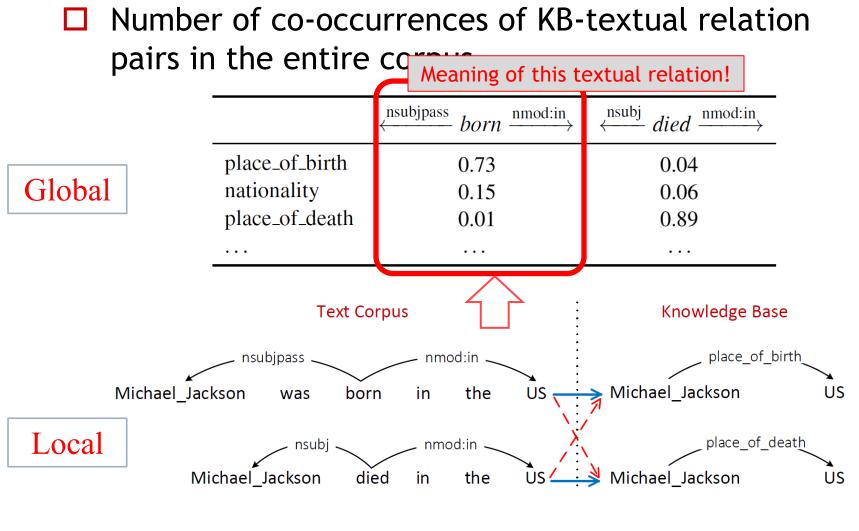
"Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4" Skrott et al. *Nature* 552.7684 (2017): 194.

Scalable Relation Extraction with Distant Supervision



E.g., [Mintz et al., 2009], [Riedel et al., 2010], [Zeng et al., 2015], [Lin et al., 2016], ...

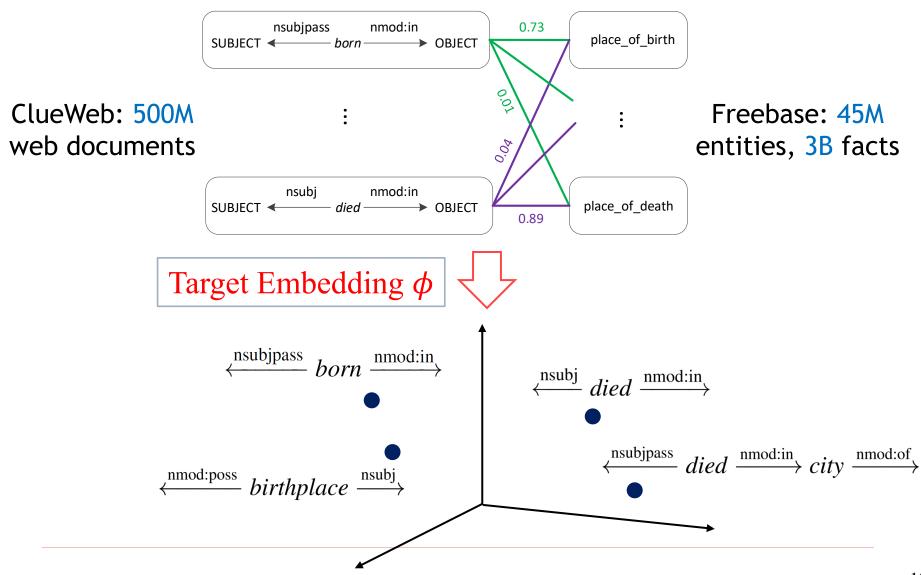
Global Statistics of Relations



[NAACL'18]

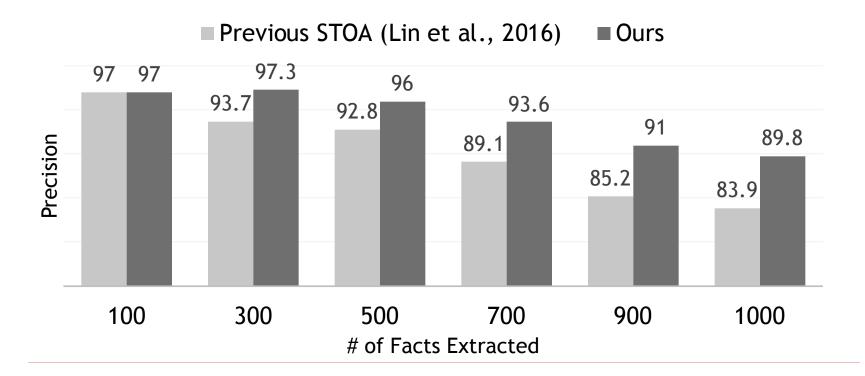
Word embedding analogy: GloVe (global statistics) vs. Word2vec (local statistics)

Textual Relation Embedding with Global Statistics



Evaluation on Newswire Corpus

- Dataset: New York Times corpus, 53 target relations
 - place_of_birth, place_of_death, founder_of, employee_of, etc.
- □ The learned textual relation embedding improves the STOA method by 5.9% (top 1,000 extracted facts)



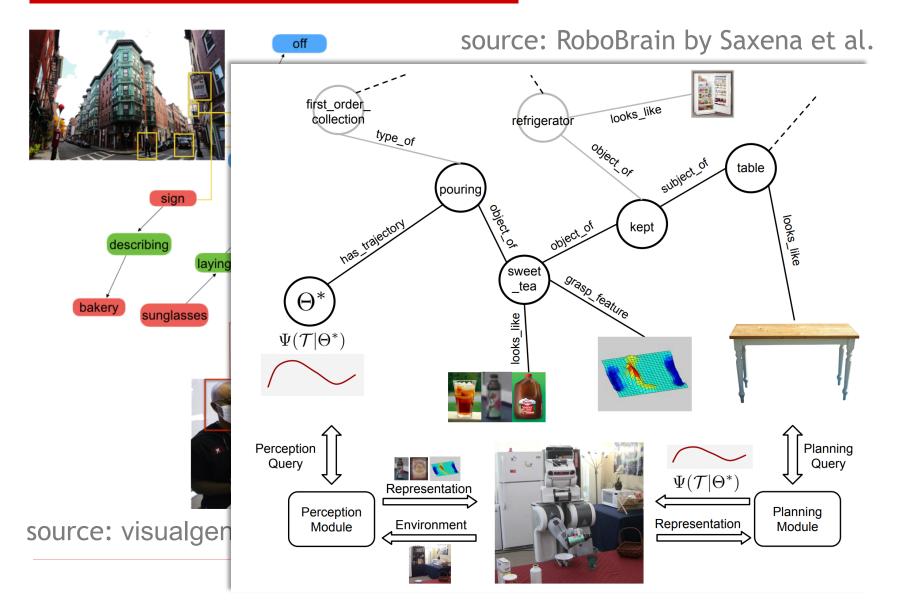
Knowledge Base Construction: Food for Thought

- □ (Open-world) probabilistic KBs
 - Model uncertainties of the real world
- Multi-modal KBs
 - Images, audio, video, temporal-special info
- □ (Dynamic) distributed KBs
 - Personal KBs (at edge) + a public KB (in the cloud)

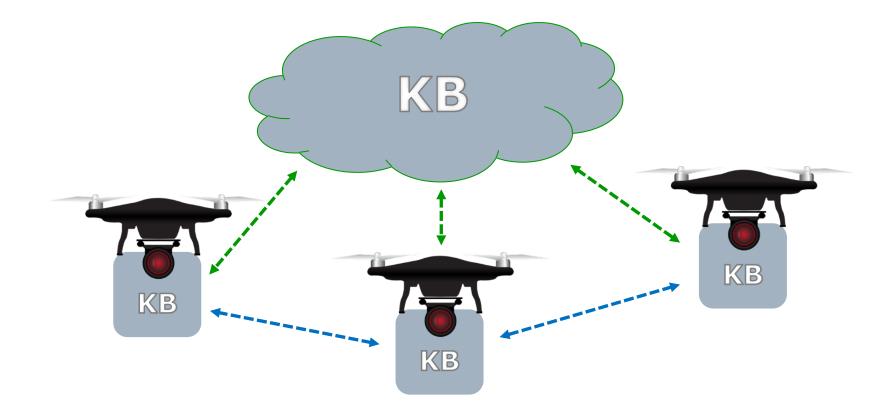
(Open-World) Probabilistic KBs

- KB: place_of_birth(John, United States)
- Query: "Does John speak English?"
- Closed-world assumption: "No."
- Open-world assumption: "I don't know."
- Open-world probabilistic KB: "99% yes."
- Challenges
 - Uncertainty modeling and probability calibration
 - Efficient querying
 - Combination of logic-based reasoning and machine learning based reasoning

Multi-Model KBs



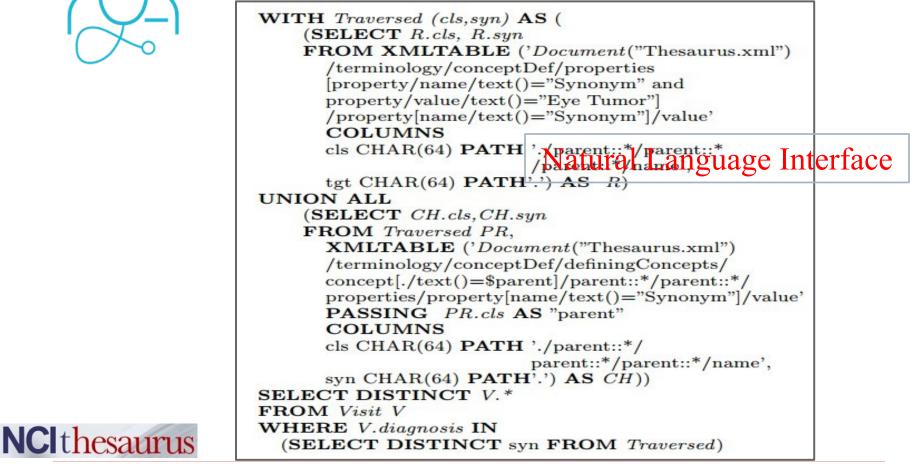
(Dynamic) Distributed KBs



NATURAL LANGUAGE INTERFACE

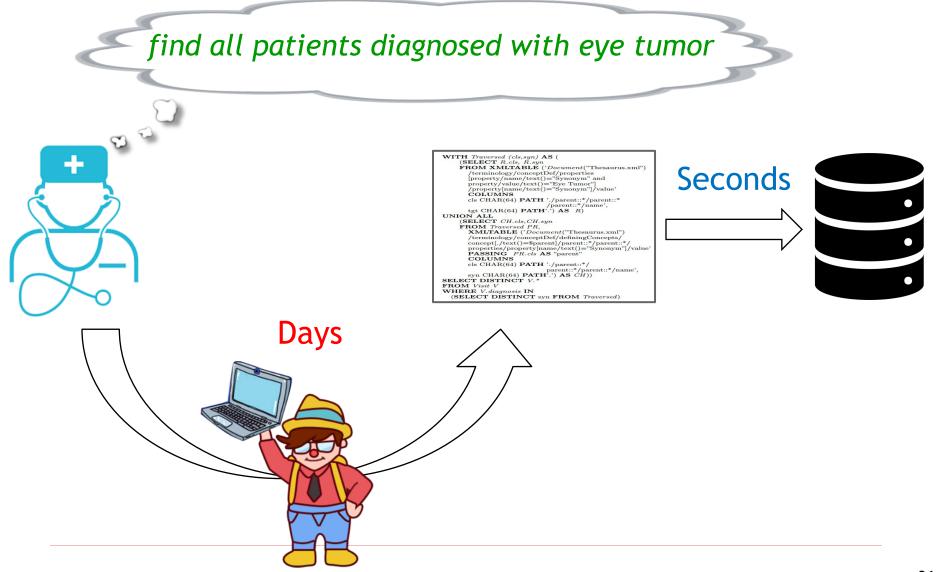
Writing formal queries is a pain...

"find all patients diagnosed with eye tumor"

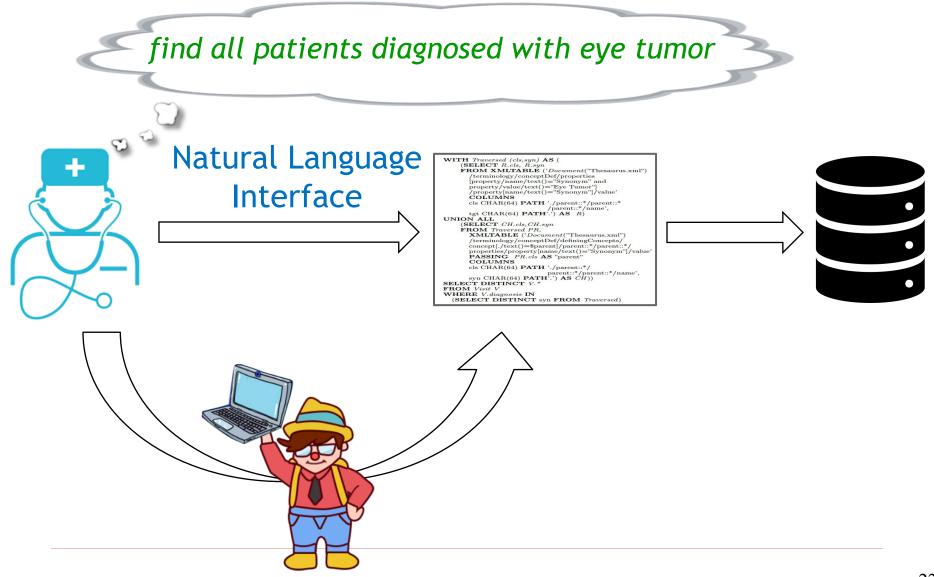


"Semantic queries by example", Lim et al., EDBT (2014)

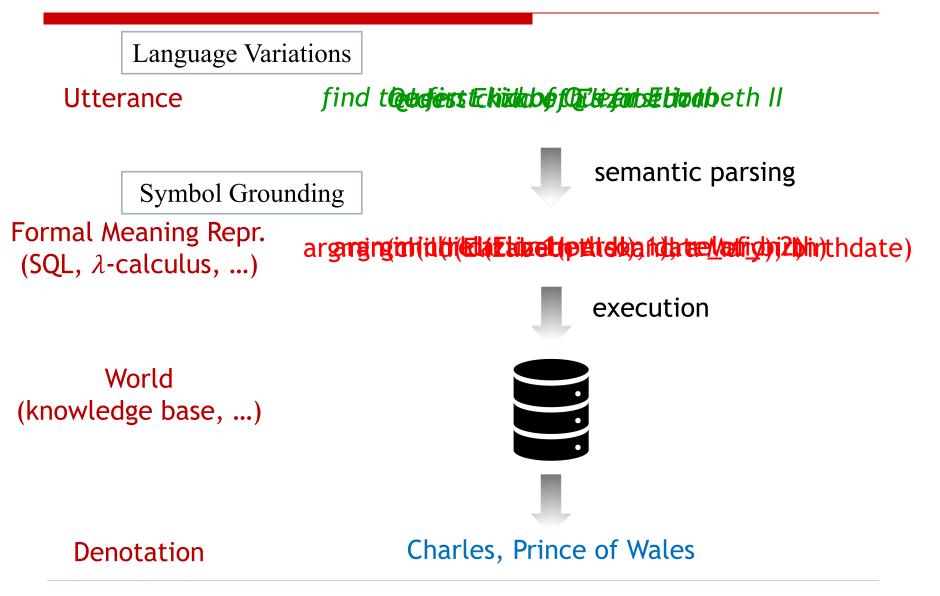
In Pursue of Efficiency



In Pursue of Efficiency

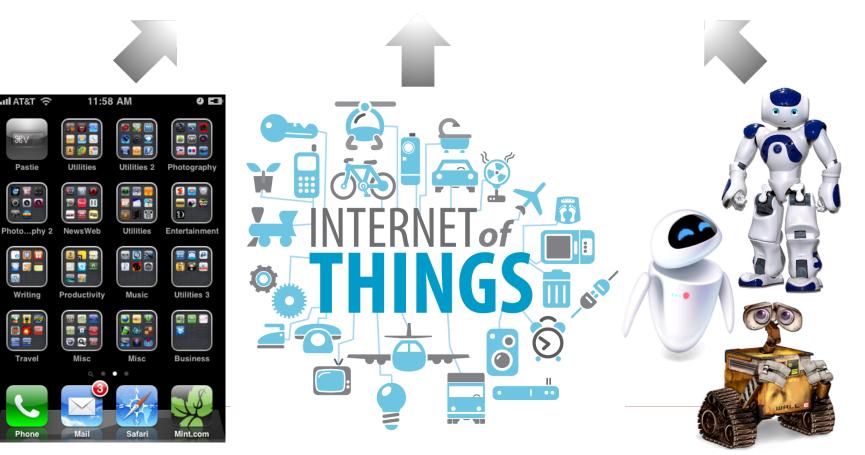


Natural Language Interface \approx Model-Theoretic Semantics



The Cold Start Problem

"I want to build an NLI for my domain, but I don't yet have any user or data"

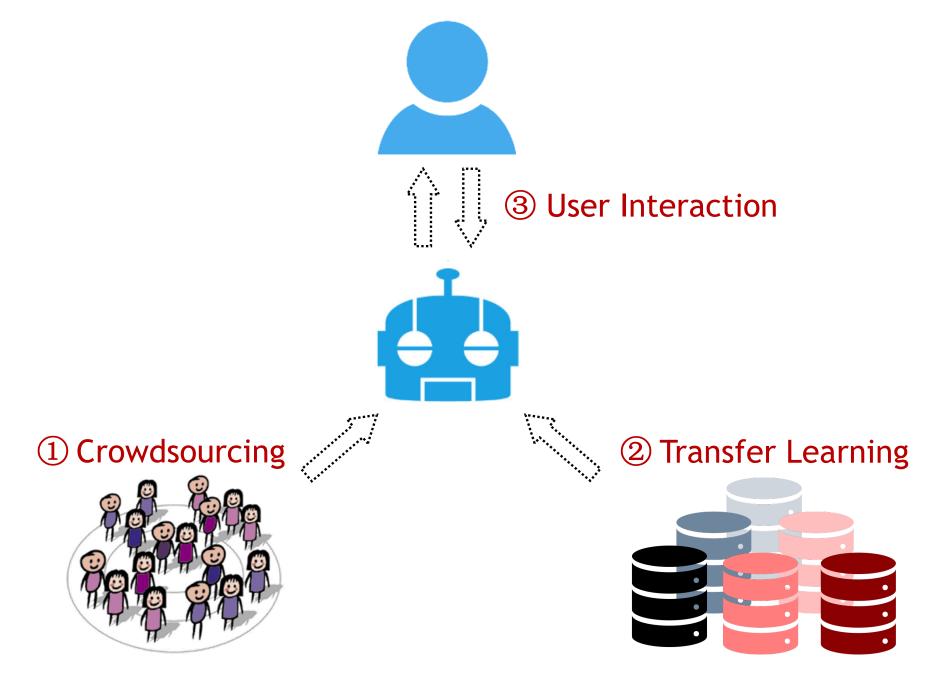


How to Build NLI for New Domain

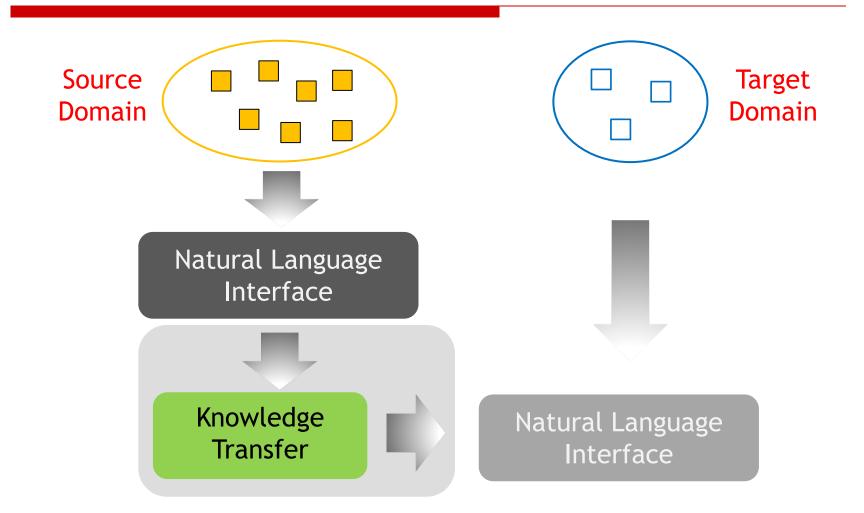
- □ 1950s-1990s: Rule engineering (rule-based systems)
- □ 1990s-2010s: Feature engineering (statistical ML)
- **2010s-present:** Data engineering (neural models)

what is your verb ? exceed what is its third sing. pres ? exceeds what is its past form ? exceeded what is its perfect form ? exceeded what is its participle form ? exceeding to what set does the subject belong ? numeric is there a direct object ? yes to what set does it belong ? numeric is there an indirect object ? no is it linked to a complement ? no what is its predicate ? greater_than do you really wish to add this verb? y

[Auxerre and Inder, 1986]



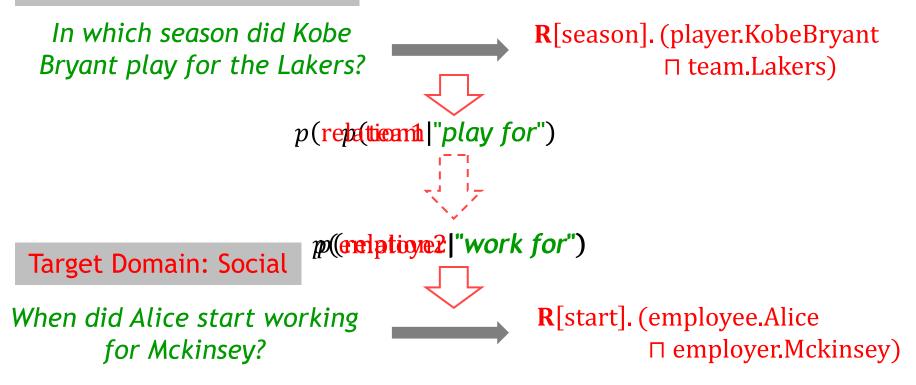
Cross-domain Natural Language Interface



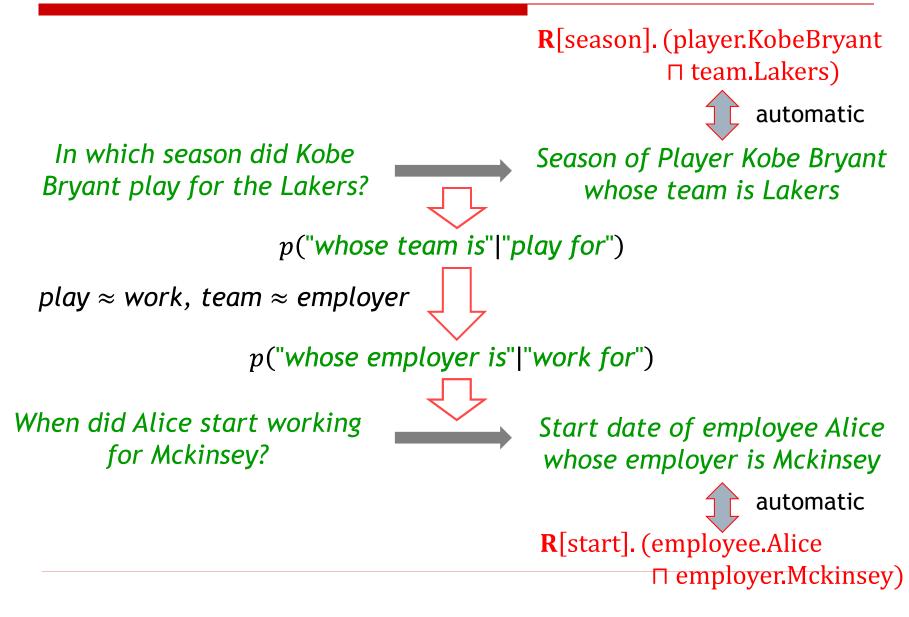
Out-of-domain, on-task supervision

What is Transferrable in NLI across Domains?

Source Domain: Basketball

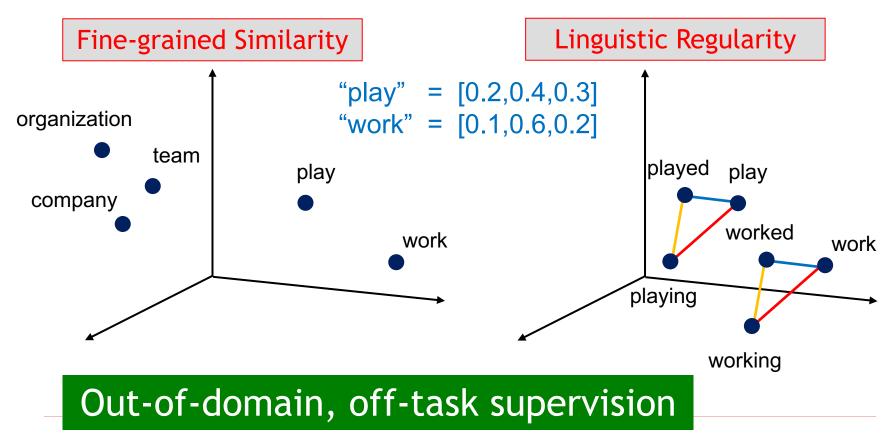


Cross-domain NLI via Paraphrasing



Pre-trained Word Embedding

- □ Word \triangleq Dense vector (typically 50-1000 dimensional)
- Pre-trained on large external text corpora



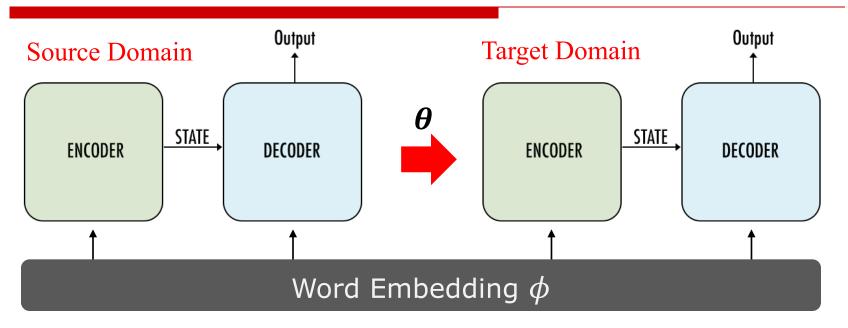
Pre-trained Word Embedding Alleviates Vocabulary Shifting

- Vocabulary shifting: Only 45%~70% target domain vocabulary are covered by source domains^[1]
- Pre-trained word embedding can alleviate the vocabulary shifting problem
 - Word2vec: 300-d vectors pre-trained on the 100B-token Google News Corpus; vocabulary size = 3M

	Calendar	Housing	Restaurants	Social	Publications	Recipes	Basketball	Blocks
Coverage	71.1	60.7	55.8	46.0	65.6	71.9	45.6	61.7
+word2vec	93.9	90.9	90.4	89.3	95.6	97.3	89.4	93.8

[1] Wang et al. Building a Semantic Parser Overnight. 2015

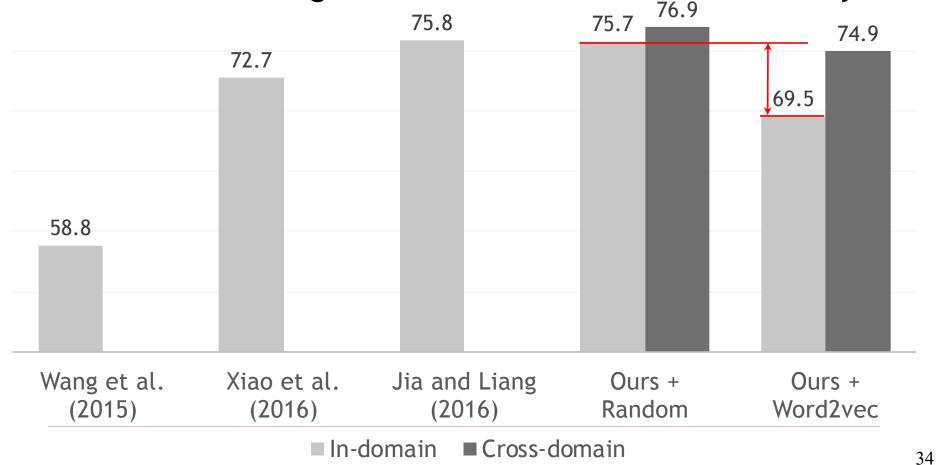
Neural Transfer Learning for NLI



- Input utterance $x = (x_1, ..., x_m)$, canonical utterance $y = (y_1, ..., y_n)$
- $\square \quad \text{Embedding: } \phi(\mathbf{x}) = (\phi(x_1), \dots, \phi(x_m)), \ \phi(\mathbf{y}) = (\phi(y_1), \dots, \phi(y_n))$
- **Learning on source domain:** $p(\phi(y)|\phi(x), \theta)$
- □ Warm start on target domain: $p(\phi(\mathbf{y})|\phi(\mathbf{x}), \boldsymbol{\theta})$
- **Given Set Use Set Us**

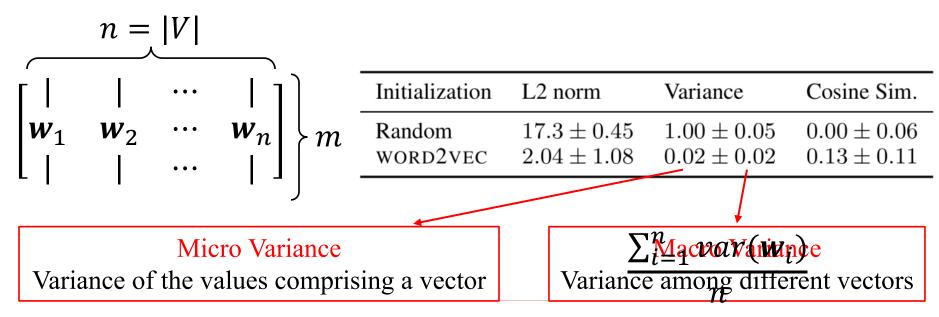
Direct Use of Word2vec Fails Dramatically...

- Cross-domain: for each target domain, use all others as source domain
- □ Word2vec brings 6.2% absolute decrease in accuracy



Pre-trained Word Embedding: What May Be Wrong?

- Small micro variance: hurt optimization
 - Activation variances \approx input variances [Glorot & Bengio, 2010]
 - Small input variance implies poor exploration in parameter space
- Large macro variance: hurt generalization
 - Distribution discrepancy between training and testing



Proposed Solution: Standardization

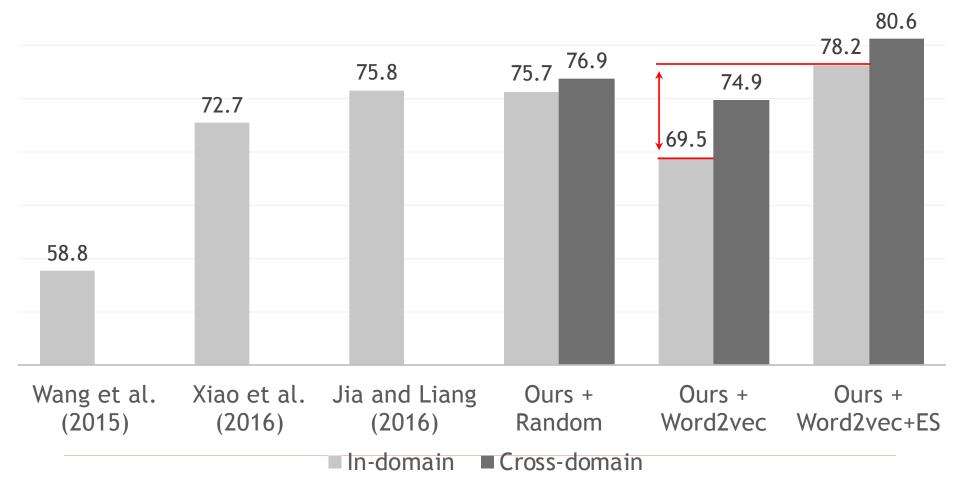
- Standardize each word vector to unit variance
- But it was unclear before why standardization should be applied on pre-trained word embedding

Initialization	L2 norm	Variance	Cosine Sim.
Random WORD2VEC WORD2VEC + ES	$17.3 \pm 0.45 \\ 2.04 \pm 1.08 \\ 17.3 \pm 0.05$	$1.00 \pm 0.05 \\ 0.02 \pm 0.02 \\ 1.00 \pm 0.00$	0.00 ± 0.06 0.13 ± 0.11 0.13 ± 0.11

Random: randomly draw from uniform distribution with unit varianceWord2vec: pre-trained word2vec embeddingES: per-example standardization (per column)

Standardization Fixes the Variance Problems

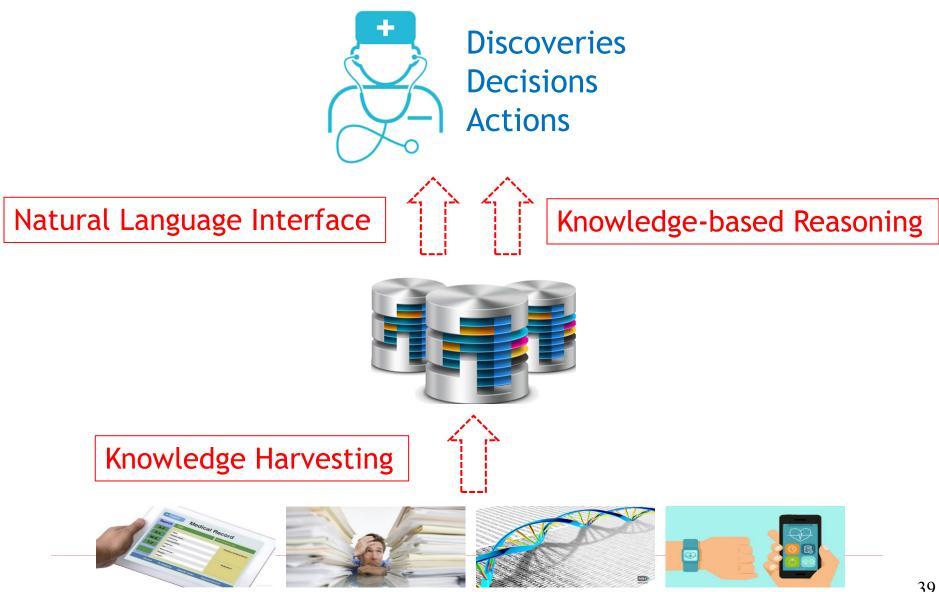
- Standardization brings 8.7% absolute increase
- Transfer learning brings another 2.4% increase



Let machines understand human thinking Don't let humans think like machines

WHAT'S NEXT?

Bridging the Gap between Human and Data: **AI-Powered Knowledge Engine**



Matt Lowe (MIT economist), "Night Lights and ArcGIS: A Brief Guide." 2014 Vahedi et al., "Question-Based Spatial Computing—A Case Study." 2016

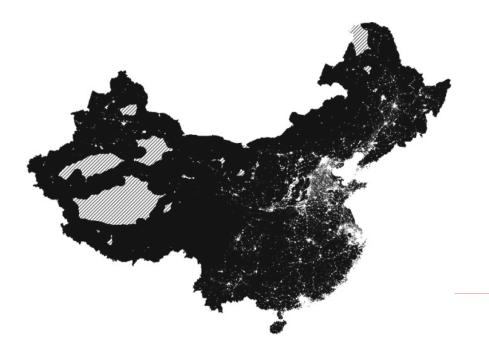
Natural Language Interface for Data Analytics

Study:

use nighttime luminosity observed by satellites as a proxy measure of development and welfare

Command (high-level):

calculate the average nighttime luminosity near roads in China in 1994



Command (implementation):

Get China less gas flares polygon
arcpy.Select_analysis("countries_nogas", "china1.shp",
 "\"NAME\" = 'China'")
Average two satellites for 1994
outRaster = (Float("F101994")+Float("F121994"))/2
outRaster.save("FXX1994")

Use buffer tool and roads to make polygon of China
close to roads, then clip china1 to this
arcpy.Buffer_analysis("a2010_final_proj", "roadbuff.shp", "0.5
DecimalDegrees", "FULL", "ROUND", "ALL", "")
arcpy.Clip_analysis("H:/Research/Data/Lights/china1.shp",
 "H:/Research/Data/Lights/roadbuff.shp", "china2.shp", "")

Clip each lights raster to extent of china2
rasterList = arcpy.ListRasters("F*")
for raster in rasterList:
 arcpy.Clip_management(raster, "-179.9999 -90.0 180.0
 83.62741", "G"+str(raster[1:]),
 "H:/Research/Data/Lights/china2.shp", "",
 "ClippingGeometry")

Create grid to extent of one of new light rasters arcpy.CreateFishnet_management("ch_grid.shp", "73.55416 18.15416", "73.5541 28.15416", "0.1", "0.1", "0", "0", "134.77916 53.5625", "NO_LABELS", "G101992", "POLYGON") arcpy.RasterToPolygon_conversion("G101992", "G101992p.shp", "NO_SIMPLIFY", "Value")

Process: Clip grid to perimeter of polygon arcpy.Clip_analysis("H:/Research/Data/Lights/ch_grid.shp", "H:/Research/Data/Lights/G101992p.shp", "china_grid.shp", "")

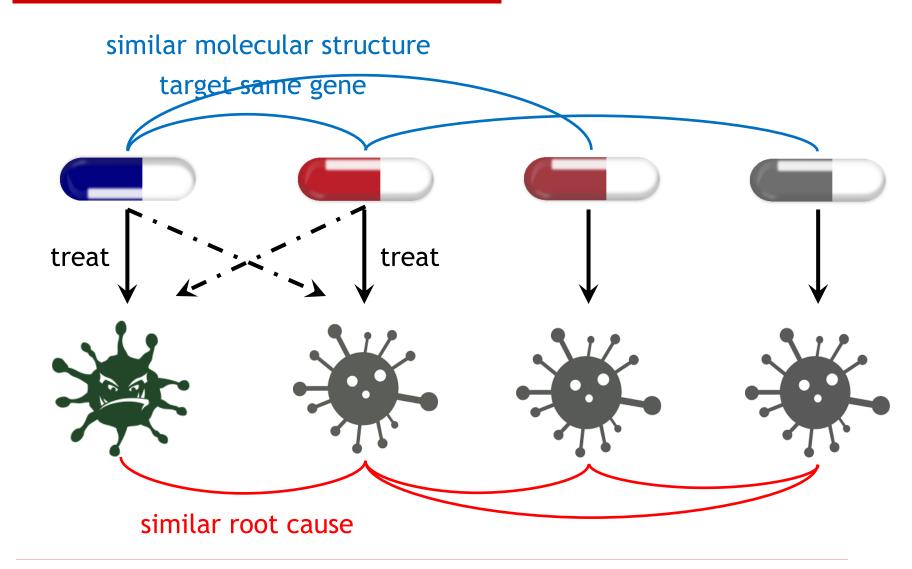
Zonal statistics on each year
rasterList = arcpy.ListRasters("G*")
for raster in rasterList:
 arcpy.gp.ZonalStatisticsAsTable_sa("H:/Research/Data/Lights/
 china_grid.shp", "FID", raster,
 "l"+str(raster[5:])+".dbf", "DATA", "MEAN")

Natural Language Interface for Data Analytics

Transduce natural language commands into programs

- Allow users to stay focused on high-level thinking and decision making, instead of overwhelmed by low-level implementation details
- □ Two steps
 - Simple commands → single function calls [CIKM'17], [SIGIR'18]
 - Complex commands \rightarrow programs of multiple function calls

Knowledge-based Machine Reasoning



Methodological Exploration

- Inherent structure of the NLI problem space
 - Strong prior for learning
 - Key: compositionality of natural & formal languages [CIKM'17]
- Integration of neural and symbolic computation
 - Neural network modularized over symbolic structures [SIGIR'18]
 - (Cognitive science) neural encoding of symbolic structures
- Goal-oriented human-computer conversation
 - Accommodate dynamic hypothesis generation and verification in a natural conversation
 - Challenge: open-ended, no fixed frames

AI-Powered Knowledge Engine: Applications

"Which cement stocks go up the most when a Category 3 hurricane hits Florida?"

KENSHC

