

Institut de Mécanique et d'Ingénierie - Bordeaux

Numerical simulation of moving contact line in wetting phenomena using the Generalized Navier Boundary Condition

Thanh Nhan LE, Mathieu Coquerelle, Stéphane Glockner

August 27, 2019

Outline

Moving contact line problem

Introduction Moving contact line model

Mathematical model

Governing equations Interface tracking method Surface tension Dynamic contact line

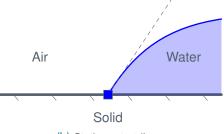
Numerical simulation

Capillary rise Spreading drop

Perpestives

Reference

(a) Raindrops gracing on the leaf.



(b) Static contact line.

Figure: Contact line description.

Background

The contact line (CL) is the intersection between fluid interface and solid wall.

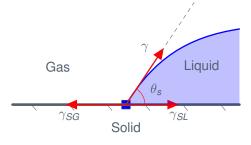


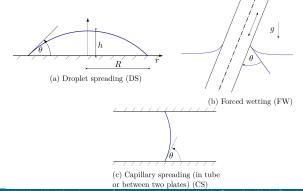
Figure: Contact line description.

Surface tension: γ (liquid-gas), γ_{SG} (solid-gas), γ_{SL} (solid-liquid)

Static contact line - Young's equation $\cos \theta_s = \frac{\gamma_{SG} - \gamma_{SL}}{\gamma}$

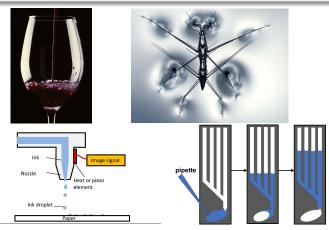
Dynamic contact line

- Capillary and wetting phenomena
- Capillary number $Ca = \frac{viscous \ forces}{surface \ tension}$



Why study contact lines?

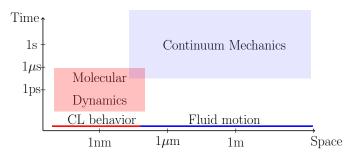
Important in nature and in many industrial applications.



⁰Lau G-K, Shrestha M. Ink-Jet Printing of Micro-Electro-Mechanical Systems (MEMS). Micromachines. 2017; 8(6):194. Thanh Nhan LE | Numerical simulation of moving contact line in wetting phenomena using the Generalized Navier Boundary Condition

Why study contact lines?

- Important in nature and in many industrial applications.
- Great challenges in both modeling and experiments.
- 1. Multiscale problem

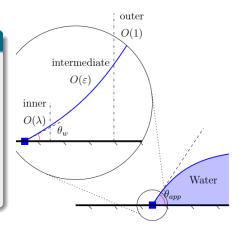


Cox's model (1986) [1]

For a solid/liquid/gas system with $\theta < 3\pi/4$ and *Ca* << 1.

$$(\theta_d^{macro})^3 = (\theta_d^{micro})^3 + 9Ca\ln(L/\lambda)$$

- *L*: outer length (Capillary length), λ : inner length (Slip length).
- Well-defined the contact velocity which fits with many experimental results.



¹ R. G. Cox. The dynamics of the spreading of liquids on a solid surface. J. of Fluid Mechanics, July 1986

Thanh Nhan LE | Numerical simulation of moving contact line in wetting phenomena using the Generalized Navier Boundary Condition

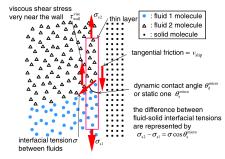
Moving contact line model

Generalize Navier Boundary Condition (GNBC)

Qian et al. (2003) [2] from MD simulation:

$$\beta \mathbf{U}_{\textit{slip}} = \tau_{\textit{wall}}^{\textit{visc}} + \tilde{\tau}^{\textit{Young}}$$

slip coefficient
$$\beta$$
:,
viscous stress $\tau_{wall}^{visc} = \mu \frac{\partial u}{\partial n}\Big|_{wall}$,
uncompensated Young stress
 $\int_{int} \tilde{\tau}^{Young} = \sigma(\cos\theta_s - \cos\theta_d^{micro}).$
Validate by the diffused interface
method with $Ca << 0.1$.



²T. Qian et al., Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, July 2003

Thanh Nhan LE | Numerical simulation of moving contact line in wetting phenomena using the Generalized Navier Boundary Condition

The governing equations are described in a one-fluid formulation as:

Navier-Stokes equations:

$$\nabla \cdot \mathbf{u} = \mathbf{0},\tag{1}$$

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla \rho + \nabla \cdot \left(\mu(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathsf{T}})\right) + \rho \mathbf{g} + \mathbf{F}_{\sigma}.$$
 (2)

► GNBC:

$$\beta u_{slip} = \tau_{wall}^{visc} + \tilde{\tau}^{Young}$$
(3)

The physical properties such as local density and dynamic viscosity:

$$\phi = C\phi_1 + (1-C)\phi_2.$$

Front tracking method (J. Glimm .et .al [3]) is used to represent and evolve the interface.

Numerical model

Procedure

- Advect interface markers.
- Update density and viscosity.
- Compute the interfacical surface force \mathbf{F}_{σ} .
- Impose the slip velocity.
- Solve the NS equations with the BC and then update the flow fields.

Mathematical model

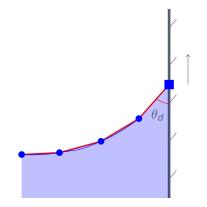


Figure: Interface tracking by markers.

The geometry and dynamics of the interface is tracked by the set of linked marker points.

- Updating the front by the Runge-Kutta method.
- Redistributing the front.
- Computing the t, κ and θ_d by the position of markers.

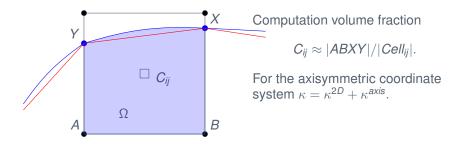
The open-source FronTier++ library package.

Mathematical model Surface tension

The CSF approximation: $\mathbf{F}_{\sigma} = \sigma \kappa \mathbf{n} \delta_{\mathbf{l}} = \sigma \kappa \nabla \mathbf{C}$. The \mathbf{F}_{σ} is discretized on at the velocity nodes as follows

$$F_{\sigma i+1/2,j} = \sigma \kappa_{i+1/2,j} \frac{C_{i+1,j} - C_{i,j}}{\Delta x},$$

$$F_{\sigma i,j+1/2} = \sigma \kappa_{i,j+1/2} \frac{C_{i,j+1} - C_{i,j}}{\Delta x}.$$
(4)



Mathematical model Interface curvature fields

The hybrid formulation (Shin et al. [4]):

$$\sigma \kappa = \frac{\mathbf{F}' \cdot \mathbf{G}}{\mathbf{G} \cdot \mathbf{G}},\tag{6}$$

where

$$\mathbf{F}'_{i+1/2,j} = \sum_{e} \mathbf{f}_{e} D_{i+1/2,j}(\mathbf{x}_{e}) |e|, \tag{7}$$

$$\mathbf{G}_{i+1/2,j} = \sum_{e} \mathbf{n}_{e} D_{i+1/2,j}(\mathbf{x}_{e}) |e|.$$
(8)

Here, \mathbf{x}_e is a parameterization of the element *e* of the interface, \mathbf{f}_e is the capillary force contribution of element *e*, \mathbf{n}_e is a unit normal and $D_{i+1/2,j}(\mathbf{x}_e)$ is the Dirac distribution function approximated by:

$$D_{i+1/2,j}(\mathbf{x}_e) = \frac{1}{\Delta x \Delta y} d\left(\frac{x_{i+1/2,j} - x_e}{\Delta x}\right) d\left(\frac{y_{i+1/2,j} - y_e}{\Delta y}\right)$$
(9)

Mathematical model

 $\begin{array}{ll} \text{GNBC:} & \beta u_{\textit{slip}} = \tau_{\textit{wall}}^{\textit{visc}} + \tilde{\tau}^{\textit{Young}}. \\ \text{By } \tau_{\textit{wall}}^{\textit{visc}} << \tilde{\tau}^{\textit{Young}}, \text{ then GNBC is simplified to} \end{array}$

$$\beta' u_{slip} = \tilde{\tau}^{Young} \tag{10}$$

Remember that uncompensated Young stress, satisfying

 $\int_{int} \tilde{\tau}^{Young} = \sigma(\cos\theta_s - \cos\theta_d^{micro})$

then

$$\tilde{\tau}^{Young}(y_j) = \sigma(\cos\theta_s - \cos\theta_d^{micro})d(y_j - y_{CL})$$
(11)

where
$$d(r) = \begin{cases} \frac{1}{4\Delta} \left(1 + \cos \frac{\pi r}{2\Delta} \right) & \text{if } |r| \leq 2\Delta, \\ 0 & \text{if } |r| > 2\Delta, \end{cases}$$
 and Δ is the grid

spacing.

$$\beta u_{CL} = \frac{1}{2\Delta} \sigma(\cos\theta_s - \cos\theta_d^{micro})$$
(12)

Notice that $Ca = \mu u_{CL}/\sigma$ and (12), it follows:

$$Ca = \chi(\cos\theta_s - \cos\theta_d^{micro}) \tag{13}$$

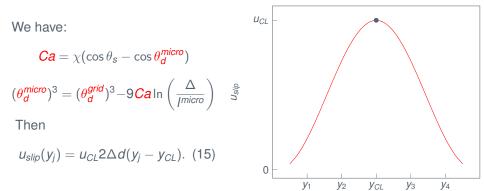
where $\chi = \overline{\mu}/(\beta'\Delta)$ is the nondimensional slip parameter. Then from Cox's model, $(\theta_d^{macro})^3 = (\theta_d^{micro})^3 + 9Ca\ln(L/\lambda)$

by setting $L = \Delta$ and $\lambda = I^{micro}$,

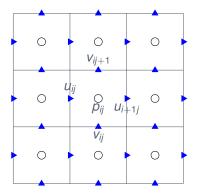
$$(\theta_d^{micro})^3 = (\theta_d^{grid})^3 - 9Ca \ln\left(\frac{\Delta}{I^{micro}}\right).$$
 (14)

Mathematical model

y



Mathematical model



The open-source CFD code -Notus (https://notus-cfd.org) at I2M.

Figure: Marker and Cell discretization.

- Time discretization of the momentum equation is a 1st order Eulerian scheme with an implicit formulation for the viscous term.
- The velocity/pressure coupling is solved with the time splitting pressure correction method

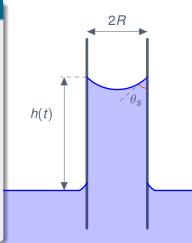
Capillary rise

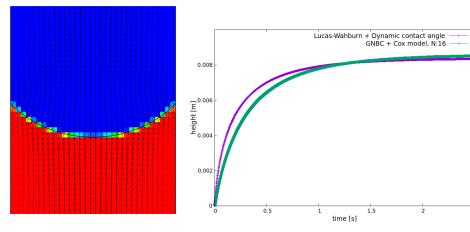
- The tendency of liquids to rise up in narrow tubes.
- The balance of forces that results in the static contact angle θ_s.
- Jurin's law:

$$h = \frac{2\gamma\cos\theta_s}{\rho gR}$$

The Lucas - Washburn - Bosanquet equation of fluid motion:

$$\frac{d}{dt}(\pi R^2 \rho h \frac{dh}{dt}) + 8\pi \mu h \frac{dh}{dt} = 2\pi R \gamma \cos \theta_s$$





Liquid columm height as a function in time. N: number of grid points

Simulation

- Gas and glycerin 50% water.
- The axisymmetric capillary tube, R = 0,512(mm).
- $\sigma = 67.9(mN/m)$
- ► $\theta_s = 37.08^{\circ}$.

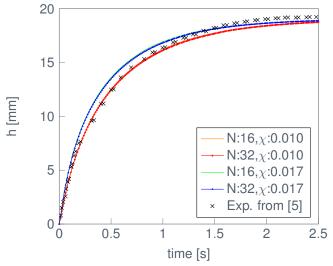
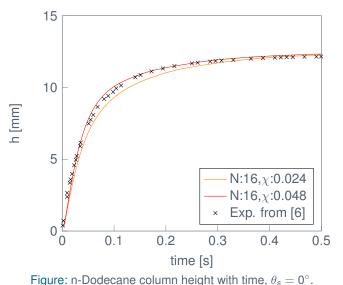
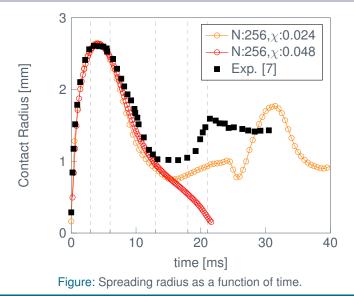


Figure: Glycerin 50% water column height with time.



- ► Water and gas, with equilibrium contact angle 90°.
- The initial droplet with R = 1.14 (mm) and impacts to the wall with V_{int} = 1 (m/s).



- Improve the simulation of spreading drop for the receding phase up to the first equilibrium state.
- Study drop sliding down an inclined plane.
- Study complex geometries.
- Simulate the wetting phenomena to high Ca number cases (Ca ~ 0.1).

Thank you!

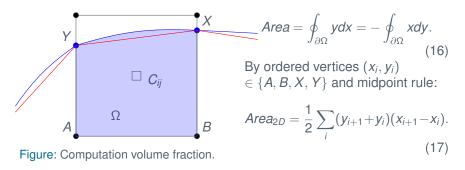
- R. G. Cox, The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, *Journal of Fluid Mechanics*, vol. 168, no. 1, p. 169, 1986.
- [2] T. Qian, X.-P. Wang, and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, *Phys. Rev. E*, vol. 68, no. 1, 016306, Jul. 2003.
- [3] J. Du, B. Fix, J. Glimm, et al., A simple package for front tracking, *Journal of Computational Physics*, vol. 213, no. 2, pp. 613–628, Apr. 2006.
- [4] S. Shin, S. I. Abdel-Khalik, V. Daru, and D. Juric, Accurate representation of surface tension using the level contour reconstruction method, *Journal of Computational Physics*, vol. 203, no. 2, pp. 493–516, 2005.

- [5] Y. Yamamoto, K. Tokieda, T. Wakimoto, T. Ito, and K. Katoh, Modeling of the dynamic wetting behavior in a capillary tube considering the macroscopic–microscopic contact angle relation and generalized Navier boundary condition, *International Journal* of *Multiphase Flow*, vol. 59, pp. 106–112, 2014.
- [6] P. Wu, A.D. Nikolov, D.T. Wasan, Capillary Rise: Validity of the dynamic contact angle models, *Langmuir*, vol 33(32), pp. 7862-7872, 2017.
- [7] K. Yokoi, D. Vadillo, J. Hinch, I. Hutchings, Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface, *Physics of Fluids*, vol 21, 072102, 2009.
- [8] S. Shin, J. Chergui, D. Juric, Direct simulation of multiphase flows with modeling of dynamic interface contact angle, *Theor. Comput. Fluid Dyn.*, vol. 32, no. 5, pp. 655–687, 2018.

References

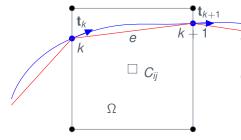
- [9] M. Coquerelle, S. Glockner, A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces, *Journal of Computational Physics*, vol. 305, pp. 838–876, 2016.
- [10] P. G. de Gennes, Wetting: statics and dynamics, *Reviews of Modern Physics*, vol. 57, no. 3, pp. 827–863, Jul. 1985.
- [11] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, Wetting and spreading, *Reviews of Modern Physics*, vol. 81, no. 2, pp. 739–805, May 2009.
- [12] Jacco H. Snoeijer and Bruno Andreotti. Moving Contact Lines: Scales, Regimes, and Dynamical Transitions, *Annual Review of Fluid Mechanics*, vol. 45, no. 1, pp. 269–292, Jan. 2013.
- [13] W. Ren and W. E, Boundary conditions for the moving contact line problem, *Physics of Fluids*, vol. 19, no. 2, 022101, 2007.

 C_{ij} is approximated by polygon area made by the crossing points and the grid cell corners enclosed by Ω .



$$Area_{axisymmetric} = \frac{\pi}{3} \sum_{i} (y_{i+1} + y_i)(x_{i+1} - x_i)(x_i + x_{i+1}).$$
(18)

Mathematical model



The total tension force acting on a interface element *e* in 2D is calculated following:

$$\mathbf{f}_{e} = \int_{e} \sigma \kappa \mathbf{n} ds = \sigma(\mathbf{t}_{k+1} - \mathbf{t}_{k}).$$
(19)

Figure: Local force \mathbf{f}_e of element e is computed from tangent \mathbf{t}_k and \mathbf{t}_{k+1} of marker k and k + 1.

For the axisymmetric coordinate system:

$$\mathbf{F}_{\sigma} = \sigma \left(\kappa^{2D} + \kappa^{axis} \right) \nabla \mathbf{C}.$$
(20)

The axisymetric curvature on Eulerian grid:

$$\kappa_{i+1/2,j}^{axis} = \sum_{k} \kappa_{k}^{axis} D_{i+1/2,j}(\mathbf{x}_{k}) / \sum_{k} D_{i+1/2,j}(\mathbf{x}_{k})$$
(21)

where

$$\kappa_k^{axis} = \begin{cases} n_k/x_k & \text{if } x_k \neq 0, \\ \kappa_k^{2D} & \text{if } x_k = 0, \end{cases}$$

here, n_x : the radial component of unit normal **n**_k.

