
UREX: ImprovingPolicyGradientbyExploringUnder-appreciatedRewards

Ofir Nachum Mohammad Norouzi Dale Schuurmans

Motivation

Common forms of exploration in reinforcement learning
(e.g., epsilon-greedy and entropy regularization) are undirected.

We need smarter, more effective exploration strategies to deal
with sparse rewards in high-dimensional action spaces.

Problem

• Optimize a policy πθ(a) over action sequences to maximize ex-
pected reward Ea∼πθ

r(a), where a ≡ [a1, a2, . . . , at].

• The reward landscape r(a) is not fully observed.

Reward
Agent
Visible

REINFORCE

Standard policy-based approach to maximize expected reward.

OER(θ) = Ea∼πθ
[ r(a) ]

I Draw K action sequence samples {a(k)}Kk=1 i.i.d. from the cur-
rent policy, i.e., a(k) ∼ πθ(a) for each 1 ≤ k ≤ K.

I Estimate the gradient

∇OER =
1

K

K∑
k=1

(r(a(k))− b)∇ log πθ(a
(k))

I Use a baseline b to reduce variance, e.g., sample mean reward.

This fails even on simple problems due to lack of exploration.

MENT

Augment the objective with entropy regularization.

OMENT(θ, τ) = Ea∼πθ
[ r(a)/τ ] + H (πθ)

I Estimate the gradient using K on-policy samples,

∇OMENT =
1

K

K∑
k=1

(r(a(k))/τ − log πθ(a
(k))︸ ︷︷ ︸

entropy bonus

−b)∇ log πθ(a
(k))

MENT does better that REINFORCE, but still fails on problems
with a large action space.

We need even better exploration!

Proposal: UREX

The optimal policy that maximizes expected reward is one-hot.
Let π∗τ denote a soft relaxation of the optimal policy:

π∗τ (a) =
1

Z
exp{r(a)/τ}

(
Z =

∑
a′∈A

exp{r(a′)/τ}
)

We augment the objective to encourage mode covering behavior

OUREX(θ, τ) = Ea∼πθ
[ r(a)/τ ] + Ea∼π∗τ [ log πθ(a) ]

I Draw K i.i.d. action sequences {a(k)}Kk=1 from πθ(a).

I Compute self-normalized importance weights

w̃(k) = exp
{
r(a(k))/τ − log πθ(a

(k))
}
, w(k) =

w̃(k)∑K
i=1 w̃

(i)

I Estimate the gradient as

∇OUREX =
K∑
k=1

( 1

K
(r(a(k))/τ − b) + w(k)︸ ︷︷ ︸

UREX bonus

)
∇ log πθ(a

(k))

Characteristics of UREX

• Rather than undirected exploration, UREX encourages explo-
ration in areas where exponentiated rewards are under esti-
mated by the current policy.

• w̃(k) measures the difference between r(a(k))/τ and log πθ(a
(k)),

and normalized importance weights find the most
under-appreciated action sequences among K samples.

• UREX is simple and easy to implement.

• One needs multiple samples to normalize importance weights.

Justification

I Recall KL divergence between distributions p(a) and q(a),

−DKL (p ‖ q) = Ea∼p[− log p(a) + log q(a) ]

= H (p) + Ea∼p[ log q(a) ] .

I We re-express the entropy regularized objective as a KL,

−DKL (πθ ‖ π∗τ ) = H (πθ) + Ea∼πθ
[ r(a)/τ ]−logZ

= OMENT(θ, τ)+C

I DKL (πθ ‖ π∗τ ) has a mode seeking behavior, prone to falling
into local minima.

I DKL (π∗τ ‖ πθ) has a mode covering behavior, but requires
sampling from π∗τ (a).

−DKL (π∗τ ‖ πθ) = H (π∗τ )︸ ︷︷ ︸
constant

+ Ea∼π∗τ [ log πθ(a) ]

I We use importance sampling to estimate ∇DKL (π∗τ ‖ πθ):

w(k) ≈ π∗τ (a(k))/πθ(a
(k))

.UREX combines

•Mode seeking expected reward objective.

•Mode covering KL between soft optimal policy and current policy.
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Experiments
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Hyper-parameters

I learning rate η ∈ {0.1, 0.01, 0.001}
I gradient clipping L2 norm c ∈ {1, 10, 40, 100}
I temperature τ ∈ {0, 0.005, 0.01, 0.1}, always τ = 0.1 for UREX

REINFORCE / MENT UREX
τ = 0.0 τ = 0.005 τ = 0.01 τ = 0.1 τ = 0.1

Copy 85.0 88.3 90.0 3.3 75.0
DuplicatedInput 68.3 73.3 73.3 0.0 100.0
RepeatCopy 0.0 0.0 11.6 0.0 18.3
Reverse 0.0 0.0 3.3 10.0 16.6
ReversedAddition 0.0 0.0 1.6 0.0 30.0
BinarySearch 0.0 0.0 1.6 0.0 20.0

Results

• UREX reliably solves reversion and multi-digit addition.

• UREX ≥ MENT ≥ REINFORCE.

• The RL agents only observe total reward at the end of episode.

Expected reward
REINFORCE MENT UREX

Copy 31.2 31.2 31.2
DuplicatedInput 15.4 15.4 15.4
RepeatCopy 48.7 69.2 81.1
Reverse 3.0 21.9 27.2
ReversedAddition 1.4 8.7 30.2
BinarySearch 6.4 8.6 9.1

Num. of successful attempts out of 5
REINFORCE MENT UREX

Copy 5 5 5
DuplicatedInput 5 5 5
RepeatCopy 0 3 4
Reverse 0 2 4
ReversedAddition 0 1 5
BinarySearch 0 1 4

Future directions

• Make use of rewards per time step.

• Exploit off-policy samples.

• Exploit expert trajectories.

• Combine with trust region methods.

Softmax Temporal Consistency

Bridging the Gap Between Value and Policy Based RL,
Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans,
arXiv:1702.08892, Feb 2017.

I Builds on top of this work to exploit per-step rewards. Pro-
poses a softmax temporal consistency between a state-action
pair (s, a) and a subsequent state s′:

Q∗(s, a) = r(s, a) + γτ log
∑
a′

exp{Q∗(s′, a′)/τ}
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