
Fast Search inHamming SpacewithMulti-indexHashing
Mohammad Norouzi Ali Punjani David J. Fleet

University of Toronto

Problem Context

Open Problem: Exact sub-linear nearest neighbor search in
Hamming distance on binary codes.

Context: Fast similarity search with large, high-dimensional
datasets: images, videos, documents, <your data here>.

1. Map data-points onto similarity-preserving binary codes:

- Similar data items should map to nearby codes

- Dissimilar data items map to distant codes

.

↓ ↓ ↓ ↓
. . . 110010 100010 . . . 000101 001101 . . .

2. Perform nearest-neighbor search in the Hamming space.

Why binary codes?

− Binary codes are storage-efficient.

− Hamming distance is inexpensive to compute.

Key Tasks: Given a corpus of b-bit codes, and a query q,

− Find r-neighbors: find all codes in the database that differ from
q in r bits or less (aka. Point-Location in Equal Balls).

− kNN: find k codes with k smallest Haming distances from q.

Linear Scan vs. Hash Indexing

How to structure the database, so that r-neighbors and kNN
queries can be answered quickly?

(1) Exhaustive search (i.e., linear scan through the database)
∼ 50 million comparisons/second.

(2) Populate a hash table with the database codes. At query time,
flip bits of q and lookup the entries in the vicinity of q.

Issues with hash indexing:

− Volume of the Hamming ball grows near-exponentially in r.
V (b, r) = 1 +

(
b
1

)
+
(
b
2

)
+ . . .+

(
b
r

)

0 2 4 6 8 10
0

3

6

9

Hamming Radius

#
 H

a
s
h
 B

u
c
k
e
ts

 (
lo

g
1

0
)

32 bits

64 bits

128 bits

256 bits

− For typical databases / tasks, a large search radius r is necessary.
The following plot is produced from 1B LSH codes on SIFT.

1 10 100 1000
0

5

10

15

20

Near neighbors

H
a

m
m

in
g

 R
a

d
iu

s
 n

e
e

d
e

d

64 bits

128 bits

Conclusion: For binary codes longer than 32 bits, linear scan is
more effective than vanilla hash indexing.

Multi-Index Hashing – Idea

Imagine a dataset of 15-bit codes, and a search radius of r = 2.
Black marks depict bits that differ from a given query.

(Note: the first 3 codes are the 2-neighbors of the query.)

Key Idea: Partition the codes into 3 substrings. Then, instead
of searching r=2 in the full codes, search r=0 in the substrings.

In general, partition codes into m substrings h ≡ (h(1), . . . ,h(m)).
Instead of exploring a Hamming ball of radius r in the full codes,
search a radius of br/mc in the substrings. This works because:

Proposition: When two binary codes h and g differ by r bits
or less, then, in at least one of their m substrings they must
differ by at most br/mc bits, i.e.,

‖h− g‖H ≤ r =⇒ ∃k ‖h(k) − g(k)‖H ≤
⌊ r
m

⌋
,

where ‖ . ‖H is the Hamming norm.

− Resembles the pigeonhole principle.

− This condition is necessary but not sufficient.
Thus, we retrieve a superset of r-neighbors,
and then cull the non-r-neighbors.

Key benefits of Multi-Index Hashing:

− Search occurs on much smaller binary code lengths

− Search radius is much smaller

Multi-Index Hashing – Algorithm

Data structure:

− Given m, partition each database code into m disjoint pieces.

− Generate m hash tables with the m substrings of each code.

Finding r-neighbors:

Given a query q with substrings {q(i)}mi=1,

1. Lookups: search the ith substring hash table for entries that
are within a Hamming distance br/mc of q(i), thereby retrieving
a set of candidates, denoted Ni(q).

2. Candidates: Take the union of the m sets, N (q) =
⋃

iNi(q),
and prune the duplicates. The setN (q) is necessarily a superset
of the r-neighbors of q.

3. Evaluation: Compute the Hamming distance between q and
each candidate in N (q), retaining only the true r-neighbors.

Finding kNNs:

Find r-neighbors with progressively increasing values of r until k
items are found.

0 5 10 15 20 25 30
0

0.05

0.1

F
ra

c
ti
o
n
 o

f
q
u
e
ri
e
s

Hamming radii needed for 10−NN
0 5 10 15 20 25 30

0

0.05

0.1

F
ra

c
ti
o
n
 o

f
q
u
e
ri
e
s

Hamming radii needed for 1000−NN

1B 128-bit LSH codes

Experiments

Hash Functions:

− LSH: Locality-sensitive Hashing [1]

− MLH: Minimal loss hashing [2]

Datasets:

− 1 Billion SIFT descriptors [3]

− 80 Million tiny images (GIST) [4]

Retrieval Speed:

speed-up factors for kNN

dataset nbits map 1-NN 10-NN 100-NN 1000-NN lin. scan

SIFT
1B

64
MLH 213 205 182 126

18.03s
LSH 229 213 175 107

128
MLH 272 170 87 37

35.33s
LSH 204 114 56 25

Gist
79M

64
MLH 161 128 78 33

1.41s
LSH 169 80 31 8

128
MLH 58 21 11 6

2.74s
LSH 28 12 6 3

Run-times per query for multi-index hashing with 1, 10, 100, and
1000 nearest neighbors, and a linear scan baseline on 1B codes
from 128D SIFT descriptors:

64-bit LSH 128-bit MLH

0 200 400 600 800 1000
0

5

10

15

20

ti
m

e
 p

e
r

q
u
e
ry

 (
s
)

dataset size (millions)

Linear scan

1000−NN

100−NN

10−NN

1−NN

0 200 400 600 800 1000
0

10

20

30

40

ti
m

e
 p

e
r

q
u
e
ry

 (
s
)

dataset size (millions)

Linear scan

1000−NN

100−NN

10−NN

1−NN

200 400 600 800 1000
0

0.05

0.1

0.15

0.2

ti
m

e
 p

e
r

q
u

e
ry

 (
s
)

dataset size (millions)

Linear scan

1000−NN

100−NN

10−NN

1−NN

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

ti
m

e
 p

e
r

q
u
e
ry

 (
s
)

dataset size (millions)

Linear scan

1000−NN

100−NN

10−NN

1−NN

4 5 6 7 8 9

−4

−3

−2

−1

0

1

lo
g

 t
im

e
 p

e
r

q
u

e
ry

 (
lo

g
1
0
 s

)

dataset size (log
10

)

Linear scan

1000−NN

100−NN

10−NN

1−NN

sqrt(n)

4 5 6 7 8 9
−4

−3

−2

−1

0

1

lo
g

 t
im

e
 p

e
r

q
u

e
ry

 (
lo

g
1
0
 s

)

dataset size (log
10

)

Linear scan

1000−NN

100−NN

10−NN

1−NN

sqrt(n)

Conclusions / References

Algorithm for exact nearest neighbor search in Hamming distance
with theoretical guarantees and strong empirical results.

[1] Charikar (2002) Similarity estimation techniques from rounding algorithms.
STOC.

[2] Norouzi & Fleet (2011) Minimal Loss Hashing for compact binary codes.
ICML.

[3] Jegou, Tavenard, Douze, Amsaleg (2011) Searching in one billion vectors:
re-rank with source coding. ASSP.

[4] Torralba, Fergus, Freeman (2008) 80 million tiny images: A large data set
for nonparametric object and scene recognition. PAMI.

Time and Space Complexity

Notation:
n: number of binary codes
b: bit length
r: radius of Hamming search
m: number of substrings
s: substring length (s = b/m)

Assume:

{
substring length s=log2n

uniformly distributed codes (for run-time)

Run-time:
query cost ≤ 2

b

log2n
nH(r/b),

where H(ε) ≡ −ε log2 ε− (1−ε) log2(1−ε) .

r/b ≤ 0.06 r/b ≤ 0.11 r/b ≤ 0.17

O

(
b n1/3

log2n

)
O

(
b
√
n

log2n

)
O

(
b n2/3

log2n

)
Storage: Multi-index hashing requiresm = n/ log2 n hash tables.
Each hash bucket stores identifiers for its codes. We also store n
codes of length b bits. Thus, it can be shown that:

space complexity is O (n b+ n log2n)

Cost Model

Run-time per query depends on the #lookups and the #candi-
dates. In general,

#lookups = m V (s, r/m)

For n uniformly distributed codes we expect n/2s codes per hash
bucket, so we expect

#candidates = m
n

2s
V (s, r/m)

Assuming the cost of 1 lookup equals the cost of 1 candidate test:

cost(s) = m
(

1 +
n

2s

)
V (s, r/m) ≤ b

s

(
1 +

n

2s

)
2 sH(r/b)

Optimal Substring Length

At the extremes:

− when s=b, then #lookups = V (b, r), which grows too quickly.
− when s=1, then #candidates = n, i.e., the entire dataset.

Analysis based on Stirling’s approximation shows that the optimal
substring length puts approximately one database entry in each
substring hash bucket on average: s∗ ≈ log2(n).

Plots show cost and its upper bound versus substring length, here
with b = 128 bits. Note how minima are aligned at s∗ ≈ log2(n).

10 20 30 40 50 60

5

10

15

substring length (bits)

c
o

s
t

(l
o

g
1
0
)

r/b = 0.25

r/b = 0.15

r/b = 0.05

−20 −10 0 10 20

5

10

15

substring length − log n (bits)

c
o
s
t
(l
o
g

1
0
)

n = 10
12

n = 10
9

n = 10
6

Left: for different search radii, all with n = 109 codes.

Right: for 3 database sizes, all for search radii r = 0.25 b.
(curves are displaced horizontally by − log2(n)).

