

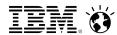

# **NMONVisualizer**

Processing & Analyzing nmon Graphically





## nmon is a tool for viewing & collection system data


#### **AIX**

- Built in as part of topas
- Closed source

#### Linux

- Open source
- Download and install from http://nmon.sourceforge.net/pmwiki.php?n=Site.Download
  - Make sure you get the right one for your distribution

•



# nmon has a graphical mode

# Just run from the command line.

- nmon
- Then hit letters to show data
  - c(pu), d(isk), n(etwork) is a good start but it may not fit on the screen
  - h(elp) for more
  - q(uit) to exit

This is live data. It does not write to a file.



### Write nmon data to a file

#### **Command line switch**

- -f ⇒ create a file named <hostname>\_<yyMMdd>\_<HHmm>.nmon in the current directory
- -F ⇒ specify the file name

#### Also need to specify

- -c number of samples, default 3000
- -s time between samples in seconds, default 30
- Samples \* count = time nmon will run

#### If you need to stop nmon, do not just kill it!

- Use user signal 2 to have nmon stop after writing the next record
  - Prevents corruption of the last sample
- Linux kill -s USR2 <pid>
- AIX kill -s SIGUSR2 <pid>



## I have nmon Data, now what?

### **NMONA**nalyzer

- Excel spreadsheet macro
  - Do you have Excel?
  - Slower

•

- Only a single file at a time
- •
- Time ranges only specified in terms of samples

## **NMONVisualizer**

- Java GUI (Swing)
  - Runs anywhere
  - Faster

•

- Multiple files at once
  - Either from a single server or multiple servers

•

- Absolute and relative time ranges
  - Handles time zones too

•

Also processes IOStat,
 Verbose GC & ESXTop files



# Getting NMONVisualizer

NMONVisualizer can be downloaded from the link on http://nmonvisualizer.github.io/nmonvisualizer/

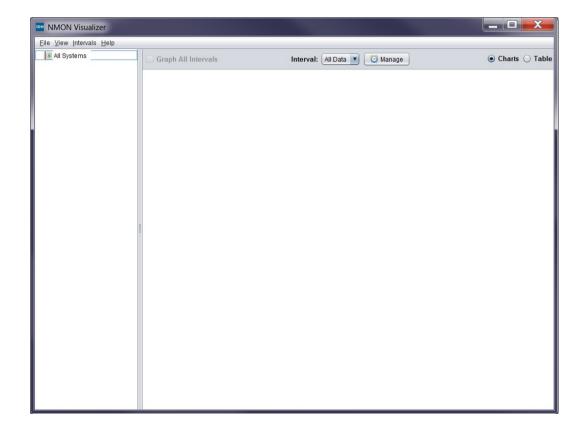
### NMONVisualizer is an open source project

- GitHub Project Page https://github.com/nmonvisualizer/nmonvisualizer
- GitHub Releases https://github.com/nmonvisualizer/nmonvisualizer/releases



# Running NMONVisualizer

#### Windows & Mac

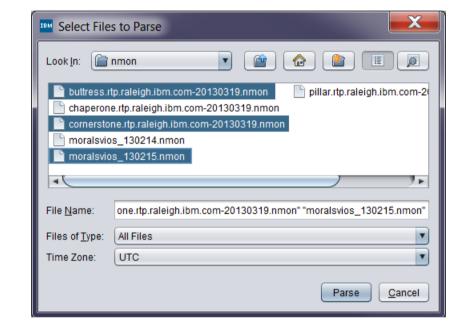

 Can just double click if a JRE is installed

#### Linux or AIX

- Command line (java -jar)
- XWindows works too

# Make sure you have max heap (-Xmx) set high enough

- May need 1 or 2 GB for a 'large number' of files
  - Depends on the amount of data per file






## Parsing nmon data

# Multiple ways to get files into the program

- File → Load or CTRL-O
  - Opens file dialog
    - · Multi-selection supported
    - Directories supported; fully recursive
- Drag and Drop
  - Drag from file viewer (Explorer, Finder, etc) into left hand pane of UI





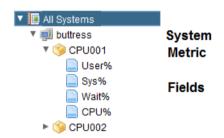
## NMONVisualizer displays reports at multiple levels

#### **Top Level – All Systems**

- For each system, show either
  - Average data for the interval
  - Average data (as a single point) for all intervals

#### **System Level**

For each system show data across time


#### **Metric Level**

For each metric show data across time for all fields

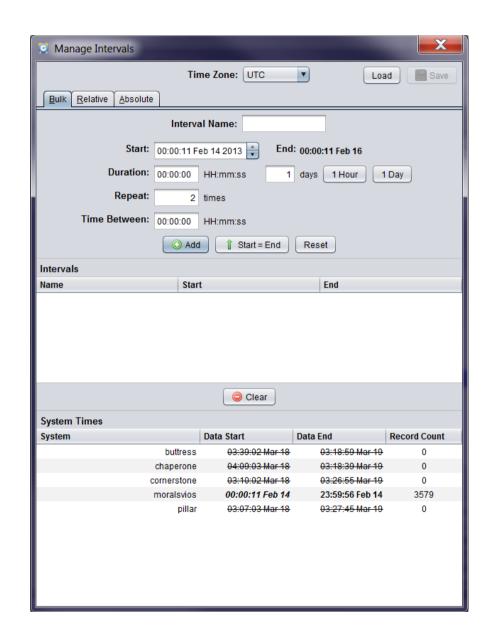
#### Field Level

For each field show data across time

### All reports & charts can be filtered by time using Intervals






## **Creating Intervals**

#### **Open the Interval Manager dialog**

- Click on Manage (the cloc Manage
- CTRL-I

#### Supports multiple methods

- Absolute
- Relative to the earliest time in all files
- Bulk
  - Add multiple intervals over a given range
  - Supports separation between intervals (i.e. rampup)
  - Easy to add intervals that cover an hour or day via the 1 Hour / 1 Day buttons





## **Interval Manager Tips & Tricks**

#### Charts are 'live'

- When an interval is added, the charts will update
- In the Interval Manager, right clicking on the interval will allow you to make the selected one the current
- Useful if you move the Interval Manager so it is not over the main window

# System Times section of the Interval Manager graphically indicates which systems have data for the current interval

- Strikethrough no data
- Bold Italics interval exactly matches start and / or stop
- Bold interval is before start or after stop
- This data updates as you change the start / stop in the interval dialog or click on an existing interval

#### Right clicking on a system will allow either

- Setting the start and stop to the system time
- Creating a new interval directly

| System Times |                                   |                         |              |
|--------------|-----------------------------------|-------------------------|--------------|
| System       | Data Start                        | Data End                | Record Count |
| buttress     | 03:39:02 Mar 18                   | 03:18:59 Mar 19         | 0            |
| chaperone    | <del>04:09:03</del> <u>Mar 18</u> | 03:18:39 Mar 19         | 0            |
| cornerstone  | <del>03:10:02</del> Use           | as Start & End   Mar 19 | 0            |
| moralsvios   | 00:00:11 Add                      | Interval Feb 14         | 3579         |
| pillar       | 03:07:03 Mar 18                   | 03:27:45 Mar 19         | 0            |



# Changing the Current Interval

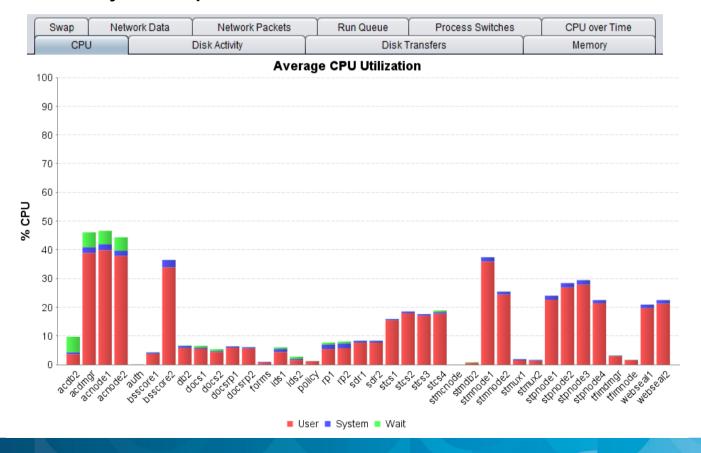
#### Once intervals are created, you can switch between them with

- The Intervals menus
- The Interval drop down at the top of the UI
- CTRL-ALT-1 through CTRL-ATL-9 switch between the first 9 intervals

# There is always a default, All Data interval that will display all the parsed data

- Unique entry in menu and drop down
- CTRL-ALT-0

## Charts are 'live' and update as the interval changes


Application title also changes



## Where to start the analysis

### All Systems report shows average, summary data

- Does one system stand out with higher CPU, memory disk or network?
  - Is it what you expected?





## Digging into a specific system



### Individual System reports show data over time

- CPU spikes in the middle of the run / plateau?
- Memory & Swap expected memory usage and no swap?
- Disk Reads / Writes IOs on the expected disks?
- Disk Busy / Disk Transfers IO rate is not too high?
- Network Reads / Writes traffic on the expected interfaces?
- CPU by Process expected processes are using CPU?
- CPU Balance CPU utilization is balanced across cores?
   Hyperthreads / SMT threads use is lower at low overall CPU?



#### Raw nmon Data

# All nmon data is available in the Metric & Field level charts

- Some disk data is duplicated (dm-x vs associated sdy's)
- Some disk data is additive (sdx = sdx1+sdx2+... +sdxn)

# The most useful data is probably the per process data, TOP

- Different organization that other data
  - Entry per process when there is a single instance of the process
  - Folder per process when there are multiple instances

► ❤️ VM

▼ ❖ TOP

► ♣ hald (4390)

► ♣ hald-addon-stor (4413)

► ♠ httpd

▼ ❖ java

► ♣ java (1774)

► ♣ java (2104)

► ♣ java (32134)

► ♠ java (32462)

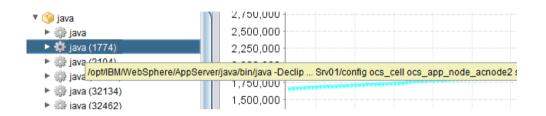
► ♠ kjournald (1025)

► ♠ kswapd0 (556)

► ♠ memcached (4638)

Aggregated data is in the process without




## TOP Data Tips & Tricks

#### Hover over a process in the tree

 A tool tip will display a shortened version of the command line

#### Right click on a process

- Process Info option opens a dialog with the full command line
  - Each command line option is on a separate line
  - Data is selectable for copy & paste
- Note process start and stop time may not be accurate
  - Start time may be when nmon was started
  - Stop time may be when nmon was stopped
- Link with Tree option can be







# Chart Tips & Tricks

### Click on a line / bar and it will highlight the row in the table

- ... and vice-versa
- Multi-selection is supported
- Clicking on the legend item also works
  - This may be easier since lines actually have to be clicked on the data point

#### Mouse over is also supported

- Line charts show series name, time and value
- Bar charts show series name, value and percentage of total



# Chart Tips & Tricks

## Right click on the table or CTRL-SHIFT-C to change columns

- CTRL-A for all; CTRL-D for defaults; CTRL-X for none
- This sets for all charts at the same 'level', e.g. only System charts

#### Line charts have an option to show / hide selected lines

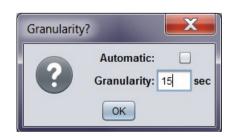
- Click the checkbox
- Right click on table
  - Show selected, show none or show all
- These are saved per-metric (i.e. CPU001 != CPU002)

### Tables are sortable by column

This sets for all charts at the same 'level'



# Granularity


### All charts as displayed with a globally set 'granularity'

- How granular are the data points on the chart?
- Sets how much data is averaged to compute a single point on a line chart
- Measured in seconds
- Concept similar to Load Runner analysis

## Automatically calculated by default

- Fit ~100 points on a chart
- Updates as intervals change

Manually set via View → Set Granularity or CTRL-G





### **Data Tables**

#### Data tables as a way to create summary, spread sheet like views of data

Click on the Table radio button, View → Summary Table, or CTRL-T



#### Drag metrics or fields from the tree onto the data table

- Metric will include all fields
- Automatically analyzes data for all systems

#### Remove data with right click option or Clear button

Remove option removes field for all hosts



## Data Tables, continued

#### Two views supported

 Default shows a row per host / data type / metric combo with statistics for columns

•

- Transposed shows a row per data type / metric combo with hosts for columns
  - Single displayed statistic is selectable via a drop down

•

 Change via Transpose button or CTRL-SHIFT-T

| Hostname    | Data Type | Metric ▲ | Minimum | Average | Maximum | Std Dev | Sum       |
|-------------|-----------|----------|---------|---------|---------|---------|-----------|
| buttress    | CPU_ALL   | Busy     | 0.000   | 0.000   | 0.000   | 0.000   | 0.00      |
| chaperone   | CPU_ALL   | Busy     | 0.000   | 0.000   | 0.000   | 0.000   | 0.00      |
| cornerstone | CPU_ALL   | Busy     | 0.000   | 0.000   | 0.000   | 0.000   | 0.00      |
| moralsvios  | CPU_ALL   | Busy     | 0.000   | 0.000   | 0.000   | 0.000   | 0.00      |
| pillar      | CPU_ALL   | Busy     | 0.000   | 0.000   | 0.000   | 0.000   | 0.00      |
| buttress    | CPU_ALL   | CPU%     | 4.400   | 4.513   | 6.400   | 0.242   | 12,811.30 |
| chaperone   | CPU_ALL   | CPU%     | 2.500   | 3.171   | 12.500  | 0.691   | 8,804.50  |
| cornerstone | CPU_ALL   | CPU%     | 4.700   | 8.682   | 15.300  | 2.026   | 25,272.40 |
| moralsvios  | CPU_ALL   | CPU%     | 0.600   | 8.034   | 19.900  | 7.263   | 28,754.50 |
| pillar      | CPU_ALL   | CPU%     | 0.500   | 0.577   | 2.500   | 0.070   | 1,685.20  |
| buttress    | CPU_ALL   | CPUs     | 24.000  | 24.000  | 24.000  | 0.000   | 68,136.00 |
| chaperone   | CPU_ALL   | CPUs     | 24.000  | 24.000  | 24.000  | 0.000   | 66,648.00 |
| cornerstone | CPU_ALL   | CPUs     | 32.000  | 32.000  | 32.000  | 0.000   | 93,152.00 |
| moralsvios  | CPU_ALL   | CPUs     | 4.000   | 4.000   | 4.000   | 0.000   | 14,316.00 |
| pillar      | CPU_ALL   | CPUs     | 32.000  | 32.000  | 32.000  | 0.000   | 93,408.00 |
| buttress    | DISKREAD  | sda      | 0.000   | 0.202   | 11.500  | 0.253   | 573.30    |
| chaperone   | DISKREAD  | sda      | 0.000   | 0.538   | 939.500 | 18.197  | 1,493.60  |
| cornerstone | DISKREAD  | sda      | 0.000   | 0.000   | 0.000   | 0.000   | 0.00      |
| pillar      | DISKREAD  | sda      | 0.000   | 0.000   | 0.000   | 0.000   | 0.00      |
| buttress    | CPU_ALL   | Sys%     | 4.300   | 4.356   | 5.400   | 0.062   | 12,366.50 |
| chaperone   | CPU_ALL   | Sys%     | 1.600   | 2.141   | 4.400   | 0.251   | 5,944.40  |
| cornerstone | CPU_ALL   | Sys%     | 3.200   | 6.759   | 10.900  | 2.028   | 19,675.00 |
| moralsvios  | CPU_ALL   | Sys%     | 0.400   | 7.823   | 18.800  | 7.258   | 27,998.30 |
| pillar      | CPU_ALL   | Sys%     | 0.300   | 0.302   | 1.400   | 0.024   | 881.70    |
| buttress    | CPU_ALL   | User%    | 0.100   | 0.157   | 1.900   | 0.204   | 444.80    |
| chaperone   | CPU_ALL   | User%    | 0.800   | 1.030   | 8.900   | 0.587   | 2,860.10  |
| cornerstone | CPU_ALL   | User%    | 1.200   | 1.923   | 5.200   | 0.434   | 5,597.40  |
| moralsvios  | CPU_ALL   | User%    | 0.200   | 0.211   | 9.800   | 0.171   | 756.20    |
| pillar      | CPU_ALL   | User%    | 0.200   | 0.275   | 1.300   | 0.060   | 803.50    |



| Data Type | Metric | buttress | chaperone | cornerstone | moralsvios | pillar |
|-----------|--------|----------|-----------|-------------|------------|--------|
| CPU_ALL   | User%  | 0.157    | 1.030     | 1.923       | 0.211      | 0.275  |
| CPU_ALL   | Sys%   | 4.356    | 2.141     | 6.759       | 7.823      | 0.302  |
| CPU_ALL   | Wait%  | 0.008    | 0.023     | 0.003       | 0.004      | 0.000  |
| CPU_ALL   | CPU%   | 4.513    | 3.171     | 8.682       | 8.034      | 0.577  |
| CPU_ALL   | Busy   | 0.000    | 0.000     | 0.000       | 0.000      | 0.000  |
| CPU_ALL   | CPUs   | 24.000   | 24.000    | 32.000      | 4.000      | 32.000 |
| DISKREAD  | sda    | 0.202    | 0.538     | 0.000       | N/A        | 0.000  |



## Saving & Exporting Charts

#### Save to PNG

- Right click on a chart & select Save Chart
  - Prompts for a file name, suggests a sensible default
- Right click on the tree
  - Asks for a folder and uses the default file name
  - All Systems and individual systems save *all* charts in the report
- Fixed resolution of ½ of 1920x1080

#### Copy to clipboard

Right click on a chart & select Copy

#### **Export to CSV**

- Right click on a chart & select Copy Chart Data
- Paste into a file, Excel Etc



## Saving & Exporting Raw Data as CSV

#### Save to file

Right click on system, metric or field in the tree, select Save to CSV

#### Copy to clipboard

Right click on system, metric or field in the tree, select Copy

#### Data tables can also be copied by right clicking

- Copy ⇒ currently selected row
- Copy All ⇒ all rows
- Copy button ⇒ all rows

•



# Running nmon as a Service



## Running nmon as a service in RHEL 6

Copy nmon initd script to /etc/init.d/nmon
Copy nmon logrotate script to /etc/logrotate.d/nmon
Create symbolic link from nmon executable to /usr/bin/nmon
Setup permissions & start nmon service

chown root:root /etc/init.d/nmon
chmod 755 /etc/init.d/nmon
chown root:root /etc/logrotate.d/nmon
chcon --reference /etc/init.d/network /etc/init.d/nmon
chmod 644 /etc/logrotate.d/nmon
chown root:root /usr/bin/nmon\_x86\_64\_rhel6
chcon --reference /etc/logrotate.d/yum /etc/logrotate.d/nmon
chmod 755 /usr/bin/nmon\_x86\_64\_rhel6
In -s -f /usr/bin/nmon\_x86\_64\_rhel6 /usr/bin/nmon
chkconfig --add nmon
service nmon start

nmon collects every 30 seconds; 15 days of logs are retained in /var/log/nmon/old



## Linux nmon Scripts

See http://nmonvisualizer.github.io/nmonvisualizer/startup.html



## Running nmon as a service in AIX

AIX supports daily nmon collection out of the box.

Run smit topas to start smit.

- Select Start New Recording → Start Persistent local recording
- Select nmon as type
- Set the following options

Recording interval in seconds: 30

Number of Days to retain: 15

Include Fiber Channel Section: yes (on VIOS)

Include Shared Ethernet Section: yes (on VIOS)

Include Large Page Section: yes

Include Asynchronus IO: yes

- Hit enter to run the command
- Esc 0 to exit smit

There should now be an nmon file in /etc/perf/daily.

To stop nmon section, run smit topas. Then select Stop Recording → Stop Persistent Recording

→ Stop Persistent local nmon Record