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Abstract

We present an analytical study of discretization stencils for the Poisson problem and the incompressible
Navier-Stokes problem when used with some direct forcing immersed boundary methods. This study uses,
but is not limited to, second-order discretization and Ghost-Cell Finite-Difference methods. We show that
the stencil size increases with the aspect ratio of rectangular cells, which is undesirable as it breaks as-
sumptions of some linear system solvers. To circumvent this drawback, a modification of the Ghost-Cell
Finite-Difference methods is proposed to reduce the size of the discretization stencil to the one observed
for square cells, i. e. with an aspect ratio equal to one. Numerical results validate this proposed method
in terms of accuracy and convergence, for the Poisson problem and both Dirichlet and Neumann boundary
conditions. An improvement on error levels is also observed. In addition, we show that the application of
the chosen Ghost-Cell Finite-Difference methods to the Navier-Stokes problem, discretized by a pressure-
correction method, requires an additional interpolation step. This extra step is implemented and validated
through well known test cases of the Navier-Stokes equations.

Keywords: Immersed boundary method, Direct forcing, Discretization stencil, Poisson problem,
Incompressible Navier-Stokes, Boundary conditions

1. Introduction

The immersed boundary method has been proven a successful treatment of complex boundaries in numer-
ical simulations. The difficult generation of body-fitted grids is replaced by a modification of the governing
equations near the boundaries, thus benefits of structured grids can be exploited. In addition, the immersed
boundary method is particularly attractive when dealing with moving boundaries as it avoids re-meshing.
Many different variants have been developed since the original immersed boundary method [1] as they ex-
plored coupling with different problems, different regimes, etc. Now the best approach to choose depends on
physics constraints one wants to model. The review of Mittal and Iaccarino [2] explains this in details. The
Direct Forcing approach, adopted in this article, first discretizes governing equations into a linear system;
then applies boundary conditions near immersed boundaries to complete the linear system. This approach is
similar to ordinary boundary conditions, but the non-Cartesian immersed boundaries leads to more complex
interpolations. Both finite-difference discretization and finite-volume discretization can be used to apply im-
mersed boundary conditions. This article focuses on specific aspects of the Ghost-Cell Finite-Differences
approach, in the versions proposed by Mittal et al. [3] and Coco and Russo [4], and applies them to the
Poisson and Navier-Stokes problem, though this approach can be used to any boundary value problem.

Some linear system solvers constrain the matrix profile, i. e. cells allowed to be nonzero, to take advantage
of properties that allow to achieve the highest performance in large parallel computations. For instance,
geometric multi-grid algorithms SMG and PFMG of the hypre library can be used only with band matrices
with 9/27 points stencils in 2D/3D for SMG [5, 6] and PFMG [7, 8]. More generic solvers and preconditioners
such as the algebraic BoomerAMG of the hypre library are less efficient (see [9, 10, 11]) even if they are
competitive. In addition, band matrices requires less memory than more generic sparse matrix format, such
as Compressed Row Storage, because their topology do not need to be stored for each line of the matrix.
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The Ghost-Cell Finite-Differences methods proposed by Mittal et al. [3] and Coco and Russo [4] do not fit
in band matrices generated by the discretization of the equations, whose stencil is broken for rectangular
cells. These methods are based on the “closest point of the boundary” (as explained in Sec. 2.2) which does
not take into account the properties of the numerical grid. This article proposes a modification of these
methods to adapt them on band matrices in the case of rectangular cells. This article is organized as follows:
the two Ghost-Cell Finite-Differences methods [3, 4] are presented in Sect. 2 through the Poisson problem.
Their impact on the discretization stencil is studied in Sect. 3, and the Ghost Node Shifting Method is
defined in Sect. 4. Numerical simulations validate the proposed method in Sect. 5 for the Poisson problem
with Dirichlet and Neumann boundary conditions. Finally, the Ghost-Cell Finite-Differences methods are
introduced into the incompressible Navier-Stokes equations in Sect. 6 and some validations are presented in
Sect. 7.

2. Immersed boundary methods with the Poisson problem

This section presents the Finite-Differences Ghost-Fluid immersed boundary methods applied to the
Poisson problem, as found in the literature. For the sake of simplicity, methods are described in the
2-dimensional real space.

2.1. Problem description and discretization

The computational domain Ω is a rectangle of the 2-dimensional real space. It is split in two sub-
domains by the immersed boundary Γ: one is the inner part Ωi, while the other is the outer part Ωo.
The boundary Γ is oriented by a unit vector n from the outer domain to the inner domain. The domain
boundary BΩ decomposes in four line segments BΩb, BΩr, BΩt, BΩl, where the letters b, r, t, l stand for
bottom, right, top, left, respectively. These definitions are illustrated in Fig. 1a.

Poisson problem. We consider u : Ωi Ñ R, a scalar field restricted to the inner domain, solution of the
Poisson equation with a known source field f : Ωi Ñ R:

∆u “ f , in Ωi , (1a)

u “ D , on BΩD Y ΓD , (1b)

Bnu “ N , on BΩN Y ΓN . (1c)

Here boundaries have been split into a “Dirichlet” part BΩD Y ΓD and a “Neumann” part BΩN Y ΓN ;
boundary conditions D : Γ Ñ R and N : Γ Ñ R are known.

Numerical discretization. The computational domain is partitioned in cells into a Cartesian arrangement of
size mˆn. The cell boundaries do not conform with Γ. The partitioning is uniform, i. e. the cell sizes hx, hy
do not depend on the cell index; however, the cells can be either square: hx “ hy, or rectangular : hx ‰ hy.
A row of cells is added across each domain boundary to handle the domain boundary conditions; hence the
total grid size is pm ` 2q ˆ pn ` 2q. Finally, each cell of index pi, jq is associated to a cell node Xi,j , with
0 ď i ď m` 1 and 0 ď j ď n` 1. Figure 1b shows the discretization of Ω.

We assign types to nodes to know on which side of the immersed boundary the node is, and to apply
different equations on them. The cell type of the cell node Xi,j is

1. if Xi,j P Ωi, then Xi,j is an inner node;

2. else, if tXi´1,j ,Xi`1,j ,Xi,j´1,Xi,j`1u X Ωi ‰ H, then Xi,j is a ghost node;

3. else, Xi,j is an outer node.

(2)

Figure 1b also illustrates how node types are defined. As explained below, the ghost node in Eq. (2)
represents nodes that will need a special treatment to close the linear system. By extension: if Xi,j is
an inner node (respectively, an ghost node, an outer node), then the cell at pi, jq is called an inner cell
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(a) Example of computational domain Ω
split in an inner part Ωi and an outer part
Ωo by the immersed boundary Γ.

0 m ` 1

0

n ` 1

Outer node

Inner node

Ghost node

(b) Example of Cartesian grid of resolution m ˆ n with domain boundary
extensions build upon Example Fig. 1a. Different symbols are used to distin-
guish inner, ghost, and outer cell nodes.

Figure 1: Definitions and notations of the computational domain, the immersed boundary, the mesh, and node types.

(respectively, a ghost cell, an outer cell). Finally, we define the set of inner cell indices Ci, the set of ghost
cell indices Cg, and the set of outer cell indices Co, accordingly.

Equation (1a) discretizes at each inner node using standard, second-order finite differences

Ui´1,j ´ Ui,j
h2
x

`
Ui`1,j ´ Ui,j

h2
x

`
Ui,j´1 ´ Ui,j

h2
y

`
Ui,j`1 ´ Ui,j

h2
y

“ Fi,j `Oph2q , @pi, jq P Ci , (3)

where h “ maxthx, hyu; F and U are discrete fields of size of size pm`2qˆpn`2q such as Fi,j “ fpXi,jq and
Ui,j “ upXi,jq at inner cells. Note that we choose Ui,j to be the field value of the exact solution atXi,j of the
continuous equation Eq. (1); the truncation term Oph2q in Eq. (3) accounts for the difference between finite
differences and exact derivatives. We also write Eq. (3) in the matrix form pLUqi,j “ Fi,j`Oph2q,@pi, jq P Ci.
Equation 3 is not closed as there are some Ui´1,j , Ui`1,j , Ui,j´1, or Ui,j`1 that do not correspond to inner
nodes; these nodes correspond exactly to the ghost nodes, for which a value must be defined. For ghost
node values behind the domain boundaries, we use standard boundary conditions, which gives on the left
boundary BΩl

U0,j ` U1,j

2
“ DlpX 1

2 ,j
q `Oph2q , @j P v1, nw X BΩD , (4a)

U1,j ´ U0,j

h
“ NlpX 1

2 ,j
q `Oph2q , @j P v1, nw X BΩN . (4b)

For ghost node values behind the immersed boundary, similar boundary conditions can be derived from
Eq. (1b-1c) that also takes into account the geometry of the immersed boundary, and is detailed in Sect. 2.2.
Boundary conditions of all boundaries can be written in matrix form pEUqi,j “ Bi,j ` Ri,j ,@pi, jq P Cg,
where B contains boundary condition values at the boundary, such as DlpX 1

2 ,j
q in Eq. (4a). The truncation

term R will be refined in Sect. 2.2. Finally, both the discretized Poisson equation Eq. (3) and boundary
conditions are assembled into the closed linear system

`

pL` EqU
˘

i,j
“ Fi,j `Bi,j `Oph2q `Ri,j , @pi, jq P Cig , (5)

where Cig “ CiYCg. To write Eq. (5), we consider that pLUqi,j “ Fi,j “ 0 over Cg and pEUqi,j “ Bi,j “ 0
over Ci. This methodology can be applied to other problems by adding the part EU “ B ` R to the
considered equation. An example is given in Eq. (52a) of this article with the momentum equation.
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Figure 2: Sketch defining the boundary point xB and the probe point xP with respect to the ghost node Xi,j . The boundary
point is the closest point of Γ with respect to Xi,j , thus rXi,j ,xBs is aligned with n. As Xk,l is an inner node, xC is always
defined. The axis at the bottom illustrates that |xB ´Xi,j | ď |xC ´Xi,j | ă |Xk,l ´Xi,j |.

Numerical simulations can be performed by dropping the truncation terms

`

pL` EqÛ
˘

i,j
“ Fi,j `Bi,j , @pi, jq P Cig , (6)

where Û is the numerical solution. The discretization of the Poisson equation prevents ourselves from
observing better than second-order limiting behavior, although this limitation is not due a priori by the
immersed boundary method.

Implemented linear system arrays still have placeholders for outer node values due to the structured
formulation, but their values should have no influence on the other node values. It is useful to set outer
node values to a large value by setting both the diagonal and the right-hand side to, say, 1010, as it helps
bug detection in the implementation.

The numerical simulations presented in this document resort on the direct linear system solver mumps
[12, 13] or the iterative linear system solvers of hypre [10, 14]. In the later case, we used GMRES as solver
and SMG or BoomerAMG as preconditioner, unless specified otherwise.

2.2. Immersed boundary conditions

In this section, we present two different definitions of immersed boundary conditions that were introduced
by Mittal et al. [3], the linear method in this paper, and by Coco and Russo [4], the direct method.

Let us consider a ghost nodeXi,j next to some part of the immersed boundary Γ. We define the boundary
point xB as the closest point of Γ with respect to Xi,j ; the scalar d is the distance between xB and the
ghost node, and the unit vector n defined in Sect. 2.1 happens to be the direction of xB from the ghost
node. We also define the probe point xP as the symmetric of Xi,j with respect to xB . Figure 2 illustrates
these definitions.

The method used to obtain xB , xP , d, and n depend on how the immersed boundary is defined (by a
parametrization, a level-set field, etc.). Immersed boundaries used in the numerical simulations presented in
this document uses exact parametrizations or piecewise linear curves such as the variables can be evaluated
up to machine epsilon.
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2.2.1. Linear method [3]

The linear method builds boundary conditions using finite-differences along the linear segment rXi,j ,xP s:

Ui,j ` uP
2

“ uB `Opd2q , (7a)

uP ´ Ui,j
2d

“ BnuB `Opd2q , (7b)

where uP “ upxP q, uB “ upxBq, and BnuB “ BnupxBq are the exact field values and derivatives at the
corresponding points. The right-hand side term Opd2q is equivalent to Oph2q. Indeed, according to the
definition of a ghost node (Eq. 2) there exists an adjacent inner node Xk,l, so there is an intersection point
xC between Γ and the line segment rXi,j ,Xk,ls; see Fig. 2. And, as xB is the closest point of Γ from Xi,j ,

d “ }xB ´Xi,j}2 ď }xC ´Xi,j}2 ă h. (8)

The left-hand side Eq. (7) must use only cell node values to fit in the linear system Eq. (5), so the value uP
is expanded as a p-th order interpolation of surrounding node values:

uP “
ÿ

pk,lqPIP

ρk,lUk,l `Ophpq , (9)

where interpolation coefficients ρk,l and the set of interpolation indices IP will be defined in Sect. 2.3. The
boundary conditions Eq. (1b-1c) can thus be discretized as

1
2Ui,j `

ÿ

pk,lqPIP

1
2ρk,lUk,l “ DpxBq `Oph2q `Ophpq , @pi, jq P Cg X BΩD , (10a)

ÿ

pk,lqPIP

1
2dρk,lUk,l ´

1
2dUi,j “ NpxBq `Oph2q `Ophp´1q , @pi, jq P Cg X BΩN . (10b)

A numerical approximation of the Poisson problem can be build using the linear method Eq. (10) to discretize
the Dirichlet and Neumann boundary conditions. A second-order limiting behavior is obtained when second-
order interpolations are used with Dirichlet boundary conditions, and when third-order interpolations are
used with Neumann boundary conditions.

2.2.2. Direct method [4]

In this method, the probe point xP is not used and the field value at the boundary point uB is directly
expanded as a p-th order interpolation, which gives for the Dirichlet boundary condition

ÿ

pk,lqPIB

βk,lUk,l “ uB `Ophpq , (11)

where interpolation coefficients βk,l and the set of interpolation indices IB will also be defined in Sect. 2.3.
For the Neumann boundary condition, the field gradient can be obtained through algebraic differentiation
of the interpolation polynomial:

∇uB “
ÿ

pk,lqPIB

pBxβk,l, Byβk,lqUk,l `Ophp´1q , (12)

where Bxβk,l and Byβk,l are the interpolation coefficients of the polynomial gradient. Using BnuB “ ∇uB ¨n,
the boundary conditions Eq. (1b-1c) can thus be discretized as

ÿ

pk,lqPIB

βk,lUk,l “ DpxBq `Ophpq , @pi, jq P Cg X BΩD , (13a)

ÿ

pk,lqPIB

pBxβk,lnx ` Byβk,lnyqUk,l “ NpxBq `Ophp´1q . @pi, jq P Cg X BΩN . (13b)
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IP with p “ 2
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Figure 3: Examples of sets of interpolation nodes for the grid sketched in Fig. 1b. At four ghost nodes, the boundary or point
is shown, and the corresponding set of interpolation nodes is shown with a blue dot-filled rectangle.

A numerical approximation of the Poisson problem can be build using the direct method Eq. (13) to discretize
the Dirichlet and Neumann boundary conditions. A second-order limiting behavior is obtained when second-
order interpolation are used with Dirichlet boundary conditions, and when third-order interpolation are used
with Neumann boundary conditions.

2.3. Interpolation

Interpolations introduced in Eq. (9, 11) are the last part to define the immersed boundary methods. Any
interpolation method can be used as long as two constraints are meet:

1. the set of interpolation nodes must not include any outer node,

2. Equation (9, 11) must include the ghost node value Ui,j .
(14)

The first constraint ensures that the linear system Eq. (5) is closed because no values are defined on outer
nodes. The second constraint ensures that Ui,j is defined by Eq. (9, 11). We will see later that this is not
always the case for the direct method on rectangular cells.

This article uses Lagrange polynomials over the Cartesian set of nodes tXk,l “ pXk, Ylq
ᵀ | pk, lq P Iχu,

with χ “ P for the probe point (Eq. 9) and χ “ B for the boundary point (Eq. 11). The set of interpolation
indices Iχ is be defined by the indices of the two opposite corners of the Cartesian set. The first index
pic, jcq corresponds to the node surrounding xχ in the opposite direction given by n, and the second index
is p´ 1 nodes away from pic, jcq in the direction given by n. Using n extends Xχ towards the inner domain
to conform to the first constraint. The formal definition of Iχ is as follows, and Fig. 3 shows examples:

• when n “ pnx, nyq
ᵀ is oriented to the top right quadrant, i. e. nx ě 0 and ny ě 0, then

ic “ maxt k | Xk ă xχu , jc “ maxt l | Yl ă yχu , Iχ “ vic, ic ` p´ 1w ˆ vjc, jc ` p´ 1w ; (15a)

• when n is oriented to the top left quadrant, i. e. nx ă 0 and ny ě 0, then

ic “ mint k | xχ ă Xku , jc “ maxt l | Yl ă yχu , Iχ “ vic ´ p` 1, icw ˆ vjc, jc ` p´ 1w ; (15b)

• when n is oriented to the bottom left quadrant, i. e. nx ă 0 and ny ă 0, then

ic “ mint k | xχ ă Xku , jc “ mint l | yχ ă Ylu , Iχ “ vic ´ p` 1, icw ˆ vjc ` p´ 1, jcw ; (15c)

• and when n is oriented to the bottom right quadrant, i. e. nx ě 0 and ny ă 0, then

ic “ maxt k | Xk ă xχu , jc “ mint l | yχ ă Ylu , Iχ “ vic, ic ` p´ 1w ˆ vjc ` p´ 1, jcw . (15d)
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Figure 4: Example of failing interpolation regions for both the linear and direct methods. Notice that this can happen only if
the immersed boundary is curved towards the inner domain over a region of two cells width, i. e. the boundary is hollow.

This definition and Fig. 3 shows that the region delimited by Iχ always contains xχ, hence we always
have interpolation and never extrapolation. Extending Iχ towards the direction given by n avoids Iχ to
contain outer node indices. It is authorized to have other ghost nodes indices in Iχ as values at these nodes
are defined by their corresponding immersed boundary condition. This results in couplings between the
immersed boundary conditions that will be solved while solving the linear system Eq. (5).

However, even though Eq. (15) is designed to avoid outer nodes, one can still find a configuration where
Iχ contains some outer nodes; see Fig 4 for examples. This occurs near parts of the immersed boundary
that are hollow, i. e. Γ is curved towards the inner domain, over a range of two cells width; this issue is
called the hollow case problem. Different solutions exist in the literature: Coco and Russo [4] stretches
the discretization stencil to fit into the local inner domain and to reach enough inner nodes for the desired
accuracy; Mousel [15] takes all nodes in a broader region in which there are more than enough inner nodes,
and uses a least-squares algorithm to determine the interpolation coefficients. Using any of these methods
increases the size of the discretization stencil as they use inner node values that are farther away from the
ghost node. We do not use these methods in this article as we aim to keep the size of the discretization
stencil tight. Instead, we resort on increasing the grid resolution as, for continuously differentiable immersed
boundaries, the curvature with respect to the grid resolution decreases.

The second constraint is always meet for the linear method as Ui,j is directly present in the expression
Eq. 10. This is not the case for the direct method (Eq. 13), as Ui,j is present through the interpolation only,
which may not contain pi, jq. Hopefully the ghost node correspond to the first corner node of IB on square
cells: |xB´Xi| ă h “ |Xi`1´Xi| and |yB´Yj | ă h “ |Yj`1´Yj |, so we have pi, jq “ pic, jcq, which ensures
that the direct method always involves the ghost cell value. This is not true anymore for rectangular cells,
see examples on Fig. 6 and Fig. 7 below.

3. Analysis of the discretization stencil

This section analyses the discretization stencil of the immersed boundary method introduced in Sect. 2
in the general case of rectangular cells.

3.1. Stencil size measurement

The matrix of the linear system that solves the Poisson problem with immersed boundaries Eq. (6)
expands

pLUqi,j “
ÿ

pk,lqPCig

Lk,li,jUk,l , @pi, jq P Ci , (16)
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Xi,j

Domain of stencil size 0.

Domain of stencil size 1.

Domain of stencil size 2.

Figure 5: Domains of stencil sizes 0, 1, 2 around Xi,j . The domain of stencil size 0 is reduced to a single point tXi,ju.

where Lk,li,j are the scalar coefficients obtained from the discretization of the Poisson equation Eq. (3). Notice
this expansion also applies for boundary conditions Eq. (10) or Eq. (13), i. e. over Cg, defining the scalar

coefficients Ek,Li,j . For an easier reading, the following does not write down expressions for E. The stencil of

Eq. (16) is the set of indices pk´ i, l´ jq whose coefficient Lk,li,j is not zero. The stencil size ci,j of Eq. (16) is

ci,j “ max
 

|k ´ i|, |l ´ j| | @pk, lq P Cig, L
k,l
i,j ‰ 0

(

, @pi, jq P Ci . (17)

The expression “compact stencil” used in the literature means c “ 1, and “non-compact stencil” means
c ą 1. From a metric perspective, the stencil size can be obtained with the stencil norm of x “ px, yqᵀ,
defined as

}x}c “ max

"

|x|

hx
,
|y|

hy

*

. (18)

The proof that x ÞÑ }x}c being a norm comes easily with the equivalence property

1

h
}x}8 ď }x}c ď

1

µ
}x}8 , (19)

where h “ maxthx, hyu and µ “ minthx, hyu. Noticing the equalities Xk ´Xi “ hxpk ´ iq and Yl ´ Yj “
hypl ´ jq, the stencil size can be equivalently defined as

ci,j “ max
 

}Xk,l ´Xi,j}c | @pk, lq P Ci Y Cg, L
k,l
i,j ‰ 0

(

, @pi, jq P Cig , (20)

that is the “grid” distance of the farthest node from Xi,j with Lk,li,j ‰ 0. The region
 

x | }x´Xi,j}c ď ci,j
(

is the domain of stencil size ci,j . Figure 5 presents examples of such domains.

3.2. Stencil size for the Poisson problem

Let us review the stencil size for equations associated with each node types: at the inner nodes, the
stencil size for the five-point stencil of the classical discretization of the Poisson equation Eq. (3) is 1; at
the domain boundary conditions, Eq. (4) readily shows that the stencil size for these equations is also 1 for
both Dirichlet and Neumann conditions. Finally, the stencil size for immersed boundary conditions Eq. (10)
and Eq. (13) is determined by the farthest node included in Iχ, χ “ P,B, that is the opposite corner node
defined in Sect. 2.3. Considering the ghost cell pi, jq, we now determine the associated stencil size ci,j :

• when n points to the top right quadrant, the opposite corner node is pic ` p´ 1, jc ` p´ 1q and

ci,j “ }Xic`p´1,jc`p´1 ´Xi,j}c “ }Xic`1,jc`1 ´Xi,j}c ` p´ 2 ; (21a)

• when n points to the top left quadrant, the opposite corner node is pic ´ p` 1, jc ` p´ 1q and

ci,j “ }Xic´p`1,jc`p´1 ´Xi,j}c “ }Xic´1,jc`1 ´Xi,j}c ` p´ 2 ; (21b)
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• when n points to the bottom left quadrant, the opposite corner node is pic ´ p` 1, jc ´ p` 1q and

ci,j “ }Xic´p`1,jc´p`1 ´Xi,j}c “ }Xic´1,jc´1 ´Xi,j}c ` p´ 2 ; (21c)

• when n points to the bottom right quadrant, the opposite corner node is pic ` p´ 1, jc ´ p` 1q and

ci,j “ }Xic`p´1,jc´p`1 ´Xi,j}c “ }Xic`1,jc´1 ´Xi,j}c ` p´ 2 . (21d)

The determination of ci,j is then deduced from the case p “ 2 where Iχ contains just the four nodes
surrounding xχ;

• when n points to the right

xχ ď Xic`1 ă xχ ` hx, leading to
|Xic`1 ´Xi|

hx
“

R

|xχ ´Xi|

hx

V

, (22a)

• when n points to the left

xχ ´ hx ď Xic´1 ă xχ, leading to
|Xic´1 ´Xi|

hx
“

R

|xχ ´Xi|

hx

V

, (22b)

• when n points to the top

yχ ď Yjc`1 ă yχ ` hy, leading to
|Yjc`1 ´ Yj |

hy
“

R

|yχ ´ yj |

hy

V

, (22c)

• when n points to the bottom

yχ ´ hy ď Yjc´1 ă yχ, leading to
|Yjc´1 ´ Yj |

hy
“

R

|yχ ´ Yj |

hy

V

, (22d)

where x ÞÑ rxs is the ceiling operator. Therefore, we obtain for any direction of n

ci,j “ r}xχ ´Xi,j}cs` p´ 2 . (23)

We can now deduce ci,j from the position of xχ with respect to Xi,j . Equation (8) shows that }xχ´Xi,j}2

is bounded by the cell size. We can use this property again to find a useful approximation of Eq. (23) with
the help of the equivalence property Eq. (19)

}xB ´Xi,j}c ď
1

µ
}xB ´Xi,j}8 ď

1

µ
}xB ´Xi,j}2 ď

h

µ
, }xP ´Xi,j}c ď 2}xB ´Xi,j}c ď 2

h

µ
. (24)

This equation suggests that the stencil size increases as the cell size ratio a “ h{µ increases, and examples
presented Fig. 6–7 show that it does increase. The figures present sets of interpolation nodes obtained with
p “ 2 and on very coarse grids around a circular immersed boundary. Figure 6 uses a 4ˆ 4 mesh of squares
cells. The stencil size is 1 for the direct method and 2 for the linear method due to the greater distance
reached by the probe points with respect to the ghost node. Figure 7 uses a 4 ˆ 16 mesh of rectangular
cells so a “ 4. The highlighted ghost node has a stencil size of 2 for the direct method and 4 for the linear
method. Indeed the stencil size has increased. More importantly for the direct method, pi, jq is no longer
part of IB and the second constraint of Eq. (14) is not verified anymore. Table 1 summarises minimum
stencil sizes to obtain a second-order limiting behavior and for different cell size ratios and for Dirichlet and
Neumann boundary conditions.
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Figure 6: Examples of sets of interpolation nodes IP and IB on square cells. Notations of Fig. 3 applies. For the linear method,
equation associated with the highlighted ghost node has a stencil of 2 as the probe point is farther than one cell width. For
the direct method with the same discrete problem, equation associated with the highlighted ghost node has a stencil of 1 as
the boundary point is closer that one cell width.

0 1

0

1

(a) Linear method.

0 1

0

1

(b) Direct method.

Figure 7: Examples of sets of interpolation nodes IP and IB on rectangular cells a “ 4. Notations of Fig. 3 applies. For the
linear method, equation associated with the highlighted ghost node has a stencil of 4, while for the direct method with the
same discrete problem, equation associated with the highlighted ghost node has a stencil of 2. In the direct method, Ui,j is
not part of the set of interpolation nodes, and the boundary condition become ill posed.
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Stencil size
Cell size ratio Method Dirichlet p “ 2 Neumann p “ 3

1
Linear 2 3
Direct 1 2

a ą 1
Linear r2as r2as` 1
Direct n/a n/a

Table 1: Stencil size for the Poisson problem with different immersed boundary conditions, immersed boundary methods, and
different cell size ratios. Interpolation orders p are set to ensure second-order limiting behavior.

Conclusion. To reach second-order limiting behavior, this section showed that only the direct method is
able to provide a stencil of size 1, i. e. a compact stencil, for the Dirichlet boundary condition. Moreover,
it is not possible to expect a second-order limiting behavior when using Neumann boundary conditions on
stencils of size 1 and for both methods; the stencil size must be at least equal to 2. On rectangular meshes,
the direct method does not work anymore, and the stencil of the linear method increases as the cell size
ratio a. Therefore band matrices become less suitable, and maybe inoperable, as more diagonals must be
allocated as a increases. Next section proposes a method that reduces the stencil size on rectangular cells
to the sizes observed on square cells.

4. The Ghost Node Shifting Method

This section defines the Ghost Node Shifting Method introduced in this paper. It modifies the linear
and direct methods described in Sect. 2.2 to reduces the stencil size discussed in Sect. 3.

At high cell size ratio, the closest point of Γ from Xi,j may be several cells away, as in the example
Fig 7b. But we know from Fig. 2 that there is at least one point, i. e. xC , which is less that one cell away
from the ghost cell. The idea of the following procedure is to shift Xi,j towards xC so that the new closest
point of Γ will be closer to xC and thus at fewer cells away.

4.1. Ghost point

We consider a ghost cell pi, jq and its inner cell neighbor pk, lq as in Sect. 2.2. We define the ghost
point xG as

xG “ xC ´ se , s “ min
 

µ, }xC ´Xi,j}2
(

, e “

$

’

’

’

&

’

’

’

%

p`1, 0qᵀ if pk, lq “ pi` 1, jq ,

p´1, 0qᵀ if pk, lq “ pi´ 1, jq ,

p0,`1qᵀ if pk, lq “ pi, j ` 1q ,

p0,´1qᵀ if pk, lq “ pi, j ´ 1q ,

(25)

recalling that µ “ minthx, hyu. The unit vector e gives the direction of xC from xG and the definition of s
ensures that the distance between the two points is at most µ. Figure 8 illustrate the definition of xG for
pk, lq “ pi ` 1, jq. The situation from the point of view of xG is similar to the case of a square cell of size
µ, which fits in the cell pi, jq. Now the quantities xB , xP , d, n are redefined as in Sect. 2.2, but using xG
instead of Xi,j . The modified quantities are noted xB1 , xP 1 , d1, n1 and Fig. 8 also shows these redefinitions.

The representation of the immersed boundary becomes important here. If Γ is represented by an exact
parametrization or a piecewise linear curve, evaluations of d1 and n1 can be evaluated up to machine epsilon;
if Γ is represented by a discretized level-set field, some sort of interpolation must be considered. In the
numerical simulations presented in this document, d1 and n1 can be evaluated up to machine epsilon.
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Inner node

Ghost node

Boundary Point

Probe Point

Ghost Point

0 d1
µ

n1

e
Xi,j

xG

xB1

xP 1

xC

Xk,l

Figure 8: The Ghost Node Shifting Method applied to the example Fig. 2. The ghost point xG, initially placed at Xi,j , is
shifted towards Xk,l. As a result, boundary and probe points computed from xG are closer to the cell pi, jq. The actual
position of xG is at the corner of the gray square of size µ.

4.2. Shifted linear and direct methods

The steps of the linear method Sect. 2.2.1 are done again replacing Ui,j by uG “ upxGq

uG ` uP 1

2
“ uB1 `Opd12q , (26a)

uP 1 ´ uG
2d1

“ BnuB1 `Opd12q , (26b)

As uG is not a node value, another p-th order interpolation is introduced:

uG “
ÿ

pk,lqPIG

γk,lUk,l `Ophpq , (27)

where interpolation coefficients γk,l and the set of interpolation indices IG are computed as described in
Sect. 2.3. The fully discretized equations are then

ÿ

pk,lqPIG

1

2
γk,lUk,l `

ÿ

pk,lqPIP 1

1

2
ρ1k,lUk,l “ DpxB1q `Oph2q `Ophpq , @pi, jq P Cg , (28a)

ÿ

pk,lqPIP 1

1

2d1
ρ1k,lUk,l ´

ÿ

pk,lqPIG

1

2d1
γk,lUk,l “ NpxB1q `Oph2q `Ophp´1q , @pi, jq P Cg , (28b)

where ρ1k,l are the interpolation coefficients for P 1. Like the non-shifted Eq. (10), a numerical approximation
of the Poisson problem can be built using the shifted linear method Eq. (28), and a second-order limiting
behavior is obtained when second-order interpolations are used with Dirichlet boundary conditions, and
when third-order interpolations are used with Neumann boundary conditions.

The direct method Sect. 2.2.2 can be applied seamlessly.
ÿ

pk,lqPIB1

β1k,lUk,l “ DpxB1q `Ophpq , @pi, jq P Cg X BΩD , (29a)

ÿ

pk,lqPIB1

pBxβ
1
k,lnx ` Byβ

1
k,lnyqUk,l “ NpxB1q `Ophp´1q , @pi, jq P Cg X BΩN , (29b)
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0 1

0

1

(a) Shifted linear method.

0 1

0

1

(b) Shifted direct method.

Figure 9: Examples of sets of interpolation nodes IP 1 and IB1 on rectangular cells a “ 4. Notations of Fig. 3 applies. Using the
Ghost Node Shifting Method on the same discrete problem than Fig. 9, equation associated with the highlighted ghost node
has a reduced stencil of 2 for the linear method, and 1 for the direct method. In the direct method, Ui,j is now part of the set
of interpolation nodes.

where β1k,l are the interpolation coefficients for B1, and Bxβ
1
k,l and Byβ

1
k,l are the interpolation coefficients

of the polynomial gradient for B1. The effects of the Ghost Node Shifting Method affects the equations
through xB1 and n1 only. Like the non-shifted Eq. (13), a numerical approximation of the Poisson problem
can be built using the shifted direct method Eq. (29), and a second-order limiting behavior is obtained when
second-order interpolations are used with Dirichlet boundary conditions, and when third-order interpolations
are used with Neumann boundary conditions.

4.3. Stencil size of the shifted methods

The discussion of Sect. 3.2 applies here, and Eq. (23) holds. In this section, we look for a new bounding
of }xχ ´Xi,j}c to provide a better approximation of Eq. (23). Let’s start by developing the norm

}xχ ´Xi,j}c ď max

"

|xχ ´ xG| ` |xG ´ xi|

hx
,
|yχ ´ yG| ` |yG ´ yj |

hy

*

. (30)

The xG ´Xi,j part depends on the location of the neighbor inner cell

$

’

’

’

&

’

’

’

%

|xG ´ xi| ă hx ´ µ , |yG ´ yj | “ 0 , if pk, lq “ pi` 1, jq ,

|xG ´ xi| ă hx ´ µ , |yG ´ yj | “ 0 , if pk, lq “ pi´ 1, jq ,

|xG ´ xi| “ 0 , |yG ´ yj | ă hy ´ µ , if pk, lq “ pi, j ` 1q ,

|xG ´ xi| “ 0 , |yG ´ yj | ă hy ´ µ , if pk, lq “ pi, j ´ 1q .

(31)

The xχ ´ xG part exploits its similarity with a square cell of size µ

}xB1 ´ xG}8 ď }xB1 ´ xG}2 ď }xC ´ xG}2 ď µ , (32a)
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and, by symmetry of the probe point

}xP 1 ´ xG}8 ď 2µ . (32b)

The absolute values in Eq. (30) can then be replaced by these upper bounds. If pk, lq “ pi˘ 1, jq:

}xP 1 ´Xi,j}c ď max

"

hx ´ µ` 2µ

hx
,

2µ

hy

*

ď 2 , }xB1 ´Xi,j}c ď max

"

hx ´ µ` µ

hx
,
µ

hy

*

ď 1 , (33a)

and if pk, lq “ pi, j ˘ 1q:

}xP 1 ´Xi,j}c ď max

"

2µ

hx

hy ´ µ` 2µ

hy
,

*

ď 2 , }xB1 ´Xi,j}c ď max

"

µ

hx

hy ´ µ` µ

hy
,

*

ď 1 , (33b)

Contrary to Eq. (24), these bounds do not depend on the cell size ratio. The example Fig (6-7) is completed
by Fig. 9, which uses the shifted methods. The highlighted ghost node now has a stencil of 1 for the direct
method and 2 for the linear method. Table 2 summarises minimum stencil sizes to obtain a second-order
limiting behavior and for different cell size ratios.

Stencil size
Cell size ratio Method Dirichlet p “ 2 Neumann p “ 3

1
Linear 2 3
Direct 1 2

a ą 1
Linear r2as r2as` 1
Direct n/a n/a

a ą 1
Shifted Linear 2 3
Shifted Direct 1 2

Table 2: Stencil size for the Poisson problem with different immersed boundary conditions, immersed boundary methods, and
different cell size ratios. Interpolation orders p are set to ensure second-order limiting behavior.

Conclusion. This section showed that it is possible to build immersed boundary conditions with a stencil
size independent of the cell size ratio. The stencil size for rectangular cells is the same than the stencil
size for square cells, which is the lowest size to be expected. With the Ghost Node Shifting Method, it is
also possible to use the direct method on rectangular cells. This result is particularly useful to use band-
matrix-limited linear system solvers such as in the hypre library. The next section present numerical results
obtained for the Poisson problem.

5. Numerical simulations with the Poisson problem

This section discusses simulations of the Poisson problem solved with the Ghost Node Shifting Method
and compare them with their classic counterparts.

Diagnostics. Simulations consists of convergence studies. As analytical solutions are available, the error
field Û ´ U can be computed at inner nodes, and L2 norm and L8 norm are used for comparison. These
norms are

L2pÛ ´ Uq “

d

ÿ

pi,jqPCi

|Ûi,j ´ Ui,j |2Vi,j , L8pÛ ´ Uq “ max
pi,jqPCi

|Ûi,j ´ Ui,j | , (34)
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r “
0
.6
5

´1 `1

´1

`1

(a) Circular immersed boundary.

´1 `1

´1

`1

(b) Flower-shaped immersed boundary.

Figure 10: Computational domain and immersed boundary used for numerical simulations of Sect. 5. The immersed boundary
is shown by a thick colored line, and the outer domain is shaded by dots.

where Vi,j is the volume of the inner portion of the cell pi, jq. The numerical evaluation of Vi,j is subject to
errors due to the approximation in the representation of the immersed boundary, and it must be carefully
done. We found that using cell-wise linear approximation were inaccurate and unreliable to evaluate the
order of convergence. This happens because errors in Vi,j computed this way were of the same order that

|Ûi,j ´Ui,j |
2. Instead we use a sub-sampling method as follows: first, take 400ˆ 400 sampling points evenly

spread in the cell; then evaluate the ratio of sampling points included in Ωi; finally approximate the cell
volume by multiplying hx ˆ hy to this ratio. With this method, errors in Vi,j are below 10´6 for all runs.

Computational domain. The common computational domain for all simulations in this section is the square
Ω “ r´1,`1s

2
, with Dirichlet boundary conditions at the x-axis boundaries and Neumann boundary condi-

tions at the y-axis boundaries. In the first set of simulations, the immersed boundary Γ is a circle of center
p0, 0qᵀ and of radius 0.65; in the second set of simulations the immersed boundary Γ has a 5-branch flower
shape defined by the parametrization

ϑ ÞÑ p0.02
?

5, 0.02
?

5qᵀ `
`

0.5` 0.2 sinp5ϑq
˘

er , @ϑ P r0, 2πr . (35)

This shape has also been used in [16, 17]. In both immersed boundaries, the inner part Ωi is outside, as
illustrated in Fig. 10.

Grids. We consider three mesh series with cell size ratio a of 1, 2.8, and 7.6. The first grid of each series
has a cell size mˆ n of 16ˆ 16, 28ˆ 10, and 76ˆ 10, respectively. The next grid of each series is obtained
by multiplying the preceding m and n by two in all directions. Thus convergence study can be performed
on each of the grid series.

Numerical correction. Differences between numerical and exact solutions arise from the truncation terms
Ri,j “ Fi,j ´ pLUqi,j of the Poisson equation Eq. (3), the domain boundary conditions Eq. (4), and the

immersed boundary conditions Eq. (10, 13, 28, 29) altogether. In the resulting error field Û ´U , differences
from all sources are fused together by diffusion, and numerical errors resulting from immersed boundary
conditions alone cannot be readily seen. As an example, Fig. 11a shows the error field for the first numerical
run presented in Sect. 5.1: the largest errors are both near the domain boundary and near the immersed
boundary, which is coherent with the magnitude of the truncation terms at x “ p1, 0qᵀ and x “ p0.65, 0qᵀ

rhx,hy
p1, 0q “ ´

h2
x

4
, rhx,hy

p0.65, 0q “ ´
`

p1´ θqθ2 ` p1´ θq2θ
˘ h2

x

2
, with θ P r0, 1s, (36)
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(a) Error field |Û ´ U | computed
without numerical correction.
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(b) Error field |Û´U | computed with
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´

U
q

(a), L8
(a), L2

(b), L8
(b), L2

(c) Convergence study Fig. 12 of error field
whose first grids correspond to (a, b).

Figure 11: (a, b) Effects of numerical correction on the error fields |Û ´ U | for the problem Sect. 5.1 on the 16ˆ 16 grid and
with the non-shifted direct method. (c) Effects of numerical correction on the convergence plot Fig. 12 with a “ 1 and with
the non-shifted direct method. A second-order limiting behavior is shown for the error field both with and without numerical
correction, but the norm with the largest error is not the same: L2 without numerical correction and L8 with numerical
correction.

where rhx,hy
pxq is the truncation term taken at point x. Equation (40) has been used for rhx,hy

p1, 0q and
Eq. (41) has been used for rhx,hy p0.65, 0q.

As we are primarily interested on errors caused by the immersed boundary conditions, we decided to
cancel error sources that are not related to immersed boundaries. To do this, we compute Ri,j from the exact
solution and we add it to the right-hand side of the system for all but immersed boundary condition. We
call this the numerical correction. Figure 11b show effects on the error field when the numerical correction
is applied: remaining errors are clearly located near immersed boundaries. Finally, Figure 11c compares
convergence results in L8 and L2 norms for the same computations: while the second-order behavior is
present in the two computations, errors are divided by 5

2 in the L2 norm when numerical correction is
applied.

5.1. Dirichlet immersed boundary condition for the circular interface

Analytical solution. A solution of the Poisson equation is given by

upx, yq “ p1` xq
2
, fpx, yq “ ´2 , @px, yq P Ωi , (37)

provided consistent boundary conditions

up´1, yq “ 0 , up`1, yq “ 4 , @y P r´1,`1s , (38a)

Bu

By
px,´1q “ 0 ,

Bu

By
px,`1q “ 0 , @x P r´1,`1s , (38b)

upx, yq “ p1` xq
2
, @px, yq P Γ . (38c)
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Figure 12: Norms of the solution error Û´U of the Poisson problem for Dirichlet immersed boundary condition on the circular
interface Sect. 5.1. Each plot represent a mesh series. Solutions have been computed with the non-shifted linear, shifted
linear, and shifted direct methods, except for the shifted linear method on the mesh series a “ 1.0 as it is equivalent to the
non-shifted linear method. The non-shifted direct did not converge when a ą 1.0 as expected in Sect 3.2 and in Fig. 7. The
x-axis represents 1{h “ 1{maxthx, hyu “ mintnx, nyu, which is always equal to n in this section.

The truncation terms for this particular solution are

Fi,j ´
Ui´1,j ´ Ui,j

h2
x

´
Ui`1,j ´ Ui,j

h2
x

´
Ui,j´1 ´ Ui,j

h2
y

´
Ui,j`1 ´ Ui,j

h2
y

“ 0 , @pi, jq P Ci , (39)

0´
U0,j ` U1,j

2
“ ´ 1

4h
2
x , 4´

Um,j ` Um`1,j

2
“ ´ 1

4h
2
x , @j P v1, nw ,

0´
Ui,1 ´ Ui,0

hy
“ 0 , 0´

Ui,n`1 ´ Ui,n
hy

“ 0 , @i P v1,mw .
(40)

Therefore only the Dirichlet boundary conditions at the x-axis boundaries will be numerically corrected.

Results. Numerical solutions Û are computed using the linear and the direct methods for the isotropic series,
and the non-shifted linear (NL) method, the shifted linear (SL) method, and the shifted direct (SD) method
for the two anisotropic series. Second-order interpolations (p “ 2) are used to build immersed boundary
conditions. Figure 12 shows L2 and L8 norms of the error field Û ´U . As expected, a second-order limiting
behavior is obtained with all methods.

The figure also shows that the SD method has less errors than the NL method. The L2 norm of the
SL method is similar tho the L2 norm of the SD method, whereas the L8 norm of the SL method is as
large as the NL method when a “ 2.8, and changes when a “ 7.6. Figure 13 shows the error field for the
608ˆ 80 grid, e. g. when the L8 norm of the SL method does not decreases as expected: large error occur
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Figure 13: Error fields |Û ´ U | for the solution of Poisson problem with Dirichlet boundary conditions described in Sect. 5.1.
Open symbols indicates ghost cell with a stencil size of 1, and closed symbols indicates ghost cells with a stencil size of 2.

around four nodes only. On the close up Fig. 13a, ghost cells are filled according to the compactness: white
if ci,j “ 1, and black if ci,j “ 2. One can readily see that large errors occurs near nodes with ci,j “ 2. By
comparison, Fig. 13b shows the corresponding results with the SD method: as ci,j “ 1 everywhere, large
errors have disappeared. This feature calls for a finer analysis of the truncation error.

Taylor series of the truncation error. Let’s consider a one-dimensional grid containing only three grid nodes,
located at: x´1 “ ´h, x0 “ 0, and x`1 “ `h. An immersed boundary crosses the grid at xB “ x´1 ` θh,
with θ P r0, 1s, as shown in the diagram Fig. 14a. Using Taylor series of a scalar field u expanded at xB , the
direct method writes

ûB “ p1´ θqu´1 ` θu0 “ uB `
8
ÿ

k“1

”

p1´ θqp´θqk ` θp1´ θqk
ıhk

k!

Bku

Bxk
, if 0 ď θ ď 1, (41)

and the linear method writes

ûB “ p1´ 2θqu´1 ` 2θu0

“ uB `
8
ÿ

k“1

”

p1´ θqp´θqk ` θp1´ θqk
ıhk

k!

Bku

Bxk
, if 0 ď θ ď

1

2
, (42a)

ûB “ p2´ 2θqu0 ` p2θ ´ 1qu`1

“ uB `
8
ÿ

k“1

”

pθ ´ 1
2 qp2´ θq

k ` p1´ θqp1´ θqk ` 1
2 p´θq

k
ıhk

k!

Bku

Bxk
, if

1

2
ď θ ď 1. (42b)

Notice that the compactness of the linear method is 1 when 0 ď θ ď 1
2 and 2 when 1

2 ď θ ď 1. Coefficients
of the first eight terms of the series are shown in Fig. 14a for the direct method, and in Fig. 14b for the
linear method. Coefficients are identical when 0 ď θ ď 1

2 , whereas coefficients of the linear method have
much higher values when 1

2 ď θ ď 1. We therefore can expect higher error values from the linear method
when the compactness is 2, which can reasonably explain the results of the two dimensional computation.

5.2. Neumann immersed boundary condition for the circular interface

Analytical solution. Another solution of the Poisson equation is given by the solution and source fields

upx, yq “ p1` xq
3
, fpx, yq “ ´6p1` xq , @px, yq P Ωi , (43)

provided consistent computational domain boundary conditions

up´1, yq “ 0 , up`1, yq “ 8 , @y P r´1,`1s , (44a)

Bu

By
px,´1q “ 0 ,

Bu

By
px,`1q “ 0 , @x P r´1,`1s , (44b)

Bnupx, yq “ 6xp1` xq2 , @px, yq P Γ . (44c)
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Figure 14: Coefficients of the Taylor’s series of the truncation error.

The truncation terms for this particular solution are

Fi,j ´
Ui´1,j ´ Ui,j

h2
x

´
Ui`1,j ´ Ui,j

h2
x

´
Ui,j´1 ´ Ui,j

h2
y

´
Ui,j`1 ´ Ui,j

h2
y

“ 0 , @pi, jq P Ci , (45)

0´
U0,j ` U1,j

2
“ 0 , 8´

Um,j ` Um`1,j

2
“ ´ 3

2h
2
x , @j P v1, nw ,

0´
Ui,1 ´ Ui,0

hy
“ 0, 0´

Ui,m`1 ´ Ui,m
hy

“ 0 , @i P v1,mw .
(46)

Again, only the Dirichlet boundary conditions at BΩl and BΩr will be numerically corrected.

Results with second-order interpolation. Numerical solutions Û are computed using the methods described
in Sect. 5.1. Second-order interpolations (p “ 2) are used to build immersed boundary conditions. Figure 15
shows L2 and L8 norms of the error field Û ´ U . As expected, a first-order limiting behavior is obtained
with all methods. As with Dirichlet boundary conditions, the figure also shows that, for any given grid, the
shifted linear methods SL and SD have less errors than the non-shifted linear method NL. The two shifted
methods SL and SD are equivalent in terms of both L2 and L8 norms.

Results with third-order interpolation. The same computations are performed again, but third order inter-
polations (p “ 3) are used to build immersed boundary conditions. Figure 16 shows L2 and L8 norms of
the error field Û ´ U . As expected, a second-order limiting behavior is obtained with all methods. As with
second-order interpolations, the figure also shows that, for any given grid, the shifted linear methods SL
and SD have less errors than the non-shifted linear method NL. The two shifted methods SL and SD are
equivalent in terms of both L2 and L8 norms.

5.3. Dirichlet immersed boundary condition for the flower-shaped interface

The parabolic analytical solution Eq. (37) with Dirichlet boundary conditions is also applied here. Nu-
merical solutions Û are computed using the shifted linear (SL) and the shifted direct (SD) methods for
all series. As the anisotropy increases the low resolved grid become less and less adapted to the immersed
boundary, and the hollow case problem discussed in Sect. 2.3 started to occur. This is shown in Fig. 17
where a row of four inner nodes are surrounded by ghost cells only, except on the left side.
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Figure 15: Norms of the solution error Û´U of the Poisson problem for Neumann immersed boundary condition on the circular
interface Sect. 5.2. Each plot represent a mesh series. Solutions have been computed with the non-shifted linear, shifted linear,
and shifted direct methods, except for the shifted linear method on the mesh series a “ 1.0 as it is equivalent to the non-shifted
linear method. The x-axis represents 1{h “ 1{maxthx, hyu “ mintnx, nyu, which is always equal to n in this section.
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Figure 16: Norms L2 and L8 of the solution error Û´U for the Poisson problem with Neumann immersed boundary conditions
and third-order interpolation, as presented in Sect. 5.2. The non-shifted linear, shifted linear, and shifted direct methods are
computed in each of the three mesh series. Although, the shifted linear method is not shown for the mesh series a “ 1, as it is
equivalent to the non-shifted linear method. The x-axis represents 1{h “ 1{maxthx, hyu “ mintnx, nyu, which is always equal
to n in this section.
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´0.135

´0.016

Figure 17: Close view of node types near a hollow part of the Flower-shaped immersed boundary with a gird of ratio a “ 7.6.
Outlined by a dashed box, a row of four inner cells are surrounded by ghost cells except on the left. Also outlined by a dashed
boy, an outer cell whose value is used in interpolation due to the hollow case problem. Large error are expected in this region.

To complete this convergence study, we used another grid series with a “ 4.7, and we increase the
resolution for a “ 7.6 to catch the limiting second-order convergence region. Figure 18 shows L2 and L8
norms of the error field Û ´U . As expected, a second-order limiting behavior is obtained with all methods.
Here again, error levels of the SD method are less or equal than error levels of the SL method. For sufficiently
high resolution, a convergence is recovered for the grid series a “ 7.6.

5.4. Solver comparison

Simulations presented in Sect. 5.3 and Sect 5.2 has been used to compare the performance of differ-
ent linear system solvers. As the stencil size is 1 for the direct method, we use the GMRES solver with
the SMG preconditioner from the hypre library (GMRES+SMG), and as the stencil size of the linear
method is 2, we use the GMRES solver with the BoomerAMG preconditioner from the same library (GM-
RES+BoomerAMG). The allowed residual for all solvers is 10´10. Also, the mumps solver has been used in
both cases, for which we do not count time take by the symbolic factorization, which is quite long. Com-
putations have been done in parallel using 16 processes on Intel R© Xeon R© CPU E5-4640 0 at 2.40 GHz, and
solver details are given in Appendix B.

If we give a look first to the flower test case with Dirichlet boundary conditions in Tab. 3 , between the
two iterative solvers, GMRES+BoomerAMG is faster than GMRES+SMG at low resolutions, but the former
slows much more rapidly as the grid size increases than the latter. It confirms the interest we have to get
the most compact scheme. It is also another advantage of the direct method which seems to be more precise
than the linear method. Note that for the circular interface with Neumann immersed boundary conditions
in Tab. 4, for the finest mesh and a “ 4.7, both GMRES+SMG and GMRES+BoomerAMG fail or converge
very slowly; instead we used mumps. The direct mumps solver is slower than their iterative counterparts,
yet competitive; it is also less affected by the anisotropy a and is even faster than GMRES+SMG in one
case.

6. Immersed boundary method with the incompressible Navier-Stokes problem

This section applies the shifted immersed boundary method to the incompressible Navier-Stokes problem
with uniform density and viscosity. A pressure-correction method on a staggered grid is employed. It is

21
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Figure 18: Norms L2 and L8 of the solution error Û ´ U for the Poisson problem with Flower-shaped immersed boundary.
The x-axis represents 1{h “ 1{maxthx, hyu “ mintnx, nyu, which is always equal to n in this section.

Direct method Linear method

GMRES+SMG MUMPS GMRES+BoomerAMG MUMPS
a Grid Iter. Time/s Time/s Iter. Time/s Time/s

1 160ˆ 160 15 0.06 0.05 18 0.04 0.09
320ˆ 320 19 0.13 0.14 19 0.12 0.31
640ˆ 640 23 0.35 0.56 21 0.65 1.32

1280ˆ 1280 24 1.35 2.71 19 4.01 9.93

7.6 608ˆ 80 18 0.08 0.07 23 0.07 0.12
1216ˆ 160 17 0.16 0.22 25 0.34 0.53
2432ˆ 320 21 0.54 0.88 28 1.7 3.5
4864ˆ 640 29 6.25 4.2 31 24.6 19.7

Table 3: Comparison of the performance of linear system solvers to solve the Poisson problem with a Flower-shaped immersed
boundary and Dirichlet boundary conditions Sect. 5.3 in terms of GMRES iterations (Iter. columns) and CPU time (Time
columns). The tolerance of the GMRES solver is 10´10. Mumps symbolic factorization is not taken into account in the CPU
time. Computations have been done in parallel with 16 processes on Intel R© Xeon R© CPU E5-4640 0 at 2.40 GHz.
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Direct method Linear method

GMRES+SMG MUMPS GMRES+BoomerAMG MUMPS
a Grid Iter. Time/s Time/s Iter. Time/s Time/s

2.8 448ˆ 160 39 0.06 0.11 43 0.1 0.2
896ˆ 320 46 0.30 0.38 61 0.9 0.75

1792ˆ 640 41 1.42 1.54 66 4.38 5.10
3584ˆ 1280 78 14 8.7 126 38 37

4.7 376ˆ 80 62 0.05 0.06 246 0.23 0.06
752ˆ 160 138 0.31 0.12 ą 500 n/a 0.31

1504ˆ 320 ą 500 n/a 0.59 ą 500 n/a 1.90
3008ˆ 640 ą 500 n/a 3.28 ą 500 n/a 8.8

Table 4: Comparison of the performance of linear system solvers to solve the Poisson problem with a circular immersed
boundary and Neumann boundary conditions Sect. 5.2 in terms of GMRES iterations (Iter. columns) and CPU time (Time
columns). The tolerance of the GMRES solver is 10´10. Mumps symbolic factorization is not taken into account in the CPU
time. Computations have been done in parallel with 16 processes on Intel R© Xeon R© CPU E5-4640 0 at 2.40 GHz.

shown here that just applying the Ghost-Fluid Finite-Difference to the sub-problems is not enough, and,
due to the nonlinear term, an additional extrapolation is necessary.

We consider the velocity field u “ pu, vqᵀ : Ωiˆr0, T s Ñ R2 and the kinematic pressure p : Ωiˆr0, T s Ñ R,
both restricted to the inner domain, solution of the incompressible Navier-Stokes with uniform density,
uniform viscosity, and source field f : Ωi ˆ r0, T s Ñ R2:

Btu`∇¨pub uq “ ´∇p` ν∆u` f , in Ωi , (47a)

∇¨u “ 0 , in Ωi , (47b)

u “D , on BΩD Y ΓD , (47c)

∇u ¨n “N , on BΩN Y ΓN , (47d)

where ν is the kinematic viscosity, and D and N are known functions.

6.1. Time discretization and velocity-pressure coupling

The timeline r0, T s is divided in constant time steps ht. Equation (47) is applied at tn`1, the time
derivative Btu is developed backwards, and the nonlinear term is linearized:

1

ht

`

un`1 ´ un
˘

`∇¨pun`1 b unq “ ´∇pn`1 ` ν∆un`1 ` f `Ophtq , in Ωi , (48a)

∇¨un`1 “ 0 , in Ωi , (48b)

un`1 “D , on BΩD Y ΓD , (48c)

∇un`1 ¨n “N , on BΩN Y ΓN . (48d)

In Eq. (48a), errors introduced by the terms 1
ht

`

un`1 ´ un
˘

and ∇¨pun`1 b unq are collected in Ophtq;
the pressure gradient term ∇pn`1 remains undefined. To solve the velocity-pressure coupling, we use the
rotational incremental pressure-correction scheme [18, 19], in which Eq. (48) is divided in two subproblems:
a prediction step that does not satisfies the solenoidal constraint (Eq. 48b), and a correction step. The
prediction step consists in solving the advection-diffusion problem

1

ht

`

u˚ ´ un
˘

`∇¨pu˚ b unq “ ´∇pn ` ν∆u˚ ` f `Ophtq , in Ωi , (49a)

u˚ “D , on BΩD Y ΓD , (49b)

∇u˚ ¨n “N , on BΩN Y ΓN , (49c)
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Figure 19: Definitions and notations of the computational domain, the immersed boundary, the mesh, and node types.

in which the pressure pn`1 have been replaced by pn to remove the velocity-pressure coupling. The solution
u˚ of Eq. (49) is a prediction of un`1, for which ∇¨u˚ is not equal to zero, and un`1 can be expressed from
the difference between Eq. (48) and Eq. (49) multiplied by ht

un`1 “ u˚ ´ ht∇φ`Ophtq , in Ωi , (50a)

φ “ pn`1 ´ pn ` ν∇¨u˚ , in Ωi , (50b)

where the decomposition of the Laplace operator ∆ “ ∇p∇¨q´∇ˆ∇̂ leads to the term ν∇¨u˚ in Eq. (50b),
and the seemingly missing terms ´ht∇¨

`

pun`1 ´ u˚q b un
˘

` νht∇ˆ∇̂ pun`1 ´ u˚q are in fact collected
in Ophtq. In Equation (50) the pressure increment φ is obtained by solving the Poisson problem

∇¨ pht∇φq “ ∇¨u˚ `Ophtq , in Ωi , (51a)

∇φ ¨n “ 0 , on BΩD Y ΓD , (51b)

φ “ 0 , on BΩN Y ΓN . (51c)

Equations (49-51) form the time-discretized Navier-Stokes equations used in this paper.

6.2. Spatial discretization

A staggered discretization of fields is used: to the cell nodes, x-face nodes Xi` 1
2 ,j

, @pi, jq P v0,mw ˆ

v0, n` 1w, and y-face nodes Xi,j` 1
2
, @pi, jq P v0,m` 1wˆ v0, nw, are considered. Vector fields are discretized

on face nodes: U “ pU, V qᵀ where Ui` 1
2 ,j
“ upXi` 1

2 ,j
q and Vi,j` 1

2
“ vpXi,j` 1

2
q, and F “ pF,Gqᵀ where

Fi` 1
2 ,j
“ fpXi` 1

2 ,j
q and Gi,j` 1

2
“ gpXi,j` 1

2
q. Cell types are assigned using the method Eq. (2) defined in

Sect. 2.1. It is applied to cell nodes, x-face nodes, and y-face nodes independently, as shown in Fig. 19.
This way ensures that the discretized operators defined below are well-defined. Namely, two cell nodes that
surround an inner face node are either inner or ghost, two face nodes that surround an inner cell node are
either inner or ghost, and y-face nodes (resp. x-face nodes) that surround an x-face node (resp. y-face node)
are either inner or ghost. The set of inner, ghost, outer x-face indices are Cxi , Cxg , Cxo , respectively, and the
set of inner, ghost, outer y-face indices are Cyi , Cyg , Cyo .
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Each term of Eq. (49—51) discretizes with second-order centered schemes as described in Appendix A;
this results in

´ 1

ht
Ii `ApU

n
q ´ νL`E

¯

U˚ “
1

ht
Un

´GPn ` F `B `Ophtq `Oph2q `Ophpq , in Cxyig , (52a)

htpL` EqΦ “ DU˚ `B `Ophtq `Oph2q `Ophq´1q , in Cig , (52b)

Un`1
“ U˚ ´ htGΦ`Ophtq `Oph2q . in Cxyi , (52c)

Pn`1 “ Pn ` Φ´ νDU˚ `Oph2q , in Ci , (52d)

where Cxyig “ Cxig Y Cyig, and Ii is the identity matrix over the inner cells and the null matrix elsewhere.
As in Sect. 2.1, we closed the two first equations using domain and immersed boundary conditions: E and
B`Ophpq in Eq. (52a) and E and B`Ophq´1q in Eq. (52b). We recall that pEU˚qi,j “ Bi,j “ 0 over Cxyi ,
pEΦqi,j “ Bi,j “ 0 over Ci, and the other terms evaluates to zero over Cxyg and Cg accordingly. Although it
is not trivial that terms ApUn

q, DU˚, GPn, and GΦ are well defined over Cxyi , so let’s have a closer look
to these terms.

According to interpolations and finite-differences involved in Eq. (A.2), ApUn
q will be defined over Cxyi ,

if Un is defined over Cxyig . Therefore the whole iterative process Eq. (52) must output a Un`1 defined over

Cxyig . To this end, the right-hand side of Eq. (52c) must be extended over the ghost nodes: U˚ is already
extended since it is a solution of Eq. (52a), although GΦ cannot be defined over all ghost nodes (because
is would require to define Φ over some outer nodes). An extrapolation of the velocity field must then be
added:

pIi `EqŨ
n`1

“ Un`1
`B `Ophpq , in Cxyig , (53)

where Ũ
n`1

is the new output of Eq. (52).
According to Eq. (A.3b), GPn will be defined over Cxyi , if Pn is defined over Ci plus ghost nodes next

to an inner face node. Therefore the whole iterative process Eq. (52) must output a Pn`1 defined over Ci
plus ghost nodes next to an inner face node. To this end, the right-hand side of Eq. (52d) must be extended
over the ghost nodes next to an inner face node: Φ is already defined over Cig since it is a solution of
Eq. (52b), ´νDU˚ is also defined over ghost nodes next to an inner face node since the opposite face node
is necessarily a ghost node where U˚ is defined and a finite-difference can be applied. As a consequence, no
extrapolation is necessary for Pn`1.

To summarize, the fully discretized Navier-Stokes equations with immersed boundaries are

´ 1

ht
Ii `ApU

n
q ´ νL`E

¯

U˚ “
1

ht
Un

´GPn ` F `B `Ophtq `Oph2q `Ophpq , in Cxyig , (54a)

htpL` EqΦ “ DU˚ `B `Ophtq `Oph2q `Ophq´1q , in Cig , (54b)

pIi `EqU
n`1

“ U˚ ´ htGΦ`B `Ophtq `Oph2q `Ophpq . in Cxyig , (54c)

Pn`1 “ Pn ` Φ´ νDU˚ `Oph2q , in Ci , (54d)

with the precaution that U0 and P 0 have also been extrapolated over the ghost nodes. Immersed boundary
conditions are applied three times: in Eq. (54a) and Eq. (54b), and an immersed boundary extrapolation is
applied Eq. (54c).

7. Numerical simulations with the incompressible Navier-Stokes problem

This section presents simulations of four cases of the Navier-Stokes problem, and compares results ob-
tained with both shifted direct and shifted linear methods. The size of the discretization stencil is the same
for prediction and correction steps: p “ q “ 2, which equals to one for the direct method and two for the
linear method.
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Figure 20: Computational domain and immersed boundary setups for the Poiseuille flow and the Couette flow. A thick black
line shows the computational domain, a thick colored line shows the immersed boundary and colored dots shades the outer
domain.

Linear system solvers. The same solvers are used than in Sect. 5, except for the prediction step for which
a Jacobi preconditioner is enough. Stationarity tolerance is set to 10´8. Details of the linear system solvers
are given in Appendix B.

Diagnostics. For the two first cases, an analytical solution is available. Velocity and pressure error fields,
Û ´U and P̂ ´ P , are computed at inner nodes, and their L2 and L8 norms are computed as in Eq. (34).
Diagnostics for the two last cases will be presented in Sect. 7.3.

7.1. Poiseuille flow

Computational domain and grid. This computation takes place in the Cartesian domain Ω “ r´2,`2s ˆ
r´1,`1s. The immersed boundary is a tilted channel of half-height h “ 1

3 , and the angle between the x-axis
and the axis of the channel is α “ 0.25 rad, as shown in Fig. 20a. Dirichlet boundary conditions are used at
all boundaries, taking values of the analytical solution presented below. The same number of cells is used
in both directions, so that the cell size ratio is always a “ 2.

Analytical solution. Using the coordinate system peξ, eηq, aligned with the channel (see Fig. 20a), the
classical solution of the Poiseuille flow is

u “ uξeξ , uξpηq “ um

ˆ

1´
η2

h2

˙

, (55a)

ppξq “ p0 `

´

´
Bp

Bξ

¯

ξ ,
´

´
Bp

Bξ

¯

“
2ν

h2
um , (55b)

where um is the maximum velocity and p0 is the pressure at the origin. The Reynolds number of the flow
is Re “ 2hum{ν. In the following, p0 “ 0, um “ 1{p2hq, ν “ 1{Re, and Re “ 20. The average velocity and
pressure of the flow are xuy “ 2

3umeξ and xpy “ p0 “ 0.

Results. Figure 21 shows convergence results in terms of velocity and pressure errors L8pÛ´Uq, L2pÛ´Uq,
L8pP̂ ´ P q, and L2pP̂ ´ P q using shifted direct and shifted linear methods. For both methods, velocity
errors and pressure L2 error show a second-order limiting behavior, while pressure L8 error show a limiting
behavior between 1.5 and 2. Error levels of the linear method are roughly twice as large as error levels of
the direct method.

As we choose a consistent size of the discretization stencil (p “ q “ 2), the limiting behavior of Eq. (54b)
is only of first order. This result is therefore better than expected. We suspect superconvergence due to the
one-dimensional linear profile of the pressure field.
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7.2. Circular Couette flow

Computational domain and grid. The computational domain is Ω “ r´ 9
80 ,`

9
80 s ˆ r´

9
80 ,`

9
80 s, and the

immersed boundary is two co-axial cylinders shown in Fig. 20b. The radius of the inner and outer cylinders
are Ri “ 0.02 and Ro “ 0.1, respectively. Dirichlet boundary conditions are used at all boundaries, taking
values of the analytical solution presented below. The number of cells in the x-axis is four times the number
of cells in the y-axis, such that the cell size ratio is always a “ 4.

Analytical solution. The cylinders are in rotation with angular velocities ωi and ωo, respectively. They
induce motion to the fluid, and the classical solution of the Couette flow using the polar coordinates per, eθq
is

u “ uθeθ , uθprq “
A

2
r `

B

r
, (56a)

pprq “ p0 `
A2

8
r2 `AB lnprq ´

B2

2r2
, (56b)

where p0 is an integration constant, and constants A and B are deduced from parameters:

A “ 2
ωoR

2
o ´ ωiR

2
i

R2
o ´R

2
i

, B “ pωi ´ ωoq
R2

i R
2
o

R2
o ´R

2
i

. (57)

In the following p0 “ 0, ωi “ 0.5 rad, and ωo “ 0 rad.

Results. Figure 22 shows convergence results in terms of velocity and pressure errors L8pÛ´Uq, L2pÛ´Uq,
L8pP̂ ´ P q, and L2pP̂ ´ P q. A minimum resolution of 64 cells in the low-resolved axis is required in order
to properly represent the inner boundary. Velocity-related indicators show a second-order limiting behavior,
whereas L8pP̂ ´ P q show only a first-order limiting behavior and L2pP̂ ´ P q show a in-between behavior.
As with the Poiseuille flow, error levels of the linear method are roughly twice as large as error levels of the
direct method. These results are again consistent with the chosen size of the discretization stencil.

7.3. Flows around circular and elliptic cylinders

The following numerical simulations validate the method on stationary flows around two cylinders of
different shapes: circular and elliptic. The former have been extensively studied in the literature, while the
latter demonstrates the interest of rectangular cells.

Computational domain and grid. The computational domain represents a tank of the 2-dimensional real
space, whose dimensions are Ω “ r´15,`30s ˆ r´15,`15s, and the flow goes from left to right. Domain
boundary conditions are: uniform inlet of velocity pu8, 0q

ᵀ at the left boundary, slip at top and bottom
boundaries, and Neumann at the right boundary. The cylinder is placed at the origin. A regular grid of ratio
a “ 3.0 is placed over a small domain of interest, of dimensions r´1,`3s ˆ r´1.5,`1.5s, while exponential
grids are placed around. On the y-axis, we used that 512 nodes in the domain of interest and 256 nodes in
each exponential region. On the x-axis, we used 1536 nodes in the domain of interest to have a “ 3.0 and
768 nodes in each stretched region. Figure 23 shows the computational domain, the grid and the domain of
interest.

The circular cylinder has diameter d “ 1; the elliptic cylinder has major axis d “ 1 and axis ratio
0.2; thus the characteristic length is d for both cylinders. The major axis of the elliptic cylinder is aligned
with the x-axis of the coordinate frame R1 “ pex1 , ey1q, which is rotated by α with respect to the original
coordinate frame R “ pex, eyq where the x-axis is aligned with the stream. The angle α is also the angle
of incidence; it is set to ´80˝ for the elliptical cylinder, and can be considered set to 0˝ for the circular
cylinder. Figure 24 shows both cylinders with a description of their dimensions.

We choose the free-stream velocity u8 “ 1 and, and we set the viscosity according to the desired value
of the Reynolds number. For the elliptic cylinder, the Reynolds number is based on the long axis, thus
Re “ du8{ν both cases. The Reynolds number is set to Re “ 40 for the circular cylinder, and set to
Re “ 20 for the elliptic cylinder.

27



101 102 103

10´1

10´2

10´3

10´4

10´5

n

L8
pÛ
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Figure 21: Norms L2 and L8 of the velocity error Û ´ U and the pressure error P̂ ´ P for the Poiseuille flow using both
the shifted direct (SD) and shifted linear (SL) methods. The x-axis represents 1{h “ 1{maxthx, hyu “ mintnx, nyu, which is
always equal to n in this section.
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L2pÛ ´Uq, SL

101 102 103

10´5

10´6

10´7

10´8

10´9

10´10

n

L8
pP̂
´

P
q,L

2
pP̂
´

P
q

Pressure error

L8pP̂ ´ P q, SD
L2pP̂ ´ P q, SD
L8pP̂ ´ P q, SL
L2pP̂ ´ P q, SL

Figure 22: Norms L2 and L8 of the velocity error Û ´ U and the pressure error P̂ ´ P for the Couette flow using both the
shifted direct (SD) and shifted linear (SL) methods. The x-axis represents 1{h “ 1{maxthx, hyu “ mintnx, nyu, which is
always equal to n in this section.
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Figure 23: Computational domain and grid used to simulate the flow around the two cylinders, Sect. 7.3. Only one grid line
out of 16 is drawn for the sake of readability. The regular sub-domain region is outlined in dashed colored lines.
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Figure 24: Dimensions of circular and elliptic cylinders. The boundary is shown by a thick colored line, and the outer domain
is shaded by dots. Axes of the cylinder reference frame R1 “ pex1 , ey1 q are also shown.

29



a´
a`

b´

b`

c´

c`

d

(a) Circular cylinder (Re “ 40).

a´

a`

b´

b`

c´

c`

d

(b) Elliptic cylinder (Re “ 20).

Figure 25: Points of interest a´, a`, b´, b`, c´, c`, and d of the steady wake flow. The streamlines are extracted from
computations.

Diagnostics. As no analytical solution exists, we compare our results to experimental and numerical data
found in the literature. First, we compare the position of seven different points of interest: four separation
points on the surface of the obstacle a´, a`, b´, and b`; two vortex cores c´ and c`, and the steady point
at the right of the wake vortices d. Figure 25 shows these points for the two cylinders. Cartesian and polar
coordinates of a point of interest is noted with the subscript a “ pax, ayq

ᵀ for the former and a “ par, aθq
ᵀ

for the latter. Next, we compute the drag and lift coefficients

CD “
Fx

1
2du

2
8

, CL “
Fy

1
2du

2
8

, (58)

where Fx and Fy are the streamwise and the transverse components of the volumic drag force F . This force
corresponds to the surface force of the fluid integrated over the cylinder Γ; it decomposes into pressure and
viscous components

F “ Fp `Fν “

ż

Γ

´pnd``

ż

Γ

2νεnd` , (59)

30



Data soucre λ `{d a{d b{d θ{˝

Coutanceau and Bouard [21]* 0.024 2.04 0.73 0.58 —
0 2.13 0.76 0.59 53.5

Linnick and Fasel [22] 0.023 2.28 0.72 0.60 53.6
Calhoun [23] — 2.18 — — 54.2
Le et al. [24] — 2.22 — — 53.6
Taira and Colonius [25] 1{60 2.30 0.73 0.60 53.7
Berthelsen and Faltinsen [26] — 2.29 0.72 0.60 53.9
present (direct/linear method) 1{30 2.27 0.72 0.59 53.1

Table 5: Lengths of points of interest for the circular cylinder (Re “ 40). This table follows the notation used in the literature:
` “ dx ´ ax̀ , a “ cx̀ ´ ax̀ , b “ cỳ ´ cý , and θ is the angular coordinate of b`. The coefficient λ represent the size ratio
between the cylinder and the tank height (i. e. the height of the computational domain). Both direct and linear method gives
the same result up to presented precision.

a´{d a`{d b´θ /˝ b`θ /˝ c´{d c`{d d{d
ˆ

´0.11
0.08

˙ ˆ

0.11
´0.06

˙

0.3 178.7

ˆ

0.78
´0.33

˙ ˆ

0.65
0.33

˙ ˆ

1.97
´0.02

˙

Table 6: Coordinates of points of interest for the elliptic cylinder (Re “ 20). Both direct and linear method gives the same
result up to presented precision.

where p is the kinematic pressure and ε “ 1
2νp∇u`∇u

ᵀq is the strain rate tensor. Drag and lift coefficients
can then be decomposed into pressure and viscous components.

CLp “
Fpy

1
2du

2
8

, CLν “
Fνy

1
2du

2
8

, CDp “
Fpx

1
2du

2
8

, CDν “
Fνx

1
2du

2
8

. (60a)

The numerical evaluation of Fp and Fν approximates Γ by cell-wise line segments upon which p and ε are
considered uniform. Second-order extrapolations are used to compute p and ε on the middle of the line
segments, using nodes values from the inner domain only. Finally, we give a closer look at the normalized
pressure profile π around the cylinder, defined by

Cp “
p

1
2du

2
8

. (61)

Results. Both simulations converge towards a steady state containing two recirculation regions. Both direct
and linear methods gives very similar results. Coordinates of the points of interest are reported in Tab. 5 for
the circular cylinder and in Tab. 6 for the elliptic cylinder. Good agreement with literature data is observed
for the circular cylinder; Tab. 5 also shows data from the literature. Lengths for the elliptic cylinder are
coherent with the streamline visualizations of Yoon et al. [20]. Drag coefficients are reported in Tab. 7
for the circular cylinder (lift coefficients are below 10´8). The value is in the range of values found in
the literature. Drag and Lift coefficients are reported in Tab. 8 for the elliptic cylinder, along with values
obtained in the literature. Values are also in the range of values found in the literature. Most of the drag
is due to the pressure drag. It is interesting to note that pressure and viscosity have opposite contribution
to lift. Finally, profiles of normalized pressure Cp as a function of θ are shown on Fig. 26. The profile for
the circular cylinder Fig. 26a follows closely the profiles found in the literature. The profile for the elliptic
cylinder Fig. 26b has a maximum and minimum pressure than the circular cylinder. Although, very low
pressure are seen at the tips of the ellipse (θ “ 0˝, 180˝).
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Data source CDp CDν CD

Tritton [27]* 1.57
Linnick and Fasel [22] 1.54
Calhoun [23] 1.62
Le et al. [24] 1.56
Taira and Colonius [25] 1.54
Berthelsen and Faltinsen [26] 1.59
present (direct/linear method) 1.026 0.533 1.559

Table 7: Drag coefficients around the circular cylinder (Re “ 40). Lifts coefficients have been checked below 10´8 for the
present study. Both direct and linear method gives the same result up to presented precision.

Data source CDp CDν CD CLp CLν CL

D’alessio and Dennis [28] 2.116 0.256
Dennis and Young [29] 2.089 0.255
Yoon et al. [20] 2.102 0.252
present (direct/linear method) 1.864 0.266 2.130 0.303 ´0.057 0.246

Table 8: Drag and lift coefficients around the elliptic cylinder inclined at 80˝ (Re “ 20). Both direct and linear method gives
the same result up to presented precision.
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(a) Circular cylinder (Re “ 40).
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(b) Elliptic cylinder (Re “ 20).

Figure 26: Normalized pressure profile Cp around the cylinder in the R1 coordinate frame.

32



8. Conclusions

We studied the size of the discretization stencil of the two Finite-Difference Ghost-Fluid Immersed
Boundary methods defined in [3] and [4], that we called the linear and the direct method, respectively. We
showed that the stencil size increases as cells become more and more rectangular, i. e. the aspect ratio of
the cell increases, and we also showed that the direct method may become ill posed on rectangular cells.
We proposed the Ghost Node Shifting Method to reduce the stencil size of any rectangular cell to the
case of square cells, which also ensure the direct method to be well posed. We also showed that only the
direct method is able to keep a stencil size of 1 while providing a second-order limiting behavior method with
Dirichlet boundary conditions, and first-order limiting behavior method with Neumann boundary conditions.

We carried out numerical simulations demonstrating that shifted methods where able to achieve the
desired limiting behavior, given an appropriate stencil size, see Tab. 2 for details. Simulations also showed
that error levels of shifted methods are as least as low as error levels of original methods, and that the
shifted direct method has less or the same error levels that the shifted linear method.

We also applied the shifted methods to the pressure-correction method to solve the incompressible
Navier-Stokes problem with immersed boundaries. An emphasis has been given at each step of the pressure-
correction method to produce a coherent solution with respect to the immersed boundaries: we showed that
an additional extrapolation of the velocity field is necessary due to the nonlinear term. We were able to
produce a method with a compact stencil, i. e. a stencil size is 1. Numerical simulation showed a second-order
limiting behavior on the velocity and a first-to-second-order limiting behavior on the pressure. Finally we
were able to perform numerical simulations of the flow around circular and elliptic cylinders with coherent
results with respect to the literature.

Future works include applications of this method to other problems, studies of higher order discretization,
in which the hollow case problem may become more cumbersome as interpolation stencil increases. An
other work is therefore to find a robust handling of the hollow case problem. Finally, a customization of
the linear system solver, such as performed by Coco and Russo [4] on multi-grid solvers, would improve the
performances of the method on very large problems.
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Appendix A. Discrete operators for the incompressible Navier-Stokes problem

Let’s give a closer look to the discretization of Eq. (49-51) on Ωi. For the sake of readability, we use an
intuitive notation of indexes, e. g. C “ pi, jq (center), L “ pi ´ 1, jq (left), etc. Depending which nodes are
considered the exact definition changes; it is given in Fig. A.27.

In the prediction step Eq. (49a), the diffusion term ´ν∆u˚ discretizes as in Sect. 2 on the face nodes,
and becomes the matrix product ´νLU˚

pLU˚qC “
U˚L ´ U

˚
C

h2
x

`
U˚R ´ U

˚
C

h2
x

`
U˚B ´ U

˚
C

h2
y

`
U˚T ´ U

˚
C

h2
y

`Oph2q , @C P Cxi , (A.1a)

pLV ˚qC “
V ˚B ´ V

˚
C

h2
y

`
V ˚T ´ V

˚
C

h2
y

`
V ˚L ´ V

˚
C

h2
x

`
V ˚R ´ V

˚
C

h2
x

`Oph2q , @C P Cyi . (A.1b)

Just as in Sect. 2, some U˚L , U
˚
R , U

˚
B , U

˚
T , and some V ˚L , V

˚
R , V

˚
B , V

˚
T correspond to ghost nodes, and a boundary

condition treatment must be addressed. The advection term ∇¨pu˚bunq discretizes into the matrix product
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Figure A.27: Relative node position used in Eq. (A.2a, A.1a) (left), in Eq. (A.5) (center), and in Eq. (A.2b, A.1b) (right).

ApUn
qU˚ combining second-order, centered interpolations and finite-differences

`

ApUn
qU˚

˘

C
“ ´

UnL ` U
n
C

4hx
U˚L `

UnR ` U
n
C

4hx
U˚R

`

ˆ

´
UnL ` U

n
C

4hx
`
UnR ` U

n
C

4hx
´
V nBL ` V

n
BR

4hy
`
V nTL ` V

n
TR

4hy

˙

U˚C

`´
V nBL ` V

n
BR

4hy
U˚B `

V nTL ` V
n
TR

4hy
U˚T `Oph2q ,

@C P Cxi , (A.2a)

`

ApUn
qU˚

˘

C
“ ´

UnBL ` U
n
TL

4hx
V ˚L `

UnBR ` U
n
TR

4hx
V ˚R

`

ˆ

´
UnBL ` U

n
TL

4hx
`
UnBR ` U

n
TR

4hx
´
V nB ` V

n
C

4hy
`
V nT ` V

n
C

4hy

˙

V ˚C

`´
V nB ` V

n
C

4hy
V ˚B `

V nT ` V
n
C

4hy
V ˚T `Oph2q ,

@C P Cyi . (A.2b)

Here again some U˚L , U
˚
R , U

˚
B , U

˚
T , and some V ˚L , V

˚
R , V

˚
B , V

˚
T correspond to ghost nodes, but also some

UnL , U
n
R , U

n
B , U

n
T , UnBL, UnTL, UnBR, UnTR, and some V nL , V

n
R , V

n
B , V

n
T , V nBL, V nTL, V nBR, V nTR does not correspond to

inner nodes. Taking the assumption of Sect. 2.3 that the immersed boundary is not too hollow, none of
theses values correspond to outer nodes and it is sufficient that Un is being defined over Cxyig . The pressure
gradient term ´∇pn discretizes into the matrix product ´GPn using second-order centered finite-differences

pGPnqi` 1
2 ,j
“
Pni`1,j ´ P

n
i,j

hx
`Oph2q , @pi, jq P Cxi , (A.3a)

pGPnqi,j` 1
2
“
Pni,j`1 ´ P

n
i,j

hy
`Oph2q , @pi, jq P Cyi , (A.3b)

which requires that Pn is defined over Ci and some parts of Cg to be defined. More precisely, Pn must be
defined on ghost cell nodes surrounded by a inner face node. In the correction step Eq. (51a), the right-hand
side ∇¨u˚ discretizes into the matrix product DU˚ using second-order, centered finite-differences

pDU˚qi,j “
U˚
i` 1

2 ,j
´ U˚

i´ 1
2 ,j

hx
`
V ˚
i,j` 1

2

´ V ˚
i,j´ 1

2

hy
`Oph2q . @pi, jq P Ci , (A.4)

The right-hand side is always defined over Ci as U˚ is solved over Cxyig (Eq. 52a). Finally the left-hand side

ht∆φ discretizes just as in Sect. 2 into the matrix product htLΦ`Oph2q

pLΦqC “
ΦL ´ ΦC

h2
x

`
ΦR ´ ΦC

h2
x

`
ΦB ´ ΦC

h2
y

`
ΦT ´ ΦC

h2
y

`Oph2q , @pi, jq P Ci . (A.5)
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Here again some ΦL,ΦR,ΦB,ΦT correspond to ghost nodes, and a boundary condition treatment must be
addressed.

Appendix B. Detailed parameters of used linear system solvers

The following parameters has been used for the hypre preconditioners anytime they have been used.

SMG preconditioner (all cases)

RelChange 1
ZeroGuess set

NumPreRelax 1
NumPostRelax 1

BoomerAMG preconditioner (flower-shaped interface with Dirichlet boundary conditions)

StrongThreshold 0.25
CoarsenType 6, Falgout coarsening
AggNumLevels 1

RelaxType 6, hybrid symmetric Gauss-Seidel or SSOR
InterpType 0, classical modified interpolation

BoomerAMG preconditioner (circular interface with Neumann boundary conditions)

StrongThreshold 0.025
CoarsenType 10, HMIS coarsening
AggNumLevels 1

RelaxType 6, hybrid symmetric Gauss-Seidel or SSOR
InterpType 0, classical modified interpolation
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