

Méthode des frontières immergées pour les maillages cartésiens anisotropes dans le code Notus

Joris Picot¹
Stéphane Glockner² Thomas Milcent³ Delphine Lacanette²

Présentation TASC – CORIA 24 février 2016

¹Université de Bordeaux, I2M, UMR 5295

²Bordeaux INP, I2M, UMR 5295

³Arts et Métiers Paritech, UMR 5295

CPU

Le monde numérique au servic de la certification et de la sécurisation des systèmes

Qui suis-je?

Parcours

2006–2009 École d'ingénieur MATMECA

Spécialité : fluides et énergétique

2009–2014 Thèse et post-doc au **CERFACS**

Direction : Roberto Paoli et Daniel Cariolle

Sujet : effets de la turbulence atmosphérique sur les

traînées de condensations.

2014-2016 Post-doc à **I2M**

Sujet : méthode des frontières immergées pour les maillages cartésiens anisotropes dans le code Notus. Application à la simulation des écoulements dans la grotte de Lascaux

Planche : 2/36

Notus

Nouveau code CFD de l'I2M, depuis 2015

Développeurs :

Stéphane Glockner, Antoine Lemoine, Mathieu Coquerelle, Joris Picot

► Code en phase de développement

Écoulements d'air dans les grottes de Lascaux

Géométries des grottes complexes

Utilisation d'une méthode de frontières immergées

Calculs très intensifs

$$\Delta x = 30\,\mathrm{cm}$$
 \to $5 \times 10^6~\mathrm{points}$ \to 50 cœurs $\Delta x = 5\,\mathrm{cm}$ \to $1000 \times 10^6~\mathrm{points}$ \to 10 000 cœurs en comptant $100\,000~\mathrm{points}$ par cœur

► Utilisation d'algorithmes massivement parallèles

Planche : 3/36

Plan

Introduction

- 1. Notus
- 2. Frontières immergées pour l'équation de Laplace
- 3. Frontières immergées pour les équations de Navier-Stokes

Conclusions

Partie 1

Notus

- 1.1 Présentation de Notus
- 1.2 Outils de validation
- 1.3 Bilan du projet

Caractéristiques principales

- Code dédié aux écoulements incompressibles, multiphasiques
- Volumes finis, 2D et 3D, maillages cartésiens
- Pensé massivement parallèle

Méthodes numériques

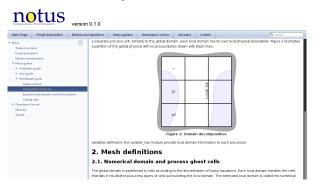
- Navier-Stokes: fractional step method, Goda et Timmermans
- Interfaces : Level-set, Volume-of-Fluid, Moment-of-Fluid
- Géométries complexes : frontières immergées

1.1 Présentation de Notus

Planche : 6/36

Objectifs visés

- Facile d'utilisation et facilement adaptable
 - ► Code open-source et documenté avec Doxygen http://notus-cfd.org/doc/index.html



Objectifs visées

- Repose sur des technologies existantes
 - ► Systèmes linéaires : bibliothèques HYPRE et MUMPS
 - ► Entrées-sorties parallèles : ADIOS
- Développements coordonnés avec git
 - Permet de développer à 4 en parallèle
 - Déploiement sur différentes machines : curie (TTGC), occigen (CINES), turing (IDRIS), avakas (MCIA)
- Validation solide et automatisée

Validation de la convergence en espace

- La démarche est **automatisée** le plus possible
- Les grandeurs à analyser sont précisées dans le cas test
- Possibilité d'utiliser la méthode de Richardson

Validation de la non régression

\$./notus_validation.sh				
Test case name	Validated	Converged	Iterations	Error
ibd_laplacian_dirichlet	FAIL			
poiseuille	OK	OK	356	1.387778e-17
poiseuille_viscosity	OK	OK	2989	0.000000e+00
level_set_sheared_2D	NO	N/A	200	3.820045e-08
mof_minimization_sheared	a ok	N/A	1000	2.220446e-16
<pre>vof_plic_periodic</pre>	OK	N/A	141	3.330669e-16
ball_equilibrium	NO	OK	1128	1.496367e-07
driven_cavity	OK	OK	3449	5.162537e-15
dam_break_mof	OK	N/A	50	2.531308e-14
dam_break_vof_plic	OK	N/A	50	3.355649e-14

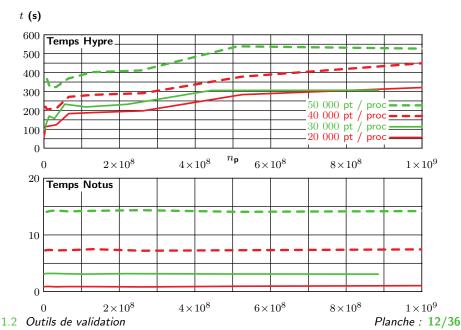
- Compare un résultat scalaire attendu, pour chaque cas test
- La démarche est **automatisée** le plus possible
- Différents jeux de validation selon le besoin (rapide, complet, etc.)

Validation des performances parallèles

\$./scalability_script_turing.sh							
Np	Total	<pre>Hypre (velocity)</pre>	Hypre (pressure)	Notus			
128	0.26000e+01	0.86140e+00	0.94443e+00	0.79417e+00			
256	0.29297e+01	0.10660e+01	0.10462e+01	0.81751e+00			
512	0.30754e+01	0.11369e+01	0.11025e+01	0.83590e+00			
1024	0.38859e+01	0.16025e+01	0.13959e+01	0.88751e+00			
2048	0.43207e+01	0.18807e+01	0.15359e+01	0.90404e+00			
4096	0.47281e+01	0.22302e+01	0.16268e+01	0.87108e+00			
8192	0.65902e+01	0.32613e+01	0.23815e+01	0.94744e+00			

- Relève le temps de calcul pour différentes parties du code
- La démarche est **automatisée** le plus possible

Validation des performances parallèles



Liste des écoulements physiques simulés

- Convection naturelle
- Cavité entraînée
- Bulle ascendante

- Rupture de barrage
- Vagues solitaires

Avancement du projet

Sortie interne: janvier 2016

Écoulements :

Jet turbulent
 Interaction avec solides élastiques

Sortie publique : dernier trimestre 2016

http://www.notus-cfd.org/

Partie 2

Frontières immergées pour l'équation de Laplace

- 2.1 Motivation
- 2.2 Ghost-Cell Finites-Differences
- 2.3 Ghost point shifting
- 2.4 Tests Équation de Laplace

Planche : 14/36

Motivation des frontières immergées (FI)

S'affranchir de la complexité des maillages curvilignes et non-structurés.

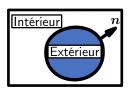
Possibilités offertes :

- Solution convergeante au 2^e ordre,
- Frontières mobiles,
- Lois de paroi.

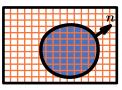
Méthodes existantes

Beaucoup d'approches existent :

- Forçage continu (Peskin, 1972)
- Forçage discret
 - Ghost-Cell Finite-Differences
 - Cut-Cell Finite-Volumes



Domaines.



Frontière immergée.

2.1 Motivation Planche: 15/36

Dans Notus

Méthode de type Ghost-Cell Finite-Differences.

Contraintes liées au parallélisme

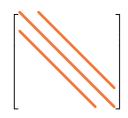
- Stockage des grands systèmes linéaires
- Performance des solveurs
- Notus utilise des matrices à bandes

Compacité

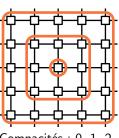
Le stencil de discrétisation est **compact d'ordre** c **si** :

$$|\mathbf{x}_j - \mathbf{x}_i| > \Rightarrow A_{ij} = 0$$

où A est la matrice.



Matrice à bandes A



Compacités : 0, 1, 2.

2.1 Motivation Planche: 16/36

Méthode Ghost-Cell Finites-Differences

Discrétisation de l'équation de Laplace :

$$\frac{u_{i-1}-2u_i+u_{i+1}}{\Delta x^2}=f_i$$

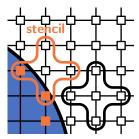
au points x_i du domaine intérieur uniquement.

Près de la frontière, $u_{i\pm 1}$ peut ne pas être défini, \triangleright c'est un nœud fantôme.

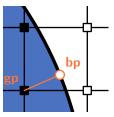
Principe général

La CL au boundary point (bp) va définir une valeur au ghost point (gp).

Le point **bp** est obtenu à l'aide d'une levelset.



Stencil du sys. linéaire.



Application de la CL.

Discrétisation de la CL

Interpolation et différences finies :

$$\sum_{j} \beta_{j} u_{j} = u_{\mathbf{bp}}$$
 (Dirichlet)

$$\sum_{j} \gamma_{j} u_{j} = \partial_{n} u_{\mathbf{bp}}$$
 (Neumann)

Équations $\mathbf{couplées} \to \mathbf{modification}$ du système linéaire, résolution $\mathbf{implicite}$

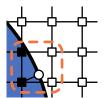
$$(A+E)=f+b$$

Interpolation

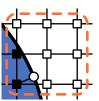
Différentes méthodes d'interpolation possibles

- Méthode linéaire (Mittal, 2008)
- Méthode directe (Cocco & Russo, 2012)
- Méthode des moindres carrés (Mousel, 2012)

Méthode linéaire.



Méthode directe.



Ordre plus élevé.

Planche : 18/36

Cas des maillages anisotropes

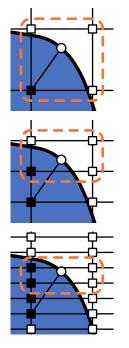
Nombre d'anisotropie $a=rac{\Delta_{\mathsf{max}}}{\Delta_{\mathsf{min}}}$ On a :

$$c = \lceil 2a \rceil$$
 (Méthode linéraire)
 $c = \lceil a \rceil$ (Méthode directe)

L'anisotropie augmente l'étendue du stencil

Les matrices à bandes sont rapidement limités Typiquement : $c \le 1$ ou $c \le 2$

Nécessité de modifier la méthode



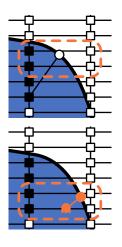
Ghost point shifting

Le point **gp** est **décalé** vers le nœud intérieur le plus proche.

- Le nouveau point **bp** est décalé aussi.
- L'équation devient plus compacte.

On obtient :

$$c=2$$
 (Méthode linéraire)
 $c=1$ (Méthode directe)



Tests — Équation de Laplace

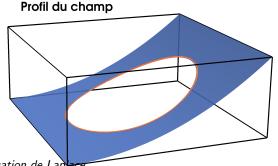
Domaine carré Ω avec un obstable circulaire Γ centré :

$$\Omega = [-1, +1] \times [-1, +1]$$
 $\Gamma = \mathsf{Disque}\left(\mathit{O}, \mathit{r} = 0.65\right)$

Solution paraboloïde avec conditions limites adaptées :

$$u(x, y) = (1 + x)^{2}$$
 $\Delta u(x, y) = 2$

$$u_{\Gamma} = (1 + x_{\Gamma})^2$$
 (Dirichlet) $\partial_{\mathbf{n}} u_{\Gamma} = 2(1 + x_{\Gamma})$ (Neumann)



2.4 Tests — Équation de Laplace

Planche: 21/36

Tests — Équation de Laplace

Maillages

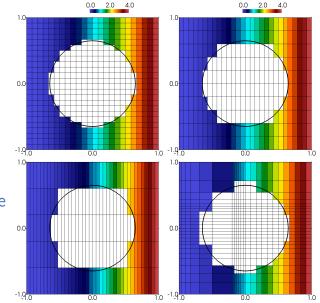
Solutions convergées pour a = 1 (isotrope)

- a = 2.8
- *a* = 7.6
- irrégulier

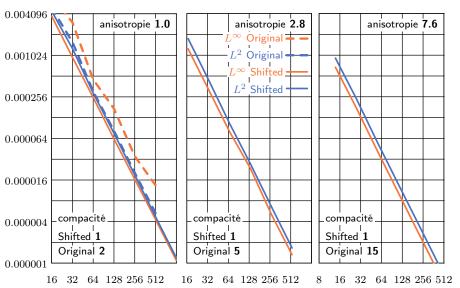
Test de convergence

Sur les maillages

1. 2.8. 7.6



Condition limite de **Dirichlet**

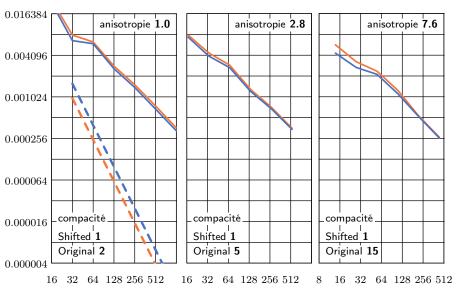


Compact et converge au deuxième ordre

2.4 Tests — Équation de Laplace

Planche : 23/36

Condition limite de Neumann

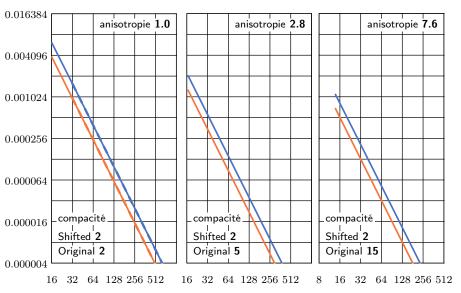


► Compact et converge au premier ordre

2.4 Tests — Équation de Laplace

Planche : 24/36

Condition limite de Neumann



▶ Un peu moins compact et converge au deuxième ordre

2.4 Tests — Équation de Laplace

Planche : 25/36

Partie 3

Frontières immergées pour les équations de Navier-Stokes

- 3.1 Modification des équations
- 3.2 Tests Écoulement de Poiseuille
- 3.3 Tests Écoulement autour de cylindre

Planche : 26/36

Application aux équations de Navier-Stokes

Formulation incompressible

Conditions limites

$$\partial_t \mathbf{u} + \operatorname{div}(\mathbf{u} \otimes \mathbf{u}) + \nabla p = \nu \Delta \mathbf{u} \qquad \mathbf{u} = \mathbf{0}$$
$$\operatorname{div} \mathbf{u} = 0 \qquad \qquad \partial_n p = 0$$

Méthode prédicteur-correcteur

$$\partial_{t} \boldsymbol{u}^{*} + \operatorname{div}(\boldsymbol{u}^{*} \otimes \boldsymbol{u}^{n}) + \nabla p^{n} = \nu \Delta \boldsymbol{u}^{*} + \boldsymbol{f}$$
(1)

$$\delta t \, \Delta \Phi = \operatorname{div} \boldsymbol{u}^{*}$$
(2)

$$p^{n+1} = p^{n} + \Phi$$
(3)

$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^{*} - \delta t \, \nabla \Phi$$
(4)

- L'inertie est semi-implicite : $\operatorname{div}(\boldsymbol{u} \otimes \boldsymbol{u}) \approx \operatorname{div}(\boldsymbol{u}^* \otimes \boldsymbol{u}^n)$
- Deux systèmes linéaires : (1) et (2)
- Trois différentiations : ∇p^n , div \boldsymbol{u}^* , $\nabla \Phi$

Discrétisation spatiale

Grille décalée

$$m{u}
ightarrow \left[u_{i+\frac{1}{2},j} \quad v_{i,j+\frac{1}{2}} \right] \ p
ightarrow p_{i,j}$$

Les champs discrets sont-ils bien définis?

Oui, sauf pour uⁿ sur les points fantômes. (Cf. terme d'inertie)

Solution : Extrapolation de u^n après l'étape de correction

$$\mathbf{u}^{n+1} = \mathbf{u}^* - \delta t \, \nabla \Phi$$
 \Rightarrow $\mathbf{u}^{**} = \mathbf{u}^* - \delta t \, \nabla \Phi$ \Rightarrow $(\mathbf{I} + \mathbf{\mathcal{E}}) \mathbf{u}^{n+1} = \mathbf{u}^{**} + b$

3.1 Modification des équations

Planche : 28/36

Tests — Écoulement de Poiseuille

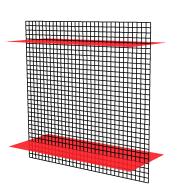
Domaine canal plan avec grille non coïncidente

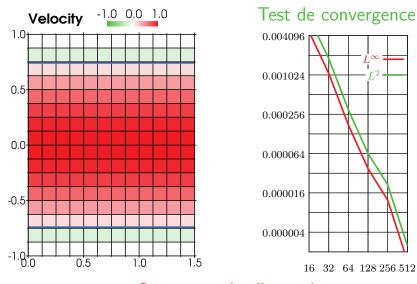
$$\Omega = [0, +2] \times [-1, +1]$$
 $\Gamma = \text{Droite} (y = \pm H = \pm 0.65)$

CL périodiques

Solution parabolique

$$u(x,y) = u_{\text{max}} \left(1 - \frac{y}{H} \right)^{2}$$
$$f_{x} = \frac{2\nu u_{\text{max}}}{H^{2}}$$





► Converge au deuxième ordre

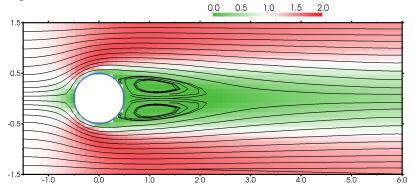
Tests — Écoulement autour du cylindre

Domaine canal plan avec grille non coïncidente

$$\Omega = [-1.5, +6.0] \times [-1.5, +1.5]$$
 $\Gamma = \text{Cylindre}(O, r = 0.5)$

CL vitesse imposée en entrée. symmétrie sur les côtés

Régime stationnaire : Re = 40



3.2 Tests - Écoulement de Poiseuille

Planche : 31/36

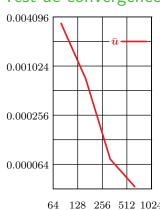
Tests — Écoulement autour du cylindre

Validation

Etude de convergence par extrapolation de Richardson

- Erreur « perturbée » par le volume changeant avec la grille
- Converge au deuxième ordre

Test de convergence



128 256 512 1024

Tests — Écoulement autour du cylindre

Frontière irrégulière « pacman »

Re = 60

Partie 4

Conclusions

Conclusions

Méthode des frontières immergées

Implémentée dans Notus

- Convergente au 2^e ordre
- Reste compacte pour des maillages anisotropes

Validation

- Équation de la chaleur
- Écoulement de Poiseuille
- Écoulement autour du cylindre
- Validation 3D en cours

Planche : 35/36

Perspectives

- Analyse des performances parallèles
- Implémentation des objets, application à Lascaux

Planche : 36/36