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Moving contact line problem
Introduction

(a) Raindrops gracing on the leaf.

Air Water

Solid
(b) Static contact line.

Figure: Contact line description.

Background
I The contact line (CL) is the intersection between fluid interface

and solid wall.
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Moving contact line problem
Introduction

θs

γSLγSG

γ

Gas Liquid

Solid

Figure: Contact line description.

Surface tension: γ (liquid-gas), γSG (solid-gas), γSL (solid-liquid)

Static contact line - Young’s equation

cos θs =
γSG − γSL

γ
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Moving contact line problem
Introduction

Dynamic contact line
I Capillary and wetting phenomena

I Capillary number Ca =
viscous forces
surface tension
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Moving contact line problem
Introduction

Why study contact lines?
I Important in nature and in many industrial applications.

0Lau G-K, Shrestha M. Ink-Jet Printing of Micro-Electro-Mechanical Systems (MEMS). Micromachines. 2017; 8(6):194.
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Moving contact line problem
Introduction

Why study contact lines?
I Important in nature and in many industrial applications.
I Great challenges in both modeling and experiments.

1. Multiscale problem

CL behavior Fluid motion

Molecular

Dynamics

Continuum Mechanics

1nm 1µm 1m Space

1ps

1µs

1s

Time

2. Singular problem in the vicinity of the contact line

u Moving wall with no-slip

Static interface
Huh and Scriven’s paradox (1971):{

∇4ψ(r , θ) = 0,
no-slip BC.

Solution: Trθ = O(1/r),p = O(1/r) -> Divergence of the shear stress
and the pressure.

Thanh Nhan LE | Numerical simulation of moving contact line in wetting phenomena using the Generalized Navier Boundary Condition



7

Moving contact line problem
Moving contact line model

Cox’s model (1986) [1]
I For a solid/liquid/gas system with
θ < 3π/4 and Ca << 1.

(θmacro
d )3 = (θmicro

d )3 + 9Ca ln(L/λ)

L: outer length (Capillary length),
λ: inner length (Slip length).

I Well-defined the contact velocity
which fits with many experimental
results.

1R. G. Cox. The dynamics of the spreading of liquids on a solid surface. J. of Fluid Mechanics, July 1986
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Moving contact line problem
Moving contact line model

Generalize Navier Boundary
Condition (GNBC)
I Qian et al. (2003) [2] from MD

simulation:

βuslip = τ visc
wall + τ̃Young

slip coefficient β :,

viscous stress τ visc
wall = µ

∂u
∂n

∣∣∣
wall

,

uncompensated Young stress∫
int τ̃

Young = σ(cos θs − cos θmicro
d ).

I Validate by the diffused interface
method with Ca << 0.1.

2T. Qian et al., Molecular scale contact line hydrodynamics of immiscible flows,Phys. Rev. E, July 2003.
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Mathematical model
Governing equations

The governing equations are described in a one-fluid formulation as:
I Navier-Stokes equations:

∇ · u = 0, (1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p +∇ ·
(
µ(∇u +∇uT )

)
+ ρg + Fσ. (2)

I GNBC:
βuslip = τ visc

wall + τ̃Young (3)

The physical properties such as local density and dynamic viscosity:

φ = Cφ1 + (1− C)φ2.

Front tracking method (J. Glimm .et .al [3]) is used to represent and evolve
the interface.
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Numerical model

Procedure
I Advect interface markers.
I Update density and viscosity.
I Compute the interfacical surface force Fσ.
I Impose the slip velocity.
I Solve the NS equations with the BC and then update the flow

fields.
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Mathematical model
Interface tracking framework

θd

Figure: Interface tracking by markers.

The geometry and dynamics of
the interface is tracked by the set
of linked marker points.
I Updating the front by the

Runge-Kutta method.
I Redistributing the front.
I Computing the t, κ and θd by

the position of markers.
The open-source FronTier++
library package.
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Mathematical model
Surface tension

The CSF approximation: Fσ = σκnδI = σκ∇C.
The Fσ is discretized on at the velocity nodes as follows

Fσi+1/2,j = σκi+1/2,j
Ci+1,j − Ci,j

∆x
, (4)

Fσi,j+1/2 = σκi,j+1/2
Ci,j+1 − Ci,j

∆x
. (5)

Cij

Ω

Y
X

A B

Computation volume fraction

Cij ≈ |ABXY |/|Cellij |.

For the axisymmetric coordinate
system κ = κ2D + κaxis.
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Mathematical model
Interface curvature fields

The hybrid formulation ( Shin et al. [4]):

σκ =
F′ ·G
G ·G

, (6)

where
F′ i+1/2,j =

∑
e

feDi+1/2,j (xe)|e|, (7)

Gi+1/2,j =
∑

e

neDi+1/2,j (xe)|e|. (8)

Here, xe is a parameterization of the element e of the interface, fe is
the capillary force contribution of element e, ne is a unit normal and
Di+1/2,j (xe) is the Dirac distribution function approximated by:

Di+1/2,j (xe) =
1

∆x∆y
d
(

xi+1/2,j − xe

∆x

)
d
(

yi+1/2,j − ye

∆y

)
(9)
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Mathematical model
Dynamic contact line

GNBC: βuslip = τ visc
wall + τ̃Young .

By τ visc
wall << τ̃Young , then GNBC is simplified to

β′uslip = τ̃Young (10)

Remember that uncompensated Young stress, satisfying∫
int
τ̃Young = σ(cos θs − cos θmicro

d )

then
τ̃Young(yj ) = σ(cos θs − cos θmicro

d )d(yj − yCL) (11)

where d(r) =


1

4∆

(
1 + cos

πr
2∆

)
if |r | 6 2∆,

0 if |r | > 2∆,
and ∆ is the grid

spacing.

βuCL =
1

2∆
σ(cos θs − cos θmicro

d ) (12)

Thanh Nhan LE | Numerical simulation of moving contact line in wetting phenomena using the Generalized Navier Boundary Condition



15

Mathematical model
Dynamic contact line

Notice that Ca = µuCL/σ and (12), it follows:

Ca = χ(cos θs − cos θmicro
d ) (13)

where χ = µ/(β′∆) is the nondimensional slip parameter. Then from
Cox’s model,

(θmacro
d )3 = (θmicro

d )3 + 9Ca ln(L/λ)

by setting L = ∆ and λ = lmicro,

(θmicro
d )3 = (θgrid

d )3 − 9Ca ln

(
∆

lmicro

)
. (14)
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Mathematical model
Dynamic contact line

We have:

Ca = χ(cos θs − cos θmicro
d )

(θmicro
d )3 = (θgrid

d )3−9Ca ln

(
∆

lmicro

)
Then

uslip(yj ) = uCL2∆d(yj − yCL). (15)

y1 y2 yCL y3 y4

0

uCL

y

u s
lip
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Mathematical model
Navier-Stokes solver

pij

vij+1

vij

uij

ui+1j

Figure: Marker and Cell discretization.

The open-source CFD code -
Notus (https://notus-cfd.org) at
I2M.

I Time discretization of the momentum equation is a 1st order
Eulerian scheme with an implicit formulation for the viscous term.

I The velocity/pressure coupling is solved with the time splitting
pressure correction method
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Numerical simulation
Capillary rise

Capillary rise
I The tendency of liquids to rise up in

narrow tubes.
I The balance of forces that results in the

static contact angle θs.
I Jurin’s law:

h =
2γ cos θs

ρgR

I The Lucas - Washburn - Bosanquet
equation of fluid motion:

d
dt

(πR2ρh
dh
dt

) + 8πµh
dh
dt

= 2πRγ cos θs

h(t)

2R

θs
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Numerical simulation
Capillary rise

Liquid columm height as a function in time. N: number of grid points
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Numerical simulation
Capillary rise

Simulation
I Gas and glycerin 50% water.
I The axisymmetric capillary tube,

R = 0,512(mm).
I σ = 67.9(mN/m)

I θs = 37.08◦.
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Numerical simulation
Capillary rise
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Figure: Glycerin 50% water column height with time.
Thanh Nhan LE | Numerical simulation of moving contact line in wetting phenomena using the Generalized Navier Boundary Condition



22

Numerical simulation
Capillary rise
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Figure: n-Dodecane column height with time, θs = 0◦.
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Numerical simulation
Spreading drop

I Water and gas, with equilibrium contact angle 90◦.
I The initial droplet with R = 1.14 (mm) and impacts to the wall

with Vint = 1 (m/s).
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Numerical simulation
Spreading drop
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Figure: Spreading radius as a function of time.
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Perspectives

I Improve the simulation of spreading drop for the receding phase
up to the first equilibrium state.

I Study drop sliding down an inclined plane.
I Study complex geometries.
I Simulate the wetting phenomena to high Ca number cases

(Ca ∼ 0.1).
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Mathematical model
Volume fraction

Cij is approximated by polygon area made by the crossing points and
the grid cell corners enclosed by Ω.

Cij

Ω

Y
X

A B

Figure: Computation volume fraction.

Area =

∮
∂Ω

ydx = −
∮
∂Ω

xdy .

(16)
By ordered vertices (xi , yi )
∈ {A,B,X ,Y} and midpoint rule:

Area2D =
1
2

∑
i

(yi+1+yi )(xi+1−xi ).

(17)

Areaaxisymmetric =
π

3

∑
i

(yi+1 + yi )(xi+1 − xi )(xi + xi+1). (18)
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Mathematical model
Interface curvature fields

Cij

Ω

k
k + 1e

tk
tk+1

Figure: Local force fe of element e is
computed from tangent tk and tk+1 of
marker k and k + 1.

The total tension force acting on a
interface element e in 2D is
calculated following:

fe =

∫
e
σκnds = σ(tk+1−tk ). (19)
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Mathematical model
Interface curvature fields

For the axisymmetric coordinate system:

Fσ = σ
(
κ2D + κaxis)∇C. (20)

The axisymetric curvature on Eulerian grid:

κaxis
i+1/2,j =

∑
k

κaxis
k Di+1/2,j (xk )/

∑
k

Di+1/2,j (xk ) (21)

where

κaxis
k =

{
nk/xk if xk 6= 0,
κ2D

k if xk = 0,

here, nx : the radial component of unit normal nk .
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Numerical simulation
Capillary rise
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Figure: Ca number with time.
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