

Moment-of-Fluid Analytic Reconstruction on 2D Cartesian grids

Antoine LEMOINE¹ Stéphane GLOCKNER² Jérôme BREIL³

 1 Univ. Bordeaux, I2M, UMR 5295, F-33400 Talence, France.

²Bordeaux INP, I2M, UMR 5295, F-33400 Talence, France.

³CEA CESTA, 15 Avenue des Sablières, CS 60001, 33116 Le Barp Cedex, France.

June $6th$, 2016

Introduction: Notus

Overview:

- Open-source CFD code <http://notus-cfd.org>
- Dedicated to modeling and simulation of incompressible fluid flows
- Designed to run on massively parallel supercomputers
- Finite volumes, 2D & 3D Cartesian staggered grid

Multiphysic applications:

- **•** Incompressible Navier-Stokes equations
- Multiphase flows \rightarrow breaking waves
- Energy equation \rightarrow energy storage, phase change
- Fluid structure interactions (elasticity)

Many applications require interface **representation** and **reconstruction**

Introduction: objective

Objective: sharp interface reconstruction \rightarrow Piecewise LInear Construction (PLIC)

VOF-PLIC vs MOF:

Los Alamos National Laboratoty

Moment-of-Fluid (MOF) :

- Uses volume fraction + centroids
- Stencil reduced to only 1 cell
- 2nd order of convergence
- Multimaterial reconstruction

Dyadechko & Shashkov (2006)

Example: compass

Moment-of-fluid: Moment?

0th order momentum (volume)

$$
M_0(\omega)=\int_\omega d\bm{x}=|\omega|
$$

Volume fraction (relative to a cell Ω)

$$
\mu(\omega) = \frac{M_0(\omega)}{M_0(\Omega)}
$$

 $M_0(\Omega)=4$ $M_0(\omega) = 0.9$ • $\mu(\omega) = 0.225$

$$
\boldsymbol{x}_c(\omega)=\frac{\boldsymbol{M_1}(\omega)}{M_0(\omega)}
$$

1.2
\n
$$
\begin{array}{c|c}\n & \times \\
\hline\n & x_c(\omega) \\
(0,0) & 1.5\n\end{array}
$$

• $M_0(\omega) = 0.9$ • $M_1(\omega) = (0.45, 0.36)$ $\bullet x_c(\omega) = (0.5, 0.4)$

Moment-of-fluid: Moment?

0th order momentum (volume)

$$
M_0(\omega)=\int_\omega d\bm{x}=|\omega|
$$

Volume fraction (relative to a cell Ω)

$$
\mu(\omega) = \frac{M_0(\omega)}{M_0(\Omega)}
$$

1.5

\n- $$
M_0(\Omega) = 4
$$
\n- $M_0(\omega) = 0.9$
\n- $\mu(\omega) = 0.225$
\n

MOF uses volume fraction **and centroids** to reconstruct interfaces

(0,0)

Moment-of-fluid: formulation

Two unknowns to reconstruct the interface: **angle** and **distance** Available information:

- **Volume fraction** of any portions of fluid *µ* in each cells
- **Centroid** of any portions of fluid *x^c* in each cells

- -
-

$$
\bullet\ \mathsf{Find}\ \omega^\ell = \operatornamewithlimits{argmin}_{\omega^\ell} \ |x_c(\omega^\ell) - x_c(\omega^\star)|^2 \quad \rightarrow \mathsf{Minimize}
$$

-
-

Moment-of-fluid: formulation

Two unknowns to reconstruct the interface: **angle** and **distance** Available information:

- **Volume fraction** of any portions of fluid *µ* in each cells
- **Centroid** of any portions of fluid *x^c* in each cells

Reconstruction method:

- $\mathsf{VOF\text{-}PLIC}\colon |\omega^\ell| = |\omega^\star| \text{ for each cell }$ → under-determined problem!
- $\mathsf{MOF}\colon |\omega^{\ell}| = |\omega^{\star}|$ and $\bm{x}_c(\omega^{\ell}) = \bm{x}_c(\omega^{\star})$ for each cell → over-determined problem!

Moment-of-fluid: formulation

Two unknowns to reconstruct the interface: **angle** and **distance** Available information:

- **Volume fraction** of any portions of fluid *µ* in each cells
- **Centroid** of any portions of fluid *x^c* in each cells

Reconstruction method:

- $\mathsf{VOF\text{-}PLIC}\colon |\omega^\ell| = |\omega^\star| \text{ for each cell }$ → under-determined problem!
- $\mathsf{MOF}\colon |\omega^{\ell}| = |\omega^{\star}|$ and $\bm{x}_c(\omega^{\ell}) = \bm{x}_c(\omega^{\star})$ for each cell → over-determined problem!

Minimization problem:

• Find
$$
\omega^{\ell} = \operatorname*{argmin}_{\omega^{\ell}} |x_c(\omega^{\ell}) - x_c(\omega^{\star})|^2 \longrightarrow \text{Minimize centroid distance}
$$

Under constraint $|\omega^{\ell}| = |\omega^{\star}|$ \rightarrow Preserve volume

Reference: Dyadechko, V., Shashkov, M. (2007)

Example parameters:

- $\mu(\omega^*) = 0.3$
- $x_c(\omega^*) = (-0.3, -0.3)$

Objective function: 4**!** possible local minima

Portion of fluid with curved interface and its centroid $x_c(\omega^*)$

Example parameters:

- $\mu(\omega^*) = 0.3$
- $x_c(\omega^*) = (-0.3, -0.3)$

Objective function: 4**!** possible local minima

Locus of all possible centroids for piecewise linear reconstructions for $\mu = 0.3$

Example parameters:

- $\mu(\omega^*) = 0.3$
- $x_c(\omega^*) = (-0.3, -0.3)$

Objective function: 4**!** possible local minima

Find the closest point $x_c(\omega^\ell)$ on the curve to the reference centroid \rightarrow **minimization** → The minimization algorithm stops when the **error on the angle** is small enough

Example parameters:

- $\mu(\omega^*) = 0.3$
- $x_c(\omega^*) = (-0.3, -0.3)$

Objective function: 4**!** possible local minima

Compute the position of the interface with a **flood algorithm** (I used Breil et al. (2011))

Remark

One interface reconstruction per minimization iteration: highly time consuming

Analytic reconstruction: motivations & proposal

Objective: optimize the reconstruction on Cartesian grids

Locus of centroids for various volume fractions

Idea:

- On Cartesian grids, cells are **rectangles**
- Use **symmetry** to reduce the number of configurations
- Possible **parametrization**
- **Analytic solution** to minimization problem

Bonus:

- Upgrade a VOF-PLIC algorithm
- Easier to implement than original method
- **•** Faster for equivalent result
- Compatible with any rectangular meshes (e.g. AMR)

Analytic reconstruction: possible configurations ($\mu \leq 0.5$)

Find a **parametrization** of the parabola and the hyperbola

Analytic solution: parametrization of the hyperbola

Corner configuration \rightarrow shape: triangle \rightarrow centroid locus: hyperbola

Parameters

• Normal
$$
\mathbf{n} = (n_x, n_y)
$$

Volume *V*

Parametrization

$$
\begin{cases}\ng_x = \frac{1}{3} \sqrt{2V \frac{n_y}{n_x}} \\
g_y = \frac{1}{3} \sqrt{2V \frac{n_x}{n_y}}\n\end{cases}\n\Rightarrow g_y = \frac{9V}{2g_x}
$$

Analytic solution: closest point to the hyperbola

Problem

- Let $\boldsymbol{p}=(p_x,p_y)$ any point of \mathbb{R}^2 (e.g. the reference centroid)
- Find the closest point of *p* to the hyperbola *H*

$$
\bullet\text{ For all }x\in\left[\frac{2V}{3c_x},\frac{c_x}{3}\right]\qquad H(x)=\frac{9V}{2x}
$$

Solution

- The closest point of *p* to the hyperbola is its **orthogonal projection**
- Tangent to the curve for the coordinate g_x : $(1, H'(g_x))$
- Orthogonal projection: $(g_x p_x, H(g_x) p_y) \cdot (1, H'(g_x)) = 0$

The x coordinate of $\boldsymbol{x}_c(\omega^\ell) = (x,H(x))$ is one of the solution of a **quartic** equation:

$$
x^{4} - p_{x}x^{3} + \frac{2}{9}Vp_{y}x - \left(\frac{2V}{9}\right)^{2} = 0
$$

Analytic solution: parabola

For all
$$
x \in \left[\frac{c_x}{3}, \frac{2c_x}{3}\right]
$$

$$
P(x) = \frac{V}{2c_x} + \frac{6V}{c_x} \left(\frac{1}{2} - \frac{x}{c_x}\right)^2
$$

Let $\boldsymbol{p}=(p_x,p_y)$ any point of \mathbb{R}^2

The closest point of p to the parabola P is its orthogonal projection The x coordinate of $\boldsymbol{x}_c(\omega^\ell) = (x,P(x))$ is one of the solution of a **cubic** equation:

$$
x - p_x - \frac{12V}{c_x^2} \left(\frac{1}{2} - \frac{x}{c_x}\right) \left(\frac{V}{2c_x} - p_y\right) - \frac{72V^2}{c_x^3} \left(\frac{1}{2} - \frac{x}{c_x}\right)^3 = 0
$$

Analytic reconstruction: algorithm

Cubic and **quartic** equations ⇒ possible analytic solution

×outside of definition domain

-) Multiple solutions inside one configuration \rightarrow Maybe outside their definition domain
- Solutions found in many configurations
- \bullet Limit the search of solution in one quadrant

Analytic solution: algorithm

1 If $\mu > 0.5$ solve the dual problem $\textbf{2}$ Locate the quadrant where $\bm{x}_c(\omega^\star)$ is $x_c(\omega^{\star}) \in Q_1$ try $\{1, 2, 4\}$ $\boldsymbol{x}_c(\omega^\star) \in Q_2$ try $\{2,3,6\}$ $x_c(\omega^\star) \in Q_3$ try $\{6,8,9\}$ $x_c(\omega^\star) \in Q_4$ try $\{4,7,8\}$ Solve 2 cubic and 1 quartic \rightarrow Strobach, Fast quartic solver (2010) \rightarrow Strobach, Solving cubics by polynomial fitting (2011) **4** Eliminate wrong solutions **6** Find the closest solution ⁶ Compute *n* and *d* from the solution

Results

About 30% to 300% faster than minimization 2nd order verified in time and space

Minimization vs Analytic: static reconstruction

Static reconstruction (2 materials)

Mesh cells number: 2048²

The minimization error is relative to the **angle**

Time ratio minimization / analytic:

44 % to 159 % faster than minimization for static reconstruction

Minimization vs Analytic: dynamic reconstruction

Advection of 5 materials in a sheared flow

For mixed cells:

- → First material uses **analytic reconstruction**
- \rightarrow Use **minimization** for remaining materials

Mesh: 128^2

Time ratio minimization / analytic :

Time ratio increases when mesh size increases

Conclusion & perspectives

Conclusion

- **Easter than minimization**
- Can be applied to any rectangular meshes (not only Cartesian grids)

Perspectives

- **e** Extension to 3D
	- \rightarrow No analytic solution (yet), but a parametrization
- Coupling with other methods: level-set for surface tensions computation

Thank you

Appendix

Backward advection: Lagrangian remap

Backward advection: Compute the pre-image Ω^{n-1} of Ω^n with a Runge-Kutta 2 method.

We can show that the centroids almost follow an advection equation:

$$
\frac{d}{dt}\boldsymbol{x}_c(\omega)=\boldsymbol{v}(\boldsymbol{x}_c(\omega))+\mathcal{O}(h^2)
$$

 \rightarrow Forward advection of the centroids (RK2)

Remark

Requires a polygon/polygon intersection algorithm

Fluid domain $\omega(t)$. Eulerian velocity $u(x, t)$. div $u = 0$.

$$
\frac{d}{dt} \int_{\omega(t)} x dx = \int_{\omega(t)} \left(\frac{\partial}{\partial t} \mathrm{Id}(x) + u(x, t) \cdot \nabla \mathrm{Id}(x) + \mathrm{Id}(x) \mathrm{div} \, u(x, t) \right) dx
$$
\n
$$
= \int_{\omega(t)} u(x, t) dx
$$
\n
$$
= \int_{\omega(t)} \left(u(x_c, t) + \left[\nabla u(x_c, t) \right] (x - x_c) + \mathcal{O}(|x - x_c|^2) \right) dx
$$
\n
$$
= |\omega(t)| u(x_c, t) + \nabla u(x_c, t) \underbrace{\int_{\omega(t)} (x - x_c) dx}_{=0} + \mathcal{O}(h^2)
$$

Thus

$$
\frac{d}{dt}\boldsymbol{x}_c = \boldsymbol{u}(\boldsymbol{x}_c) + \mathcal{O}(h^2)
$$

Flood algorithm on convex cells

 \rightarrow Convexity: no need to sort the ξ_n $\alpha = \frac{V - V_{\text{tot}}}{V}$ $\frac{V - V_{\rm tot}}{V_{\rm trapezoid}}$ $\beta = \sqrt{\left(\frac{|\Gamma|}{|\Gamma_{\rm next}|}\right)^2}$ $|\Gamma_{\text{next}}| + |\Gamma|$ $\left| \int_{0}^{2} + \alpha \frac{\left| \Gamma_{\text{next}} \right| - \left| \Gamma \right|}{\left| \Gamma_{\text{next}} \right| + \left| \Gamma \right|}$ $\frac{\left|\Gamma_{\text{next}}\right|-\left|\Gamma\right|}{\left|\Gamma_{\text{next}}\right|+\left|\Gamma\right|}+\frac{\left|\Gamma\right|}{\left|\Gamma_{\text{next}}\right|.}$ $|\Gamma_{\text{next}}| + |\Gamma|$ *ξ*^{*} = *ξ* + (*ξ*_{next} − *ξ*) $\frac{\dot{\alpha}}{a}$ *β* Reference: Breil, J., Gelera, S., & Maire, P. H. (2011).

Multimaterial reconstruction: Remark on B-tree dissection

Without B-tree dissection With B-tree dissection

Advection: 5 fluids on a sheared flow

Limitations of MOF: Filaments

Initial configuration

MOF representation after advection

MOF reconstruction

The filament does not move if the time step is too small!

Limitations of MOF: Possible solution

Initial configuration

MOF reconstruction

Virtual fluid A'

- Detection of filament at the advection step
- Introduction of a virtual fluid A'
- 3-fluid reconstruction

Reference: Jemison, M., Sussman, M., Shashkov, M. (2015)

Examples of static reconstructions

Volume fraction and centroids data from: Dyadechko, V., Shashkov, M. (2007)

Dam break – Air / Water

Mesh 400×200 , domain dimensions $(0.993, 0.5)$

Numerical results: Error computation

Local errors

• Distance error

$$
\Delta\Gamma = \max_{\bm{x}^\star \in \Gamma^\star} \min_{\bm{x} \in \Gamma^\ell} |\bm{x} - \bm{x}^\star|
$$

Area of symmetric difference

$$
\Delta \omega = |\omega^\ell \triangle \omega^\star
$$

$$
A \triangle B = (A \setminus B) \cup (B \setminus A)
$$

Global error

• Average deviation (equivalent to $\Delta\Gamma$)

$$
\Delta \Gamma_{avg} = \frac{1}{|\partial \omega^\star|}\sum_{i=1}^N |\omega_i^\ell \Delta \omega_i^\star|
$$

Reference: Dyadechko, V., Shashkov, M. (2007)

Numerical results: Sheared flow spatial convergence

$\frac{1}{2}$ $\frac{1}{2}$

Parameters

- \bullet Iterations: 1000
- Time step: $10^{-4}\,$ s
- Mesh: $N \times N$, $N \in \{16, 32, \cdots, 4096\}$

Vector field

$$
\boldsymbol{u}(x,y,t) = \begin{bmatrix} -2\sin^2(\pi x)\sin(\pi y)\cos(\pi y) \\ 2\sin^2(\pi y)\sin(\pi x)\cos(\pi x) \end{bmatrix} \cos\left(\pi \frac{t}{T}\right)
$$

Spatial convergence

Convergence with RK2

 \rightarrow Does not converge! (even with a thinner grid)

Convergence with Euler

 \rightarrow 1st order verified with Euler

Parameters

- Total time: 0*.*5 s
- \bullet Mesh: 1024×1024
- Time step: $\{5\cdot 10^{-4}, \cdots, 1.25\cdot 10^{-4}\}$ s
- \rightarrow Error RK2 $<$ Error Euler

Conclusion

Spatial error dominates

 \rightarrow Try a case without spatial error

Numerical results: Accelerated front flow time convergence

Convergence with RK2

Vector field

$$
u_x(x, y, t) = 0.3\pi \sin(\pi t)
$$

Conclusion 2nd order with RK2