

Moment-of-Fluid Analytic Reconstruction on 2D Cartesian grids

Antoine LEMOINE¹ Stéphane GLOCKNER² Jérôme BREIL³

¹Univ. Bordeaux, I2M, UMR 5295, F-33400 Talence, France.

²Bordeaux INP, I2M, UMR 5295, F-33400 Talence, France.

³CEA CESTA, 15 Avenue des Sablières, CS 60001, 33116 Le Barp Cedex, France.

June 6th, 2016

CPU Le monde numérique va service de la certification et de la sécurisation des systèmes *BORDEAUX

1/17

Introduction: Notus

Overview:

- Open-source CFD code http://notus-cfd.org
- Dedicated to modeling and simulation of incompressible fluid flows
- Designed to run on massively parallel supercomputers
- Finite volumes, 2D & 3D Cartesian staggered grid

Multiphysic applications:

- Incompressible Navier-Stokes equations
- Multiphase flows \rightarrow breaking waves
- Energy equation \rightarrow energy storage, phase change
- Fluid structure interactions (elasticity)

Many applications require interface representation and reconstruction

Introduction: objective

Objective: sharp interface reconstruction \rightarrow Piecewise LInear Construction (PLIC)

VOF-PLIC vs MOF:

Original interface

VOF-PLIC reconstruction

Moment-of-Fluid (MOF) :

- Uses volume fraction + centroids
- Stencil reduced to only 1 cell
- 2nd order of convergence
- Multimaterial reconstruction

Dyadechko & Shashkov (2006)

MOF reconstruction

Example: compass

Moment-of-fluid: Moment?

0th order momentum (volume)

$$M_0(\omega) = \int_\omega doldsymbol{x} = |\omega|$$

Volume fraction (relative to a cell Ω)

$$\mu(\omega) = \frac{M_0(\omega)}{M_0(\Omega)}$$

ΩΦM₀(Ω) = 4ΦM₀(ω) = 0.9Φμ(ω) = 0.225

$M_1(\omega) = \int x dx$

Centroid

$$m{x}_{c}(\omega) = rac{m{M_{1}}(\omega)}{M_{0}(\omega)}$$

1.2
$$\times$$
 $x_c(\omega)$ (0,0) 1.5

• $M_0(\omega) = 0.9$ • $M_1(\omega) = (0.45, 0.36)$ • $x_c(\omega) = (0.5, 0.4)$

MOF uses volume fraction and centroids to reconstruct interfaces

Antoine Lemoine

ECCOMAS 2016 - Moment-of-Fluid on Cartesian grids

June 6th, 2016 4/ 17

Moment-of-fluid: Moment?

0th order momentum (volume)

$$M_0(\omega) = \int_\omega doldsymbol{x} = |\omega|$$

Volume fraction (relative to a cell Ω)

$$\mu(\omega) = \frac{M_0(\omega)}{M_0(\Omega)}$$

•
$$M_0(\Omega) = 4$$

• $M_0(\omega) = 0.9$
• $\mu(\omega) = 0.225$

MOF uses volume fraction and centroids to reconstruct interfaces

(0,0)

1.5

Moment-of-fluid: formulation

Two unknowns to reconstruct the interface: **angle** and **distance** Available information:

- Volume fraction of any portions of fluid μ in each cells
- Centroid of any portions of fluid x_c in each cells

Reconstruction method:

- VOF-PLIC: $|\omega^{\ell}| = |\omega^{\star}|$ for each cell
 - under-determined problem!

• MOF:
$$|\omega^{\ell}| = |\omega^{\star}|$$
 and $x_c(\omega^{\ell}) = x_c(\omega^{\star})$ for each cell \longrightarrow over-determined problem!

Minimization problem:

• Find
$$\omega^{\ell} = \operatorname*{argmin}_{\omega^{\ell}} |x_c(\omega^{\ell}) - x_c(\omega^{\star})|^2 \to \mathsf{Minimize\ centroid\ distance}$$

• Under constraint $|\omega^{\ell}| = |\omega^{\star}| \longrightarrow$ Preserve volume

Moment-of-fluid: formulation

Two unknowns to reconstruct the interface: **angle** and **distance** Available information:

- Volume fraction of any portions of fluid μ in each cells
- Centroid of any portions of fluid x_c in each cells

Reconstruction method:

- VOF-PLIC: |ω^ℓ| = |ω^{*}| for each cell → under-determined problem!
- MOF: $|\omega^{\ell}| = |\omega^{\star}|$ and $x_c(\omega^{\ell}) = x_c(\omega^{\star})$ for each cell \longrightarrow over-determined problem!

Minimization problem:

• Find
$$\omega^\ell = \operatorname*{argmin}_{\omega^\ell} |x_c(\omega^\ell) - x_c(\omega^\star)|^2 \quad o$$
 Minimize centroid distance

• Under constraint $|\omega^\ell| = |\omega^\star| extsf{ } o$ Preserve volume

Moment-of-fluid: formulation

Two unknowns to reconstruct the interface: **angle** and **distance** Available information:

- Volume fraction of any portions of fluid μ in each cells
- Centroid of any portions of fluid x_c in each cells

Reconstruction method:

- VOF-PLIC: $|\omega^{\ell}| = |\omega^{\star}|$ for each cell \rightarrow under-determined problem!
- MOF: $|\omega^{\ell}| = |\omega^{\star}|$ and $x_c(\omega^{\ell}) = x_c(\omega^{\star})$ for each cell \longrightarrow over-determined problem!

Minimization problem:

• Find
$$\omega^\ell = \operatorname*{argmin}_{\omega^\ell} |x_c(\omega^\ell) - x_c(\omega^\star)|^2 \quad o$$
 Minimize centroid distance

• Under constraint $|\omega^\ell| = |\omega^\star| \qquad \qquad \rightarrow$ Preserve volume

Example parameters:

- $\mu(\omega^{\star}) = 0.3$
- $\boldsymbol{x}_c(\omega^{\star}) = (-0.3, -0.3)$

Objective function: A possible local minima

Portion of fluid with curved interface and its centroid $x_c(\omega^{\star})$

Example parameters:

- $\mu(\omega^{\star}) = 0.3$
- $\boldsymbol{x}_c(\omega^{\star}) = (-0.3, -0.3)$

Objective function: A possible local minima

Locus of all possible centroids for piecewise linear reconstructions for $\mu = 0.3$

Example parameters:

- $\mu(\omega^{\star}) = 0.3$
- $\boldsymbol{x}_c(\omega^{\star}) = (-0.3, -0.3)$

Objective function: A possible local minima

Find the closest point $x_c(\omega^\ell)$ on the curve to the reference centroid \rightarrow minimization \rightarrow The minimization algorithm stops when the error on the angle is small enough

Example parameters:

- $\mu(\omega^{\star}) = 0.3$
- $\boldsymbol{x}_c(\omega^{\star}) = (-0.3, -0.3)$

 $\boldsymbol{x}_{c}(\omega^{\star})$

Objective function: A possible local minima

Compute the position of the interface with a flood algorithm (I used Breil et al. (2011))

Remark

One interface reconstruction per minimization iteration: highly time consuming

Antoine Lemoine

6/17

Analytic reconstruction: motivations & proposal

Objective: optimize the reconstruction on Cartesian grids

Locus of centroids for various volume fractions

Idea:

- On Cartesian grids, cells are rectangles
- Use symmetry to reduce the number of configurations
- Possible parametrization
- Analytic solution to minimization problem

Bonus:

- Upgrade a VOF-PLIC algorithm
- Easier to implement than original method
- Faster for equivalent result
- Compatible with any rectangular meshes (e.g. AMR)

Analytic reconstruction: possible configurations ($\mu \le 0.5$)

Find a parametrization of the parabola and the hyperbola

Analytic solution: parametrization of the hyperbola

Corner configuration \rightarrow shape: triangle \rightarrow centroid locus: hyperbola

Parameters

• Normal
$$\boldsymbol{n} = (n_x, n_y)$$

• Volume V

Parametrization

$$\begin{cases} g_x = \frac{1}{3}\sqrt{2V\frac{n_y}{n_x}}\\ g_y = \frac{1}{3}\sqrt{2V\frac{n_x}{n_y}} \end{cases} \Rightarrow g_y = \frac{9V}{2g_x} \end{cases}$$

Analytic solution: closest point to the hyperbola

Problem

- Let ${m p}=(p_x,p_y)$ any point of ${\mathbb R}^2$ (e.g. the reference centroid)
- $\bullet\,$ Find the closest point of p to the hyperbola H

$$\bullet \ \, {\rm For \ all} \ \, x\in \Big[\frac{2V}{3c_x},\frac{c_x}{3}\Big] \qquad H(x)=\frac{9V}{2x}$$

Solution

- ${\ensuremath{\bullet}}$ The closest point of p to the hyperbola is its orthogonal projection
- Tangent to the curve for the coordinate g_x : $(1, H'(g_x))$
- Orthogonal projection: $(g_x p_x, H(g_x) p_y) \cdot (1, H'(g_x)) = 0$

The x coordinate of $x_c(\omega^\ell) = (x, H(x))$ is one of the solution of a quartic equation:

$$x^{4} - p_{x}x^{3} + \frac{2}{9}Vp_{y}x - \left(\frac{2V}{9}\right)^{2} = 0$$

Analytic solution: parabola

For all
$$x \in \left[\frac{c_x}{3}, \frac{2c_x}{3}\right]$$

$$P(x) = \frac{V}{2c_x} + \frac{6V}{c_x} \left(\frac{1}{2} - \frac{x}{c_x}\right)^2$$

Let $\boldsymbol{p} = (p_x, p_y)$ any point of \mathbb{R}^2

The closest point of p to the parabola P is its orthogonal projection The x coordinate of $x_c(\omega^{\ell}) = (x, P(x))$ is one of the solution of a **cubic** equation:

$$x - p_x - \frac{12V}{c_x^2} \left(\frac{1}{2} - \frac{x}{c_x}\right) \left(\frac{V}{2c_x} - p_y\right) - \frac{72V^2}{c_x^3} \left(\frac{1}{2} - \frac{x}{c_x}\right)^3 = 0$$

Algorithm

Analytic reconstruction: algorithm

Cubic and **quartic** equations \Rightarrow possible analytic solution

outside of definition domain

- Multiple solutions inside one configuration → Maybe outside their definition domain
- Solutions found in many configurations
- ۰ Limit the search of solution in one quadrant

Analytic solution: algorithm

If μ > 0.5 solve the dual problem
Locate the quadrant where x_c(ω^{*}) is

x_c(ω^{*}) ∈ Q₁ try {1,2,4}
x_c(ω^{*}) ∈ Q₂ try {2,3,6}
x_c(ω^{*}) ∈ Q₃ try {6,8,9}
x_c(ω^{*}) ∈ Q₄ try {4,7,8}

Solve 2 cubic and 1 quartic

Strobach, Fast quartic solver (2010)
Strobach, Solving cubics by polynomial fitting (2011)

Eliminate wrong solutions
Find the closest solution

6 Compute *n* and *d* from the solution

Results

About 30% to 300% faster than minimization $2^{\rm nd}$ order verified in time and space

Minimization vs Analytic: static reconstruction

Static reconstruction (2 materials)

Mesh cells number: 2048^2

The minimization error is relative to the angle

Time ratio minimization / analytic:

	Min. 10^{-15}	Min. 10^{-11}	Min. 10^{-6}
Ana.	2.59	2.10	1.44

44 % to 159 % faster than minimization for static reconstruction

Minimization vs Analytic: dynamic reconstruction

Advection of 5 materials in a sheared flow

For mixed cells:

- \rightarrow First material uses analytic reconstruction
- \rightarrow Use minimization for remaining materials

Mesh: 128^2

Time ratio minimization / analytic :

	Min. 10 ⁻¹⁵	Min. 10^{-11}	Min. 10^{-6}
Ana. & Min. 10^{-15}	2.27	1.84	1.33
Ana. & Min. 10^{-11}	2.43	1.96	1.42
Ana. & Min. 10^{-6}	2.67	2.16	1.56

Time ratio increases when mesh size increases

Antoine Lemoine

ECCOMAS 2016 - Moment-of-Fluid on Cartesian grids

Conclusion & perspectives

Conclusion

- Faster than minimization
- Can be applied to any rectangular meshes (not only Cartesian grids)

Perspectives

- Extension to 3D
 - \longrightarrow No analytic solution (yet), but a parametrization
- Coupling with other methods: level-set for surface tensions computation

Thank you

Appendix

Backward advection: Lagrangian remap

Backward advection: Compute the pre-image Ω^{n-1} of Ω^n with a Runge-Kutta 2 method.

We can show that the centroids almost follow an advection equation:

$$rac{d}{dt}oldsymbol{x}_c(\omega) = oldsymbol{v}(oldsymbol{x}_c(\omega)) + \mathcal{O}(h^2)$$

 \rightarrow Forward advection of the centroids (RK2)

Remark

Requires a polygon/polygon intersection algorithm

Centroid advection

Fluid domain $\omega(t)$. Eulerian velocity u(x, t). div u = 0.

$$\begin{split} \frac{d}{dt} \int_{\omega(t)} \boldsymbol{x} d\boldsymbol{x} &= \int_{\omega(t)} \left(\frac{\partial}{\partial t} \operatorname{Id}(\boldsymbol{x}) + \boldsymbol{u}(\boldsymbol{x}, t) \cdot \nabla \operatorname{Id}(\boldsymbol{x}) + \operatorname{Id}(\boldsymbol{x}) \operatorname{div} \boldsymbol{u}(\boldsymbol{x}, t) \right) d\boldsymbol{x} \\ &= \int_{\omega(t)} \boldsymbol{u}(\boldsymbol{x}, t) d\boldsymbol{x} \\ &= \int_{\omega(t)} \left(\boldsymbol{u}(\boldsymbol{x}_c, t) + \left[\nabla \boldsymbol{u}(\boldsymbol{x}_c, t) \right] (\boldsymbol{x} - \boldsymbol{x}_c) + \mathcal{O}(|\boldsymbol{x} - \boldsymbol{x}_c|^2) \right) d\boldsymbol{x} \\ &= |\omega(t)| \boldsymbol{u}(\boldsymbol{x}_c, t) + \nabla \boldsymbol{u}(\boldsymbol{x}_c, t) \underbrace{\int_{\omega(t)} (\boldsymbol{x} - \boldsymbol{x}_c) d\boldsymbol{x} + \mathcal{O}(h^2)}_{=\boldsymbol{0}} \end{split}$$

Thus

$$\frac{d}{dt}\boldsymbol{x}_c = \boldsymbol{u}(\boldsymbol{x}_c) + \mathcal{O}(h^2)$$

Flood algorithm on convex cells

 $\rightarrow \text{Convexity: no need to sort the } \xi_n \\ \alpha = \frac{V - V_{\text{tot}}}{V_{\text{trapezoid}}} \beta = \sqrt{\left(\frac{|\Gamma|}{|\Gamma_{\text{next}}| + |\Gamma|}\right)^2 + \alpha \frac{|\Gamma_{\text{next}}| - |\Gamma|}{|\Gamma_{\text{next}}| + |\Gamma|}} + \frac{|\Gamma|}{|\Gamma_{\text{next}}| + |\Gamma|} \\ \xi^{\star} = \xi + (\xi_{\text{next}} - \xi) \frac{\alpha}{\beta} \\ \text{Reference: Breil, J., Gelera, S., & Maire, P. H. (2011).}$

Antoine Lemoine

Multimaterial reconstruction: Remark on B-tree dissection

Without B-tree dissection

With B-tree dissection

Advection: 5 fluids on a sheared flow

Limitations of MOF: Filaments

0	0.2×	0
0	0.2×	0
0	0.2×	0

Initial configuration

MOF representation after advection

MOF reconstruction

• The filament does not move if the time step is too small!

Limitations of MOF: Possible solution

0	0.2×	0
0	0.2×	0
0	0.2×	0

Initial configuration

Virtual fluid A'

- Detection of filament at the advection step
- Introduction of a virtual fluid A'
- 3-fluid reconstruction

Reference: Jemison, M., Sussman, M., Shashkov, M. (2015)

Examples of static reconstructions

Volume fraction and centroids data from: Dyadechko, V., Shashkov, M. (2007)

Dam break - Air / Water

Mesh 400×200 , domain dimensions (0.993, 0.5)

Numerical results: Error computation

Local errors • Distance error

$$\Delta \Gamma = \max_{\boldsymbol{x}^{\star} \in \boldsymbol{\Gamma}^{\star}} \min_{\boldsymbol{x} \in \boldsymbol{\Gamma}^{\ell}} |\boldsymbol{x} - \boldsymbol{x}^{\star}|$$

• Area of symmetric difference

$$\Delta \omega = |\omega^{\ell} \triangle \omega^{\star}$$

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

Global error

• Average deviation (equivalent to $\Delta\Gamma$)

$$\Delta \Gamma_{avg} = \frac{1}{|\partial \omega^{\star}|} \sum_{i=1}^{N} |\omega_{i}^{\ell} \triangle \omega_{i}^{\star}|$$

Numerical results: Sheared flow spatial convergence

Parameters

- Iterations: 1000
- Time step: 10^{-4} s
- Mesh: $N \times N$, $N \in \{16, 32, \cdots, 4096\}$

Vector field

$$\boldsymbol{u}(x,y,t) = \begin{bmatrix} -2\sin^2(\pi x)\sin(\pi y)\cos(\pi y)\\ 2\sin^2(\pi y)\sin(\pi x)\cos(\pi x) \end{bmatrix} \cos\left(\pi\frac{t}{T}\right)$$

Spatial convergence

N	$\Delta\Gamma_{\rm avg}$	order
512	$1.34\cdot 10^{-6}$	2.03
1024	$3.09 \cdot 10^{-7}$	2.11
2048	$7.19\cdot 10^{-8}$	2.10
4096	$1.60 \cdot 10^{-8}$	2.17

Convergence with RK2

Time step	$\Delta\Gamma_{\rm avg}$	order
$5 \cdot 10^{-4}$	$2.48 \cdot 10^{-7}$	_
$2.5 \cdot 10^{-4}$	$2.86 \cdot 10^{-7}$	-0.21
$1.25 \cdot 10^{-4}$	$3.11 \cdot 10^{-7}$	-0.12

 \rightarrow Does not converge! (even with a thinner grid)

Convergence with Euler

Time step	$\Delta\Gamma_{\rm avg}$	order
$5 \cdot 10^{-4}$	$2.93\cdot 10^{-4}$	_
$2.5 \cdot 10^{-4}$	$1.46 \cdot 10^{-4}$	1.00
$1.25 \cdot 10^{-4}$	$7.32 \cdot 10^{-5}$	1.00

 $ightarrow 1^{st}$ order verified with Euler

Parameters

- $\bullet~$ Total time: $0.5~{\rm s}$
- Mesh: 1024 × 1024
- \rightarrow Error RK2 < Error Euler

Conclusion

Spatial error dominates

 \rightarrow Try a case without spatial error

Numerical results: Accelerated front flow time convergence

Convergence with RK2

Time step	$\Delta\Gamma_{\rm avg}$	order
$1 \cdot 10^{-2}$	$4.93\cdot 10^{-5}$	_
$5 \cdot 10^{-3}$	$1.23 \cdot 10^{-5}$	2.00
$2.5 \cdot 10^{-3}$	$3.08\cdot 10^{-6}$	2.00
$1.25 \cdot 10^{-3}$	$7.71 \cdot 10^{-7}$	2.00
$6.25\cdot10^{-4}$	$1.93 \cdot 10^{-7}$	2.00

Vector field

$$u_x(x, y, t) = 0.3\pi \sin(\pi t)$$

 $\frac{\text{Conclusion}}{2^{nd} \text{ order with RK2}}$