

Institut de Mécanique et d'Ingénierie - Bordeaux

Numerical simulation of moving contact line in wetting phenomena using the Generalized Navier Boundary Condition

Thanh Nhan LE, Mathieu Coquerelle, Stéphane Glockner

August 27, 2019

Outline

[Moving contact line problem](#page-2-0)

[Introduction](#page-2-0) [Moving contact line model](#page-7-0)

[Mathematical model](#page-9-0)

[Governing equations](#page-9-0) [Interface tracking method](#page-11-0) [Surface tension](#page-12-0) [Dynamic contact line](#page-14-0)

[Numerical simulation](#page-18-0)

[Capillary rise](#page-18-0) [Spreading drop](#page-23-0)

[Perpestives](#page-25-0)

[Reference](#page-27-0)

(a) Raindrops gracing on the leaf.

(b) Static contact line.

Figure: Contact line description.

Background

 \blacktriangleright The contact line (CL) is the intersection between fluid interface and solid wall.

Figure: Contact line description.

Surface tension: γ (liquid-gas), γ_{*SG*} (solid-gas), γ*SL* (solid-liquid)

Static contact line - Young's equation $\cos \theta_s = \frac{\gamma_{SG} - \gamma_{SL}}{g}$ γ

Dynamic contact line

- \blacktriangleright Capillary and wetting phenomena
- \triangleright Capillary number $Ca =$ *viscous forces surface tension*

4

Why study contact lines?

 \blacktriangleright Important in nature and in many industrial applications.

5

 0 Lau G-K, Shrestha M. Ink-Jet Printing of Micro-Electro-Mechanical Systems (MEMS). Micromachines. 2017; 8(6):194.

Why study contact lines?

-
- \triangleright Great challenges in both modeling and experiments.
- 1. Multiscale problem

6

Moving contact line problem Moving contact line model

Cox's model (1986) [\[1\]](#page-27-1)

 \blacktriangleright For a solid/liquid/gas system with θ < 3 π /4 and *Ca* < < 1.

$$
(\theta_{\textit{d}}^{\textit{macro}})^3 = (\theta_{\textit{d}}^{\textit{micro}})^3 + 9\textit{Caln}(L/\lambda)
$$

L: outer length (Capillary length), λ : inner length (Slip length).

 \blacktriangleright Well-defined the contact velocity which fits with many experimental results.

 $1R$. G. Cox. The dynamics of the spreading of liquids on a solid surface. J. of Fluid Mechanics, July 1986

Moving contact line problem Moving contact line model

Generalize Navier Boundary Condition (GNBC)

 \triangleright Qian et al. (2003) [\[2\]](#page-27-2) from MD simulation:

$$
\beta U_{\text{slip}} = \tau_{\text{wall}}^{\text{visc}} + \tilde{\tau}^{\text{Young}}
$$

\n slip coefficient
$$
β
$$
 :
\n viscous stress $τ_{wall}^{visc} = μ \frac{∂u}{∂n} \Big|_{wall}$,
\n uncompensated Young stress $\int_{int} \tilde{\tau}^{Young} = σ(\cos \theta_s - \cos \theta_d^{micro})$.
\n Validate by the diffused interface method with $Ca < 0.1$.\n

²T. Qian et al., Molecular scale contact line hydrodynamics of immiscible flows,Phys. Rev. E, July 2003.

Thanh Nhan LE [| Numerical simulation of moving contact line in wetting phenomena using the Generalized Navier Boundary Condition](#page-0-0)

The governing equations are described in a one-fluid formulation as:

 \blacktriangleright Navier-Stokes equations:

$$
\nabla \cdot \mathbf{u} = 0,\tag{1}
$$

$$
\rho\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla \rho + \nabla \cdot \left(\mu(\nabla \mathbf{u} + \nabla \mathbf{u}^T)\right) + \rho \mathbf{g} + \mathbf{F}_{\sigma}.
$$
 (2)

 \blacktriangleright GNRC:

$$
\beta u_{\text{slip}} = \tau_{\text{wall}}^{\text{visc}} + \tilde{\tau}^{\text{Young}} \tag{3}
$$

The physical properties such as local density and dynamic viscosity:

$$
\phi=C\phi_1+(1-C)\phi_2.
$$

Front tracking method (J. Glimm .et .al [\[3\]](#page-27-3)) is used to represent and evolve the interface.

Numerical model

Procedure

- \blacktriangleright Advect interface markers.
- \blacktriangleright Update density and viscosity.
- ► Compute the interfacical surface force **F**_σ.
- \blacktriangleright Impose the slip velocity.
- \triangleright Solve the NS equations with the BC and then update the flow fields.

Mathematical model Interface tracking framework

Figure: Interface tracking by markers.

The geometry and dynamics of the interface is tracked by the set of linked marker points.

- \blacktriangleright Updating the front by the Runge-Kutta method.
- \blacktriangleright Redistributing the front.
- **I** Computing the **t**, κ and θ_d by the position of markers.

The open-source FronTier++ library package.

Mathematical model Surface tension

The CSF approximation: $\mathbf{F}_{\sigma} = \sigma \kappa \mathbf{n} \delta_{\mathbf{l}} = \sigma \kappa \nabla \mathbf{C}$. The \mathbf{F}_{σ} is discretized on at the velocity nodes as follows

$$
F_{\sigma i+1/2,j} = \sigma \kappa_{i+1/2,j} \frac{C_{i+1,j} - C_{i,j}}{\Delta x},
$$
\n(4)
\n
$$
F_{\sigma i,j+1/2} = \sigma \kappa_{i,j+1/2} \frac{C_{i,j+1} - C_{i,j}}{\Delta x}.
$$

Mathematical model Interface curvature fields

The hybrid formulation (Shin et al. [\[4\]](#page-27-4)):

$$
\sigma \kappa = \frac{\mathbf{F}' \cdot \mathbf{G}}{\mathbf{G} \cdot \mathbf{G}},\tag{6}
$$

where

$$
\mathbf{F'}_{i+1/2,j} = \sum_{e} \mathbf{f}_e D_{i+1/2,j}(\mathbf{x}_e) |e|,\tag{7}
$$

$$
\mathbf{G}_{i+1/2,j} = \sum_{e} \mathbf{n}_e D_{i+1/2,j}(\mathbf{x}_e) |e|.
$$
 (8)

Here, **x***^e* is a parameterization of the element *e* of the interface, **f***^e* is the capillary force contribution of element *e*, **n***^e* is a unit normal and $D_{i+1/2,i}(\mathbf{x}_e)$ is the Dirac distribution function approximated by:

$$
D_{i+1/2,j}(\mathbf{x}_e) = \frac{1}{\Delta x \Delta y} d\left(\frac{x_{i+1/2,j} - x_e}{\Delta x}\right) d\left(\frac{y_{i+1/2,j} - y_e}{\Delta y}\right) \tag{9}
$$

Mathematical model Dynamic contact line

 $GNBC: \qquad \beta u_{\text{slip}} = \tau_{\text{wall}}^{\text{visc}} + \tilde{\tau}^{\text{Young}}.$ By $\tau^{visc}_{wall} << \tilde{\tau}^{Young}$, then GNBC is simplified to

$$
\beta' u_{\text{slip}} = \tilde{\tau}^{\text{Young}} \tag{10}
$$

Remember that uncompensated Young stress, satisfying

$$
\int_{int} \tilde{\tau}^{\text{Young}} = \sigma(\cos \theta_s - \cos \theta_d^{\text{micro}})
$$

then

$$
\tilde{\tau}^{\text{Young}}(y_j) = \sigma(\cos\theta_s - \cos\theta_d^{\text{micro}})d(y_j - y_{CL})
$$
\n(11)

where
$$
d(r) = \begin{cases} \frac{1}{4\Delta} \left(1 + \cos \frac{\pi r}{2\Delta} \right) & \text{if } |r| \leq 2\Delta, \\ 0 & \text{if } |r| > 2\Delta, \end{cases}
$$
 and Δ is the grid

spacing.

$$
\beta u_{\text{CL}} = \frac{1}{2\Delta} \sigma (\cos \theta_s - \cos \theta_d^{\text{micro}})
$$
 (12)

Notice that $Ca = \mu u_{Cl}/\sigma$ and [\(12\)](#page-14-1), it follows:

$$
Ca = \chi(\cos \theta_s - \cos \theta_d^{\text{micro}})
$$
 (13)

where $\chi = \overline{\mu}/(\beta' \Delta)$ is the nondimensional slip parameter. Then from Cox's model,

 $(\theta_d^{\text{macro}})^3 = (\theta_d^{\text{micro}})^3 + 9Ca\ln(L/\lambda)$

by setting $L = \Delta$ and $\lambda = l^{micro}$,

$$
\left| (\theta_d^{\text{micro}})^3 = (\theta_d^{\text{grid}})^3 - 9\text{Caln}\left(\frac{\Delta}{I^{\text{micro}}}\right) \right|.
$$
 (14)

Mathematical model Dynamic contact line

y

Mathematical model Navier-Stokes solver

The open-source CFD code - Notus (https://notus-cfd.org) at I2M.

Figure: Marker and Cell discretization.

- \triangleright Time discretization of the momentum equation is a 1st order Eulerian scheme with an implicit formulation for the viscous term.
- \triangleright The velocity/pressure coupling is solved with the time splitting pressure correction method

Capillary rise

- \blacktriangleright The tendency of liquids to rise up in narrow tubes.
- \blacktriangleright The balance of forces that results in the static contact angle θ*s*.
- \blacktriangleright Jurin's law:

$$
h=\frac{2\gamma\cos\theta_s}{\rho g R}
$$

 \triangleright The Lucas - Washburn - Bosanquet equation of fluid motion:

$$
\frac{d}{dt}(\pi R^2 \rho h \frac{dh}{dt}) + 8\pi \mu h \frac{dh}{dt} = 2\pi R \gamma \cos \theta_s
$$

19

Liquid columm height as a function in time. N: number of grid points

Simulation

- \triangleright Gas and glycerin 50% water.
- \blacktriangleright The axisymmetric capillary tube, $R = 0,512$ (*mm*).
- \triangleright $\sigma = 67.9(mN/m)$
- $\blacktriangleright \theta_s = 37.08^\circ.$

 25

20 \widehat{m}

 $7 - A x i s (x10^{\circ} - 3)$

Figure: Glycerin 50% water column height with time.

22

Numerical simulation Spreading drop

- ▶ Water and gas, with equilibrium contact angle 90°.
- \triangleright The initial droplet with $R = 1.14$ (mm) and impacts to the wall with $V_{int} = 1$ (m/s).

Numerical simulation Spreading drop

24

- \blacktriangleright Improve the simulation of spreading drop for the receding phase up to the first equilibrium state.
- \triangleright Study drop sliding down an inclined plane.
- \blacktriangleright Study complex geometries.
- ▶ Simulate the wetting phenomena to high *Ca* number cases (*Ca* ∼ 0.1).

Thank you!

- [1] R. G. Cox, The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, *Journal of Fluid Mechanics*, vol. 168, no. 1, p. 169, 1986.
- [2] T. Qian, X.-P. Wang, and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, *Phys. Rev. E*, vol. 68, no. 1, 016306, Jul. 2003.
- [3] J. Du, B. Fix, J. Glimm, et al., A simple package for front tracking, *Journal of Computational Physics*, vol. 213, no. 2, pp. 613–628, Apr. 2006.
- [4] S. Shin, S. I. Abdel-Khalik, V. Daru, and D. Juric, Accurate representation of surface tension using the level contour reconstruction method, *Journal of Computational Physics*, vol. 203, no. 2, pp. 493–516, 2005.

- [5] Y. Yamamoto, K. Tokieda, T. Wakimoto, T. Ito, and K. Katoh, Modeling of the dynamic wetting behavior in a capillary tube considering the macroscopic–microscopic contact angle relation and generalized Navier boundary condition, *International Journal of Multiphase Flow*, vol. 59, pp. 106–112, 2014.
- [6] P. Wu, A.D. Nikolov, D.T. Wasan, Capillary Rise: Validity of the dynamic contact angle models, *Langmuir*, vol 33(32), pp. 7862-7872, 2017.
- [7] K. Yokoi, D. Vadillo, J. Hinch, I. Hutchings, Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface, *Physics of Fluids*, vol 21, 072102, 2009.
- [8] S. Shin, J. Chergui, D. Juric, Direct simulation of multiphase flows with modeling of dynamic interface contact angle, *Theor. Comput. Fluid Dyn.*, vol. 32, no. 5, pp. 655–687, 2018.

References

- [9] M. Coquerelle, S. Glockner, A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces, *Journal of Computational Physics*, vol. 305, pp. 838–876, 2016.
- [10] P. G. de Gennes, Wetting: statics and dynamics, *Reviews of Modern Physics*, vol. 57, no. 3, pp. 827–863, Jul. 1985.
- [11] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, Wetting and spreading, *Reviews of Modern Physics*, vol. 81, no. 2, pp. 739–805, May 2009.
- [12] Jacco H. Snoeijer and Bruno Andreotti. Moving Contact Lines: Scales, Regimes, and Dynamical Transitions, *Annual Review of Fluid Mechanics*, vol. 45, no. 1, pp. 269–292, Jan. 2013.
- [13] W. Ren and W. E, Boundary conditions for the moving contact line problem, *Physics of Fluids*, vol. 19, no. 2, 022101, 2007.

Cij is approximated by polygon area made by the crossing points and the grid cell corners enclosed by $Ω$.

Figure: Computation volume fraction.

Area_{axisymmetric} =
$$
\frac{\pi}{3} \sum_{i} (y_{i+1} + y_i)(x_{i+1} - x_i)(x_i + x_{i+1}).
$$
 (18)

Mathematical model Interface curvature fields

The total tension force acting on a interface element *e* in 2D is calculated following:

$$
\mathbf{f}_e = \int_e \sigma \kappa \mathbf{n} d\mathbf{s} = \sigma(\mathbf{t}_{k+1} - \mathbf{t}_k). \tag{19}
$$

Figure: Local force **f***^e* of element *e* is computed from tangent t_k and t_{k+1} of marker k and $k + 1$.

For the axisymmetric coordinate system:

$$
\mathbf{F}_{\sigma} = \sigma \left(\kappa^{2D} + \kappa^{axis} \right) \nabla \mathbf{C}.
$$
 (20)

The axisymetric curvature on Eulerian grid:

$$
\kappa_{i+1/2,j}^{axis} = \sum_{k} \kappa_k^{axis} D_{i+1/2,j}(\mathbf{x}_k) / \sum_{k} D_{i+1/2,j}(\mathbf{x}_k)
$$
(21)

where

$$
\kappa_k^{axis} = \begin{cases} n_k/x_k & \text{if } x_k \neq 0, \\ \kappa_k^{2D} & \text{if } x_k = 0, \end{cases}
$$

here, n_x : the radial component of unit normal n_k .

32

Figure: Ca number with time.