PROBLEM CONTEXT

Open Problem: FEzact sub-linear nearest neighbor search in
Hamming distance on binary codes.

Context: Fuast similarity search with large, high-dimensional
datasets: images, videos, documents, <your data here>.

1. Map data-points onto similarity-preserving binary codes:
- Similar data items should map to nearby codes

- Dissimilar data items map to distant codes
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2. Perform nearest-neighbor search in the Hamming space.

Why binary codes?
— Binary codes are storage-efficient.

— Hamming distance is inexpensive to compute.

Key Tasks: Given a corpus of b-bit codes, and a query q,

— Find r-neighbors: find all codes in the database that differ from

q in 7 bits or less (aka. Point-Location in Equal Balls).

— kNN: find k codes with £ smallest Haming distances from q.

LINEAR SCAN vs. HASH INDEXING

How to structure the database, so that r-neighbors and kNN
queries can be answered quickly?

(1) Exhaustive search (i.e., linear scan through the database)
~ 50 million comparisons/second.

(2) Populate a hash table with the database codes. At query time,
flip bits of q and lookup the entries in the vicinity of q.

Issues with hash indexing:

— Volume of the Hamming ball grows near-exponentially in r.
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— For typical databases / tasks, a large search radius r is necessary.

The following plot is produced from 1B LSH codes on SIFT.
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Conclusion: For binary codes longer than 32 bits, linear scan is
more effective than vanilla hash indexing.
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MuLTI-INDEX HASHING — IDEA

Imagine a dataset of 15-bit codes, and a search radius of r = 2.
Black marks depict bits that differ from a given query.
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(Note: the first 3 codes are the 2-neighbors of the query.)

Key Idea: Partition the codes into 3 substrings. Then, instead
of searching r=2 in the full codes, search r=0 in the substrings.
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In general, partition codes into m substrings h = (h(l), e h(m)).

Instead of exploring a Hamming ball of radius 7 in the full codes,
search a radius of |r/m/| in the substrings. This works because:

Proposition: When two binary codes h and g differ by r bits
or less, then, in at least one of their m substrings they must
differ by at most |r/m/| bits, i.e.,

r
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where || . ||z is the Hamming norm.

— Resembles the pigeonhole principle.

— This condition is necessary but not sufficient.
Thus, we retrieve a superset of r-neighbors,
and then cull the non-r-neighbors.

Key benefits of Multi-Index Hashing:

— Search occurs on much smaller binary code lengths

— Search radius is much smaller

MuLTI-INDEX HASHING — ALGORITHM

Data structure:
— Given m, partition each database code into m disjoint pieces.

— Generate m hash tables with the m substrings of each code.

Finding r-neighbors:
Given a query q with substrings {q(¥}™ .,
1. Lookups: search the " substring hash table for entries that

are within a Hamming distance |r/m] of q(¥), thereby retrieving
a set of candidates, denoted N;(q).

2. Candidates: Take the union of the m sets, N'(q) = |J, MV:(q),
and prune the duplicates. The set N'(q) is necessarily a superset
of the r-neighbors of q.

3. Evaluation: Compute the Hamming distance between q and
each candidate in N'(q), retaining only the true r-neighbors.

Finding £NNs:

Find r-neighbors with progressively increasing values of r until &

items are found.
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TIME AND SPACE COMPLEXITY

Notation:
n: number of binary codes
b: bit length
r: radius of Hamming search
m: number of substrings
s: substring length (s = b/m)

{substring length s=log,n
Assume:

uniformly distributed codes (for run-time)
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Storage: Multi-index hashing requires m = n/log, n hash tables.
Each hash bucket stores identifiers for its codes. We also store n
codes of length b bits. Thus, it can be shown that:

space complexity is O (n b+ nlog,n)

CosT MODEL

Run-time per query depends on the #lookups and the #candi-
dates. In general,

#lookups = m V (s,r/m)

For n uniformly distributed codes we expect n/2° codes per hash
bucket, so we expect

#candidates = m % Vis,r/m)

Assuming the cost of 1 lookup equals the cost of 1 candidate test:
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OPTIMAL SUBSTRING LENGTH

At the extremes:

— when s=b, then #lookups = V (b, r), which grows too quickly.

— when s=1, then #candidates = n, i.e., the entire dataset.

Analysis based on Stirling’s approximation shows that the optimal
substring length puts approximately one database entry in each
substring hash bucket on average: s* = log,(n).

Plots show cost and its upper bound versus substring length, here
with b = 128 bits. Note how minima are aligned at s* ~ logs(n).

—r/b=0.15 9
— — —n=10
S ||—r/b=0.05 2 15/ 6
L Ka ’ -/ ' n=
3 1 S S 10
= N7 T = |3
-'(-T) ‘~ \\“’x /““'.W - N -'(T) 10k
o N o =
&) (&
10 20 30 40 50 60 -20 -10 0 10 20

substring length (bits) substring length — log n (bits)

Left: for different search radii, all with n = 10” codes.

Right: for 3 database sizes, all for search radii r = 0.25b.
(curves are displaced horizontally by —log,(n)).

EXPERIMENTS

Hash Functions:
— LSH: Locality-sensitive Hashing [1]
— MLH: Minimal loss hashing |2]

Datasets:

— 1 Billion SIFT descriptors [3]
— 80 Million tiny images (GIST) [4]

Retrieval Speed:
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Run-times per query for multi-index hashing with 1, 10, 100, and
1000 nearest neighbors, and a linear scan baseline on 1B codes
from 128D SIFT descriptors:
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