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Moving contact line problem

Introduction

Air

Solid

(a) Raindrops gracing on the leaf. (b) Static contact line.

Figure: Contact line description.

Background

» The contact line (CL) is the intersection between fluid interface
and solid wall.
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Moving contact line problem

Introduction

VsG . YsL
Solid

Figure: Contact line description.

Surface tension: v (liquid-gas), vsg (solid-gas), vs. (solid-liquid)

Static contact line - Young’s equation

_ 7/SG — VsL
cosflg = ——=
Y
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Moving contact line problem

Introduction

Dynamic contact line

» Capillary and wetting phenomena
viscous forces
surface tension

» Capillary number Ca =

(a) Droplet spreading (DS)

(b) Forced wetting (FW)

~

0

(c) Capillary spreading (in tube
or between two plates) (CS)
Thanh Nhan LE | Numerical simulation of moving contact line in wetting phenomena using the Generalized Navier Boundary Condition




Moving contact line problem

Introduction

Why study contact lines?
» Important in nature and in many industrial applications.

Ink

Nozzle
Heat or piezo
element
Ink droplet —_
L Paper ]

OLau G-K, Shrestha M. Ink-Jet Printing of Micro-Electro-Mechanical Systems (MEMS). Micromachines. 2017; 8(6):194.
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Moving contact line problem

Introduction

Why study contact lines?
>

» Great challenges in both modeling and experiments.

1. Multiscale problem

Time
1s 1 Continuum Mechanics
1ust
a Molecular
1pst
Dynamics
CL behavior Fluid motion
Inm 1pm 1m Space

Thanh Nhan LE | Numerical simulation of moving contact line in wetting phenomena using the Generalized Navier Boundary Condition



Moving contact line problem

Moving contact line model

! outer

Cox’s model (1986) [1]

» For a solid/liquid/gas system with
0 < 3n/4 and Ca << 1.

(omacrey3 = (o7ere)® + 9Caln(L/N)

L: outer length (Capillary length),
A: inner length (Slip length).

» Well-defined the contact velocity
which fits with many experimental
results.

1R. G. Cox. The dynamics of the spreading of liquids on a solid surface. J. of Fluid Mechanics, July 1986
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Moving contact line problem

Moving contact line model

Generalize Navier Boundary

Condition (GNBC)

» Qian et al. (2003) [2] from MD
simulation:

visc ~ Youn,
Busip = Ty + 77

slip coefficient 3 ,

. ; ou
viscous stress 7,57 = Pl var’
wa

uncompensated Young stress
Sy 770419 = 5(cos s — cos 677

> Validate by the diffused interface
method with Ca << 0.1.

viscous shear stress
very near the wall 7,
a

© :fluid 1 molecule
a : fluid 2 molecule
« :solid molecule

tangential friction e< vy;,

dynamic contact angle 6;""
or static one 6"

the difference between
fluid-solid interfacial tensions
are represented by

0, —-0,=0cosf""

.
L ) i
interfacial tensiono

between fluids

27, Qian et al., Molecular scale contact line hydrodynamics of immiscible flows,Phys. Rev. E, July 2003.
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Mathematical model

Governing equations

The governing equations are described in a one-fluid formulation as:
» Navier-Stokes equations:

V-u=0, (1)
7]
p(a—l;+u~Vu) =-Vp+V- (M(Vu+VuT))+pg+Fg. 2)
» GNBC: 4
Blsip = Tugi + 7" (3)

The physical properties such as local density and dynamic viscosity:
¢ = Coi + (1 — C)¢2

Front tracking method (J. Glimm .et .al [3]) is used to represent and evolve
the interface.
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Numerical model

Procedure
» Advect interface markers.
» Update density and viscosity.
» Compute the interfacical surface force F,, .
» Impose the slip velocity.

» Solve the NS equations with the BC and then update the flow
fields.
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Mathematical model

Interface tracking framework

O

Figure: Interface tracking by markers.

The geometry and dynamics of
the interface is tracked by the set
of linked marker points.
» Updating the front by the
Runge-Kutta method.
» Redistributing the front.
» Computing the t, < and 64 by
the position of markers.
The open-source FronTier++
library package.
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Mathematical model

Surface tension

The CSF approximation: F, = oxné = cxVC.
The F, is discretized on at the velocity nodes as follows

C. L C .
Foiz1/2j= Uﬁ/+1/2,j%, (4)
C. . _ C .
Foiji1/2 = UK/,/+1/2%~ (5)
X Computation volume fraction
Y /"‘?
Cj ~ |ABXY|/|Celly|.
D¢y For the axisymmetric coordinate
system k = k20 4 @
Q
A B
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Mathematical model

Interface curvature fields

The hybrid formulation ( Shin et al. [4]):
F-G

=8 ©)
where
F/,‘+1/2’j = ZfeDH»‘I/Z,j(Xe)‘eL (7)
e
G,‘+1/2J‘ = Z neDi+1/2,j(xe)|e" (8)
e

Here, X, is a parameterization of the element e of the interface, f. is
the capillary force contribution of element e, n is a unit normal and
Dit1/2,j(Xe) is the Dirac distribution function approximated by:

1 Xig1/2j = X Yist/2) = V.
Di+1/2$j(xe): AxAyd( /+1/Z/X e) d( /+1/ij e) )
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Mathematical model

Dynamic contact line

GNBC: BUslp = TV‘;/;/? 4 7 Young
By 7ise << #Young then GNBC is simplified to

/3/Uslip - 7~_Young (1 0)

Remember that uncompensated Young stress, satisfying

/ 7YUNg — 5(cos fs — cos HT°°)
int

then
71049 () = o(cos fs — cos 07"°)d(y; — Yer) (1)
1 wr .
where d(r) = { 4A (1 o ﬁ) I <28 and Ais the grid
0 if |r| > 24,
spacing.
Bug, = ia(cos fs — cos §T°) (12)
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Mathematical model

Dynamic contact line

Notice that Ca = uuc, /o and (12), it follows:
Ca = x(cos s — cos H7e™) (13)

where x = i/(p’A) is the nondimensional slip parameter. Then from

Cox’s model, .
(97acr0y3 — (gaere)3 + 9Caln(L/\)

by setting L = A and \ = /™,

(057°)% = (69')* — 9Caln ( /mﬁr()) : (14)
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Mathematical model

Dynamic contact line

We have: vor
Ca = x(cosfs — cos H7°™)
A a
(65°°)° = (65")*~9Caln ( ,mm)
Then
Usip(yj) = ucr2Ad(y; — yer). (15)
0 B | | | | |
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Mathematical model

Navier-Stokes solver

N Vi N
|G “g' o » O » The open-source CFD code -
Dij Uijdj Notus (https://notus-cfd.org) at
A A A 12M.
Vij

» O 2 O » O »

A

»

A

Figure: Marker and Cell discretization.

» Time discretization of the momentum equation is a 1st order
Eulerian scheme with an implicit formulation for the viscous term.

» The velocity/pressure coupling is solved with the time splitting
pressure correction method
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Numerical simulation

Capillary rise

Capillary rise

» The tendency of liquids to rise up in < >
narrow tubes.

» The balance of forces that results in the
static contact angle 0. A D[

> Jurin’s law: 05
_ 2rycosts
pgR

» The Lucas - Washburn - Bosanquet
equation of fluid motion: N

d, o

h

dh
dt

dh

) + 8muh o

= 27 R~ cos 05
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Numerical simulation

Capillary rise

Lucas-Wahburn + Dynamic contact angle ——
GNBC + Cox model, N:16 —=—
e ———
0.008
—0.006
E
=
=
=)
o
BEEi < 0.004
0.002
1.5 2

time [s]

Liquid columm height as a function in time. N: number of grid points
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Numerical simulation

Capillary rise

-
» Gas and glycerin 50% water. s
» The axisymmetric capillary tube, E
R =0,512(mm). w15
> o = 67.9(mN/m) i
> s = 37.08°. |

Thanh Nhan LE | Numerical simulation of moving contact line in wetting phenomena using the Generalized Navier Boundary Condition



Numerical simulation

Capillary rise

20 X XX XK XX
15
3
E 10
< ——N:16,x:0.010
——N:32,x:0.010
5 ——N:16,x:0.017
N:32,x:0.017
= Exp. from [5]
O | | | |
0 0.5 1 1.5 2 25

time [s]
Figure: Glycerin 50% water column height with time.
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Numerical simulation

Capillary rise
15
10 -
€
E
<
5 [
——N:16,x:0.024
—N:16,%:0.048
= Exp. from [6]
0 | I I
0 0.1 0.2 0.3 0.4 0.5

time [s]
Figure: n-Dodecane column height with time, 6s = 0°.
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Numerical simulation

Spreading drop

» Water and gas, with equilibrium contact angle 90°.
» The initial droplet with R = 1.14 (mm) and impacts to the wall
with Ve = 1 (m/s).

2.0

Y-Axis (x10%-3 m)

0.0- T T T T T
-4 -2

[
X-Axis (x10%-3 m)
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Numerical simulation

Spreading drop

—o—N:256,x:0.024
—o—N:256,x:0.048

Contact Radius [mm]

| L1

0 10 20 30 40
time [ms]

Figure: Spreading radius as a function of time.
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Perspectives

» Improve the simulation of spreading drop for the receding phase
up to the first equilibrium state.

» Study drop sliding down an inclined plane.
» Study complex geometries.

» Simulate the wetting phenomena to high Ca number cases
(Ca~0.1).
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Thank you!
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Mathematical model

Volume fraction

Cj is approximated by polygon area made by the crossing points and
the grid cell corners enclosed by Q.

X : :
Area = dx:f% xdy.
Y,/o% -BQy /o0 y(16)

By ordered vertices (X, y;)

= Cij € {A, B, X, Y} and midpoint rule:
1
A Q g Aream = Zi:(y/+1 +Yi) (X1 — Xi)-
(17)

Figure: Computation volume fraction.

Areaaxisymmetric = g Z(Yi+1 + Yi)(Xie1r = Xi)(Xi + Xi1). (18)
i
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Mathematical model

Interface curvature fields

t

t K41

e k41 . .
Kk The total tension force acting on a

0 interface element e in 2D is

Cij calculated following:
Q fe = / okNds = U(tk+1 —tk). (19)
e

Figure: Local force fe of element e is
computed from tangent t, and tx1 of
marker k and k + 1.
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Mathematical model

Interface curvature fields

For the axisymmetric coordinate system:
F, = o (k*° + k®5) VC. (20)

The axisymetric curvature on Eulerian grid:

W25 = D R Dir2(%k)/ Y Divajz,(%) (21)
k k
where
KiXis _ nk/Xk if Xy 75 0,
k2P ifx =0,

here, ny: the radial component of unit normal n.
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Numerical simulation

Capillary rise

——N:16,:0.024
—N:32,1:0.048

g

o

©

(©]

| | |
0 0.1 0.2 0.3 0.4 0.5

time [s]

Figure: Ca number with time.
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