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Data-Driven Decision Making
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C1: Inquiry

C2: Examination

C3: Literature

What disease does the patient have?

P(Disease | C1, C2, C3)



Growing Gap between Human and Data

What disease does the patient have?
• EMR => Similar patients?
• Literature => New discoveries?
• Gene sequence => Suspicious mutations?
• … …

Ad-hoc information needs for on-demand decision making

Massive, heterogeneous data

86.9% adoption 
(NEHRS 2015)

27M+ papers, >1M 
new/year (PubMed)

$1000 gene sequencing 24x7 monitoring
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How to Democratize Data Science?



AI-Powered Knowledge Engine
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Bottleneck #1: Knowledge

Bottleneck #2: Access 

Discoveries
Decisions
Actions

Bottleneck #3: Reasoning 



Knowledge Base 

1970s-1990s

2000s-present

Texts
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Knowledge Base

o Encyclopedic knowledge about concepts, entities and 
their relationships (facts)
n Google Knowledge Graph: 570M entities and 18B facts (2014)
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Texts



Strong Supervision
o In-domain, on-task

Weak Supervision
o In-domain, off-task
o Out-of-domain, on-task
o Out-of-domain, off-task

Methodology: Deep Learning with Weak Supervision 

Text Knowledge
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KNOWLEDGE HARVESTING FROM 
MASSIVE TEXT
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Knowledge Base Construction from Text
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o Entity recognition and linking

o Relation extraction: binary, n-ary (event)

High-throughput cell-based screening of 
4910 known drugs and drug-like small 

molecules identifies Disulfiram as an inhibitor
of prostate cancer cell growth

Subject Object Probability
Disulfiram Prostate Cancer 0.85

…

Relation: inhibit

"Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4"
Skrott et al. Nature 552.7684 (2017): 194.



Scalable Relation Extraction with Distant Supervision

place_of_birth: (Michael Jackson, US)

Training

Michael Jackson was born in the US.

Born in the US, Michael Jackson was one of …

I visited the birthplace of Michael Jackson in 
Gary, Indiana, United Stated. 

Learn & Generalize

Testing

Barack Obama was born in the US.

… nearby Stratford, birthplace of Justin Bieber …

The German-born American physicist Albert 
Einstein revolutionized …

(Barack Obama, US)
(Justin Bieber, Stratford) 

(Albert Einstein, Germany)

E.g., [Mintz et al., 2009], [Riedel et al., 2010], [Zeng et al., 2015], [Lin et al., 2016], …

Knowledge BasesDistant Supervision

Extraction

In-domain, off-task supervision
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Global Statistics of Relations

12

o Number of co-occurrences of KB-textual relation 
pairs in the entire corpus

[NAACL’18]
Word embedding analogy: GloVe (global statistics) vs. Word2vec (local statistics)

Meaning of this textual relation!

Local

Global



Textual Relation Embedding with Global Statistics 
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nsubjpass
SUBJECT born

nmod:in
OBJECT

nsubj
SUBJECT died

nmod:in
OBJECT

place_of_birth

place_of_death

... ...

0.73

0.89

Target Embedding !

ClueWeb: 500M
web documents

Freebase: 45M
entities, 3B facts



Evaluation on Newswire Corpus
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o Dataset: New York Times corpus, 53 target relations
n place_of_birth, place_of_death, founder_of, employee_of, etc.

o The learned textual relation embedding improves the 
STOA method by 5.9% (top 1,000 extracted facts)



o (Open-world) probabilistic KBs
n Model uncertainties of the real world

o Multi-modal KBs
n Images, audio, video, temporal-special info

o (Dynamic) distributed KBs
n Personal KBs (at edge) + a public KB (in the cloud)

Knowledge Base Construction: Food for Thought
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o KB: place_of_birth(John, United States)
o Query: “Does John speak English?”
o Closed-world assumption: “No.”
o Open-world assumption: “I don’t know.” 
o Open-world probabilistic KB: “99% yes.” 

o Challenges
n Uncertainty modeling and probability calibration 
n Efficient querying
n Combination of logic-based reasoning and machine learning 

based reasoning

(Open-World) Probabilistic KBs

16Some examples: YAGO, NELL, Google Knowledge Vault 



Multi-Model KBs
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source: visualgenome.org

source: RoboBrain by Saxena et al. 



(Dynamic) Distributed KBs
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NATURAL LANGUAGE INTERFACE
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Writing formal queries is a pain…
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“find all patients diagnosed with eye tumor”

“Semantic queries by example”, 
Lim et al., EDBT (2014)

Natural Language Interface



In Pursue of Efficiency

Days

Seconds
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find all patients diagnosed with eye tumor



In Pursue of Efficiency
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find all patients diagnosed with eye tumor

Natural Language 
Interface



Natural Language Interface ≈ Model-Theoretic Semantics

argmin(child(Elizabeth II), date_of_birth)

find the first kid of Queen Elizabeth II

semantic parsing

execution

Charles, Prince of Wales

Utterance

Formal Meaning Repr.
(SQL, "-calculus, …)

World
(knowledge base, …)

Denotation

eldest child of Elizabeth IIQueen Elizabeth’s firstborn

argmin(child(Elizabeth Alexandra Mary), birthdate)
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argmin(relation1(person1), relation2)

Language Variations

Symbol Grounding
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The Cold Start Problem

“I	want	to	build	an	NLI	for	my	domain,	but	I
don’t	yet	have	any	user	or	data”
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How to Build NLI for New Domain

[Auxerre and Inder, 1986]

o 1950s-1990s: Rule engineering (rule-based systems)
o 1990s-2010s: Feature engineering (statistical ML)
o 2010s-present: Data engineering (neural models)
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� Crowdsourcing � Transfer Learning

� User Interaction



Cross-domain Natural Language Interface
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Natural Language 
Interface

Knowledge
Transfer

Natural Language 
Interface

Source 
Domain

Target 
Domain

Out-of-domain, on-task supervision



What is Transferrable in NLI across Domains?

In which season did Kobe 
Bryant play for the Lakers?

! season . (player.KobeBryant
⊓ team.Lakers)

When did Alice start working 
for Mckinsey?

! start . (employee.Alice
⊓ employer.Mckinsey)
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: team "play for"

: employer "work for"

Source Domain: Basketball

Target Domain: Social

: relation1 "play for"

: relation2 "work for"



Cross-domain NLI via Paraphrasing

In which season did Kobe 
Bryant play for the Lakers?

! season . (player.KobeBryant
⊓ team.Lakers)

6 "whose team is" "play for"

When did Alice start working 
for Mckinsey?

! start . (employee.Alice
⊓ employer.Mckinsey)

Season of Player Kobe Bryant 
whose team is Lakers

Start date of employee Alice 
whose employer is Mckinsey

automatic

automatic

6 "whose employer is" "work for"

play ≈ work, team ≈ employer
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6 "whose team is" "play for"

6 "whose employer is" "work for"



o Word ≜ Dense vector (typically 50-1000 dimensional)
o Word similarity ≜ Vector similarity
o Pre-trained on large external text corpora

Pre-trained Word Embedding

company

team

organization

play play

work

played

playing

worked

working

work

“play”   =  [0.2,0.4,0.3]
“work”  =  [0.1,0.6,0.2]

Out-of-domain, off-task supervision
31

Fine-grained Similarity Linguistic Regularity



Pre-trained Word Embedding Alleviates Vocabulary Shifting

o Vocabulary shifting: Only 45%~70% target domain 
vocabulary are covered by source domains[1]

o Pre-trained word embedding can alleviate the 
vocabulary shifting problem
n Word2vec: 300-d vectors pre-trained on the 100B-token Google 

News Corpus; vocabulary size = 3M

[1] Wang et al. Building a Semantic Parser Overnight. 2015  

Calendar Housing Restaurants Social Publications Recipes Basketball Blocks

Coverage 71.1 60.7 55.8 46.0 65.6 71.9 45.6 61.7

+word2vec 93.9 90.9 90.4 89.3 95.6 97.3 89.4 93.8
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Neural Transfer Learning for NLI

Source Domain Target Domain
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o Input utterance ! = #$, … , #' , canonical utterance ( = )$, … , )*
o Embedding: + ! = (+ #$ , … , + #' ), + ( = (+ )$ , … , + )* )
o Learning on source domain: .(+ ( |+ ! , 0)
o Warm start on target domain: .(+ ( |+ ! , 0)
o Fine-tuning on target domain: .(+ ( |+ ! , 0∗)

Word Embedding +

0



58.8

72.7

75.8 75.7

69.5

76.9
74.9

Wang et al.     
(2015)

Xiao et al. 
(2016)

Jia and Liang 
(2016)

Ours +
Random

Ours +
Word2vec

In-domain Cross-domain

Direct Use of Word2vec Fails Dramatically…
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o Cross-domain: for each target domain, use all others 
as source domain

o Word2vec brings 6.2% absolute decrease in accuracy



Pre-trained Word Embedding: What May Be Wrong?

o Small micro variance: hurt optimization
n Activation variances ≈ input variances [Glorot & Bengio, 2010]

n Small input variance implies poor exploration in parameter space

o Large macro variance: hurt generalization
n Distribution discrepancy between training and testing
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Micro Variance
Variance of the values comprising a vector

Macro Variance
Variance among different vectors
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Proposed Solution: Standardization

o Standardize each word vector to unit variance

o But it was unclear before why standardization should 
be applied on pre-trained word embedding

Random: randomly draw from uniform distribution with unit variance
Word2vec: pre-trained word2vec embedding 
ES: per-example standardization (per column)

36



Standardization Fixes the Variance Problems 
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58.8

72.7

75.8 75.7

69.5

78.2
76.9

74.9

80.6

Wang et al.     
(2015)

Xiao et al. 
(2016)

Jia and Liang 
(2016)

Ours +
Random

Ours +
Word2vec

Ours +
Word2vec+ES

In-domain Cross-domain

o Standardization brings 8.7% absolute increase
o Transfer learning brings another 2.4% increase



WHAT’S NEXT?
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Let machines understand human thinking 
Don’t let humans think like machines



Bridging the Gap between Human and Data: 
AI-Powered Knowledge Engine

39

Knowledge Harvesting

Natural Language Interface

Discoveries
Decisions
Actions

Knowledge-based Reasoning



Natural Language Interface for Data Analytics

Command (high-level): 
calculate the average nighttime 
luminosity near roads in China in 1994

Study: 
use nighttime luminosity observed 
by satellites as a proxy measure of 
development and welfare

Command (implementation):

Matt Lowe (MIT economist), “Night Lights and ArcGIS: A Brief Guide.” 2014
Vahedi et al., “Question-Based Spatial Computing―A Case Study.” 2016

40



o Transduce natural language commands into programs

o Allow users to stay focused on high-level thinking 
and decision making, instead of overwhelmed by 
low-level implementation details

o Two steps
n Simple commands → single function calls 

[CIKM’17], [SIGIR’18]

n Complex commands → programs of multiple function calls

Natural Language Interface for Data Analytics

41



Knowledge-based Machine Reasoning 
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treat treat

similar molecular structure

similar root cause

target same gene



o Inherent structure of the NLI problem space
n Strong prior for learning

n Key: compositionality of natural & formal languages [CIKM’17]

o Integration of neural and symbolic computation
n Neural network modularized over symbolic structures [SIGIR’18]

n (Cognitive science) neural encoding of symbolic structures

o Goal-oriented human-computer conversation
n Accommodate dynamic hypothesis generation and verification in 

a natural conversation

n Challenge: open-ended, no fixed frames 

Methodological Exploration 
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AI-Powered Knowledge Engine: Applications

“Which cement stocks go up 
the most when a Category 3 

hurricane hits Florida?”
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Thanks &
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