

Moment-of-Fluid Analytic Reconstruction on 2D Cartesian grids

Antoine LEMOINE¹ Stéphane GLOCKNER² Jérôme BREIL³

¹Univ. Bordeaux, I2M, UMR 5295, F-33400 Talence, France.

²Bordeaux INP, I2M, UMR 5295, F-33400 Talence, France.

³CEA CESTA, 15 Avenue des Sablières, CS 60001, 33116 Le Barp Cedex, France.

January 25th, 2016

CPU Le monde numérique au service de la cettification et de la sécurisation des systèmes "BORDEAU

Introduction: I2M

- I2M laboratory: Mechanical institute of Bordeaux
- Team incompressible CFD
- PhD: Discrete Helmholtz-Hodge Decomposition
 - Polyhedral meshes
 - Structure detection (vortex, source/sink) in vector fields for CFD
 - Mimetic schemes (Compatible Discrete Operators)
- Post-doc since May 15th, 2015
 - Volume-of-Fluid (implemented in 2D & 3D)
 - Moment-of-Fluid in collaboration with CELIA (Jérôme Breil)
 - Notus project

Source: Eric Gaba - Wikimedia Commons

Introduction: Notus

- Open-source CFD code
- Dedicated to the modelization and simulation of incompressible fluid flows
- Designed to run on massively parallel supercomputers
- Finite volumes, 2D & 3D Cartesian staggered grid
- Validated and documented
- Available for download (soon!) http://notus-cfd.org

Introduction: Notus main features

- Multiphysic applications
 - Incompressible Navier-Stokes equations
 - Multiphase flows \rightarrow breaking waves
 - Energy equation \rightarrow energy storage, phase change
 - Fluid structure interactions (elasticity)
- Numerical schemes
 - Multiphase: Level-set. Volume-of-Fluid. Moment-of-Fluid
 - Velocity-pressure: Goda, Timmermans
- 2nd-order immersed boundary method to represent any boundary shapes
- External linear solvers: HYPRE, MUMPS
- Output: ADIOS library (developed at Oak Ridge National Laboratory)

Introduction

- 2 Moment-of-Fluid
- 3 Revisiting MOF on Cartesian grids
- 4 Numerical results
- Conclusion & perspectives

VOF-PLIC formulation

Original data

- Ω polygonal cell of vertices $\{ {m p}_1, \cdots, {m p}_n \}$
- ω_1^\star portion of fluid 1 in the cell Ω
- Exponent * \rightarrow reference data

VOF representation

• $|\omega_1^\star|$ volume of fluid 1

PLIC reconstruction

- Constraint: $|\omega_1^{\ell}(\phi)| = |\omega_1^{\star}|$
- $\omega_1^\ell(\phi)$ polygonal approximation of ω_1^\star
- Exponent $^{\ell} \rightarrow$ reconstructed data

Find 2 parameters:

- n interface normal
- d distance to the origin

Limitations of VOF-PLIC methods

Problem

The volume fraction is insufficient to make a cell-wise reconstruction \rightarrow We need the neighboring cells (gradient of the volume fraction)

Original	interface
----------	-----------

0	0	0	0	0
0.5	0.5	0.5	0.5	0.5
0.5	0.5	0.5	0.5	0.5
0	0	0	0	0

VOF	representation

PLIC reconstruction

Idea

Add information to have a *local* (cell-wise) reconstruction \rightarrow Moment of Fluid

Introduction

2 Moment-of-Fluid

- 3 Revisiting MOF on Cartesian grids
- A Numerical results
- 5 Conclusion & perspectives

Moment-of-fluid: Moment?

Momentum of order 0 (volume)

$$M_0(\omega) = \int_\omega doldsymbol{x} = |\omega|$$

Volume fraction (relative to a cell Ω)

$$\mu(\omega) = \frac{M_0(\omega)}{M_0(\Omega)}$$

Momentum of order 1

$$M_1(\omega) = \int_\omega x dx$$

Centroid

$$m{x}_c(\omega) = rac{m{M_1}(\omega)}{M_0(\omega)}$$

M₀(ω) = 0.9
 M₁(ω) = (0.45, 0.36)
 x_c(ω) = (0.5, 0.4)

Moment-of-fluid: Moment?

Momentum of order 0 (volume)

$$M_0(\omega) = \int_\omega doldsymbol{x} = |\omega|$$

Volume fraction (relative to a cell Ω)

$$\mu(\omega) = \frac{M_0(\omega)}{M_0(\Omega)}$$

•
$$M_0(\Omega) = 4$$

• $M_0(\omega) = 0.9$
• $\mu(\omega) = 0.225$

Momentum of order 1

$$oldsymbol{M_1}(\omega) = \int_{\omega} oldsymbol{x} doldsymbol{x}$$

Centroid

$$m{x}_c(\omega) = rac{m{M_1}(\omega)}{M_0(\omega)}$$

• $M_0(\omega) = 0.9$ • $M_1(\omega) = (0.45, 0.36)$ • $x_c(\omega) = (0.5, 0.4)$

Moment-of-fluid: Formulation

Data:

- Volume fraction of any portions of fluid μ in each cells
- Centroid of any portions of fluid $m{x}_c$ in each cells

Reconstruction method:

- VOF-PLIC: $|\omega^{\ell}| = |\omega^{\star}|$ for each cell
 - \rightarrow under-determined problem!

• MOF:
$$|\omega^{\ell}| = |\omega^{\star}|$$
 and $x_c(\omega^{\ell}) = x_c(\omega^{\star})$ for each cell \rightarrow over-determined problem!

Minimization problem:

• Find
$$\omega^\ell = \operatorname*{argmin}_{\omega^\ell} | \pmb{x}_c(\omega^\ell) - \pmb{x}_c(\omega^\star) |^2$$

• Under constraint $|\omega^{\ell}| = |\omega^{\star}|$

Moment-of-fluid: Formulation

Data:

- Volume fraction of any portions of fluid μ in each cells
- Centroid of any portions of fluid $oldsymbol{x}_c$ in each cells

Reconstruction method:

- VOF-PLIC: $|\omega^{\ell}| = |\omega^{\star}|$ for each cell \longrightarrow under-determined problem!
- MOF: $|\omega^{\ell}| = |\omega^{\star}|$ and $x_c(\omega^{\ell}) = x_c(\omega^{\star})$ for each cell \longrightarrow over-determined problem!

Minimization problem:

• Find
$$\omega^\ell = \operatorname*{argmin}_{\omega^\ell} |m{x}_c(\omega^\ell) - m{x}_c(\omega^\star)|^2$$

• Under constraint $|\omega^{\ell}| = |\omega^{\star}|$

Moment-of-fluid: Formulation

Data:

- Volume fraction of any portions of fluid μ in each cells
- Centroid of any portions of fluid $m{x}_c$ in each cells

Reconstruction method:

- VOF-PLIC: $|\omega^{\ell}| = |\omega^{\star}|$ for each cell \longrightarrow under-determined problem!
- MOF: $|\omega^{\ell}| = |\omega^{\star}|$ and $x_c(\omega^{\ell}) = x_c(\omega^{\star})$ for each cell \longrightarrow over-determined problem!

Minimization problem:

• Find
$$\omega^\ell = \operatorname*{argmin}_{\omega^\ell} | \pmb{x}_c(\omega^\ell) - \pmb{x}_c(\omega^\star) |^2$$

• Under constraint $|\omega^{\ell}| = |\omega^{\star}|$

μ(ω*) = 0.3
x_c(ω*) = (-0.3, -0.3)

Objective function: A possible local minima

Remark

μ(ω*) = 0.3
x_c(ω*) = (-0.3, -0.3)

Remark

μ(ω*) = 0.3
x_c(ω*) = (-0.3, -0.3)

Remark

Objective function: A possible local minima

Remark

Examples of static reconstructions

Volume fraction and centroids data from: Dyadechko, V., Shashkov, M. (2007)

Backward advection: Lagrangian remap

Backward advection: Compute the pre-image Ω^{n-1} of Ω^n with a Runge-Kutta 2 method.

We can show that the centroids almost follow an advection equation:

$$rac{d}{dt}oldsymbol{x}_c(\omega) = oldsymbol{v}(oldsymbol{x}_c(\omega)) + \mathcal{O}(h^2)$$

 \rightarrow Forward advection of the centroids (RK2)

Remark

Requires a polygon/polygon intersection algorithm

Multimaterial reconstruction: Remark on B-tree dissection

Without B-tree dissection

With B-tree dissection

Introduction

- 2 Moment-of-Fluid
- 3 Revisiting MOF on Cartesian grids
- A Numerical results
- 5 Conclusion & perspectives

How to improve MOF on Cartesian grids?

- All the cells are convex
 - $\bullet\,$ Sub-polygons remains convex too! $\rightarrow\,$ All the polygons are convex
 - Improve the Flood Algorithm
 - Fast convex polygon/polygon intersection (O'Rourke et al. (1982))
- All the cells are rectangles
 - \rightarrow Analytic solution to the minimization problem

Flood algorithm on convex cells

 $\rightarrow \text{Convexity: no need to sort the } \xi_n \\ \alpha = \frac{V - V_{\text{tot}}}{V_{\text{trapezoid}}} \beta = \sqrt{\left(\frac{|\Gamma|}{|\Gamma_{\text{next}}| + |\Gamma|}\right)^2 + \alpha \frac{|\Gamma_{\text{next}}| - |\Gamma|}{|\Gamma_{\text{next}}| + |\Gamma|}} + \frac{|\Gamma|}{|\Gamma_{\text{next}}| + |\Gamma|} \\ \xi^* = \xi + (\xi_{\text{next}} - \xi) \frac{\alpha}{\beta} \\ \text{Reference: Breil, J., Gelera, S., & Maire, P. H. (2011).}$

Analytic reconstruction: Motivations & proposal

Idea:

- On Cartesian grids, cells are rectangles
- Symmetry: locus of centroids very regular
- 0.3 Possible parametrization
 - Analytic solution to minimization problem

Bonus:

- No problem with local minima
- Upgrade a VOF-PLIC algorithm
- Easier to implement
- Faster for equivalent result

Analytic reconstruction: possible configurations ($\mu \le 0.5$)

Analytic solution: Parametrization of the hyperbola

Parameters

- Normal $\boldsymbol{n} = (n_x, n_y)$
- Volume V

Parametrization

$$\begin{cases} g_x = \frac{1}{3}\sqrt{2V\frac{n_y}{n_x}}\\ g_y = \frac{1}{3}\sqrt{2V\frac{n_x}{n_y}} \end{cases} \Rightarrow g_y = \frac{9V}{2g_x} \end{cases}$$

Analytic solution: Closest point to the hyperbola

Problem

- Let ${m p}=(p_x,p_y)$ any point of ${\mathbb R}^2$ (e.g. the reference centroid)
- ullet Find the closest point of p to the hyperbola H

• For all
$$x \in \left[\frac{2V}{3c_x}, \frac{c_x}{3} \right]$$
 $H(x) = \frac{9V}{2x}$

Solution

- ${\scriptstyle \bullet}\,$ The closest point of p to the hyperbola is its orthogonal projection
- Tangent to the curve for the coordinate g_x : $(1, H'(g_x))$
- Orthogonal projection: $(g_x p_x, H(g_x) p_y) \cdot (1, H'(g_x)) = 0$

The coordinate x of $\pmb{x}_c(\omega^\ell)=(x,H(x))$ is one of the solution of

$$x^{4} - p_{x}x^{3} + \frac{2}{9}Vp_{y}x - \left(\frac{2V}{9}\right)^{2} = 0$$

Analytic solution: Parabola

For all
$$x \in \left[\frac{c_x}{3}, \frac{2c_x}{3}\right]$$

$$P(x) = \frac{V}{2c_x} + \frac{6V}{c_x} \left(\frac{1}{2} - \frac{x}{c_x}\right)^2$$

Let $\boldsymbol{p} = (p_x, p_y)$ any point of \mathbb{R}^2

The closest point of p to the parabola P is its orthogonal projection The coordinate x of $x_c(\omega^\ell) = (x, P(x))$ is one of the solution of

$$x - p_x - \frac{12V}{c_x^2} \left(\frac{1}{2} - \frac{x}{c_x}\right) \left(\frac{V}{2c_x} - p_y\right) - \frac{72V^2}{c_x^3} \left(\frac{1}{2} - \frac{x}{c_x}\right)^3 = 0$$

Analytic reconstruction: Algorithm

- Multiple solutions inside one configuration
 → Maybe outside their definition domain
- Solutions found in many configurations
- Limit the search of solution in one quadrant

Analytic solution: Algorithm

- If $\mu > 0.5$ solve the dual problem Locate the quadrant where $x_c(\omega^*)$ is
 - $\boldsymbol{x}_c(\omega^{\star}) \in Q_1$ try $\{1, 2, 4\}$
 - $x_c(\omega^{\star}) \in Q_2$ try $\{2,3,6\}$
 - $x_c(\omega^{\star}) \in Q_3$ try $\{6, 8, 9\}$
 - $x_c(\omega^{\star}) \in Q_4 \text{ try } \{4,7,8\}$
- Solve 2 cubic and 1 quartic
 - \rightarrow Strobach, Fast quartic solver (2010)
 - \rightarrow Strobach, Solving cubics by polynomial fitting (2011)
- eliminate wrong solutions
- Find the closest solution
- Occupate n and d from the solution

Results

About 30% to 300% faster than minimization $2^{\rm nd}$ order verified in time and space

Introduction

- 2 Moment-of-Fluid
- 3 Revisiting MOF on Cartesian grids

4 Numerical results

5 Conclusion & perspectives

Numerical results: Error computation

Local errors

Distance error

$$\Delta \Gamma = \max_{\boldsymbol{x}^{\star} \in \boldsymbol{\Gamma}^{\star}} \min_{\boldsymbol{x} \in \boldsymbol{\Gamma}^{\ell}} |\boldsymbol{x} - \boldsymbol{x}^{\star}|$$

• Area of symmetric difference

$$\Delta \omega = |\omega^{\ell} \triangle \omega^{\star}$$

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

Global error

• Average deviation (equivalent to $\Delta\Gamma$)

$$\Delta \Gamma_{avg} = \frac{1}{|\partial \omega^{\star}|} \sum_{i=1}^{N} |\omega_{i}^{\ell} \triangle \omega_{i}^{\star}|$$

Numerical results: Sheared flow spatial convergence

Parameters

- Iterations: 1000
- Time step: 10^{-4} s
- Mesh: $N \times N$, $N \in \{16, 32, \cdots, 4096\}$

Vector field

$$\boldsymbol{u}(x,y,t) = \begin{bmatrix} -2\sin^2(\pi x)\sin(\pi y)\cos(\pi y)\\ 2\sin^2(\pi y)\sin(\pi x)\cos(\pi x) \end{bmatrix} \cos\left(\pi\frac{t}{T}\right)$$

Spatial convergence

N	$\Delta\Gamma_{\rm avg}$	order
512	$1.34\cdot 10^{-6}$	2.03
1024	$3.09 \cdot 10^{-7}$	2.11
2048	$7.19\cdot10^{-8}$	2.10
4096	$1.60 \cdot 10^{-8}$	2.17

Numerical results: Sheared flow time convergence

Convergence with RK2

Time step	$\Delta\Gamma_{\rm avg}$	order
$\frac{5 \cdot 10^{-4}}{2.5 \cdot 10^{-4}}$ $1.25 \cdot 10^{-4}$	$2.48 \cdot 10^{-7} 2.86 \cdot 10^{-7} 3.11 \cdot 10^{-7}$	-0.21 -0.12

 \rightarrow Does not converge! (even with a thinner grid)

Convergence with Euler

Time step	$\Delta\Gamma_{\rm avg}$	order
$5 \cdot 10^{-4}$	$2.93 \cdot 10^{-4}$	_
$2.5 \cdot 10^{-4}$	$1.46 \cdot 10^{-4}$	1.00
$1.25 \cdot 10^{-4}$	$7.32 \cdot 10^{-5}$	1.00

 \rightarrow 1st order verified with Euler

Parameters

- Total time: 0.5 s
- Mesh: 1024 × 1024
- Time step: $\{5 \cdot 10^{-4}, \cdots, 1.25 \cdot 10^{-4}\}$ s
- \rightarrow Error RK2 < Error Euler

Conclusion

Spatial error dominates

 \rightarrow Try a case without spatial error

Numerical results: Accelerated front flow time convergence

Convergence with RK2

Time step	$\Delta\Gamma_{\rm avg}$	order
$1 \cdot 10^{-2}$	$4.93 \cdot 10^{-5}$	_
$5 \cdot 10^{-3}$	$1.23 \cdot 10^{-5}$	2.00
$2.5 \cdot 10^{-3}$	$3.08\cdot 10^{-6}$	2.00
$1.25 \cdot 10^{-3}$	$7.71 \cdot 10^{-7}$	2.00
$6.25 \cdot 10^{-4}$	$1.93 \cdot 10^{-7}$	2.00

Vector field

$$u_x(x, y, t) = 0.3\pi \sin(\pi t)$$

Conclusion 2nd order with RK2

Minimization vs Analytic: Static reconstruction

Static reconstruction (2 materials)

Mesh: 2048^2 Time ratio minimization / analytic:

	Min. 10 ⁻¹⁵	Min. 10^{-8}	Min. 10^{-6}
Ana.	2.80	2.05	1.80

Minimization vs Analytic: Dynamic reconstruction

Advection of 5 materials in a sheared flow

For mixed cells:

- \rightarrow First material uses analytic reconstruction
- \rightarrow Use minimization in remaining space

Mesh: 128^2 Time ratio minimization / analytic :

	Min. 10^{-15}	Min. 10^{-8}	Min. 10^{-6}
Ana. & Min. 10 ⁻¹⁵	2.54	1.70	1.41
Ana. & Min. 10 ⁻⁸	3.10	2.08	1.72
Ana. & Min. 10 ⁻⁶	2.92	1.97	1.62

Introduction

- 2 Moment-of-Fluid
- 3 Revisiting MOF on Cartesian grids
- 4 Numerical results
- Conclusion & perspectives

Conclusion & perspectives

Conclusion

- MoF has been revisited on Cartesian grids (only in 2D yet)
- Proposition of an analytic reconstruction algorithm

Perspectives

- Symmetric reconstruction (Hill, R. N. and Shashkov, M. (2013))
- Filament capturing (Jemison, M., Sussman, M., Shashkov, M. (2015))
- MOF 3D
 - Intersection of polyhedron
 - Initialization from surface meshes
 - Analytic solution on Cartesian grid?
 - Advection
- Coupling of MOF with level-set (Jemison et al. (2013))

Thank you

Appendix

Dam break - Air / Water

Mesh 400×200 , domain dimensions (0.993, 0.5)

Centroid advection

Fluid domain $\omega(t)$. Eulerian velocity $\boldsymbol{u}(\boldsymbol{x},t)$. div $\boldsymbol{u} = 0$.

$$\begin{split} \frac{d}{dt} \int_{\omega(t)} \boldsymbol{x} d\boldsymbol{x} &= \int_{\omega(t)} \left(\frac{\partial}{\partial t} \operatorname{Id}(\boldsymbol{x}) + \boldsymbol{u}(\boldsymbol{x}, t) \cdot \nabla \operatorname{Id}(\boldsymbol{x}) + \operatorname{Id}(\boldsymbol{x}) \operatorname{div} \boldsymbol{u}(\boldsymbol{x}, t) \right) d\boldsymbol{x} \\ &= \int_{\omega(t)} \boldsymbol{u}(\boldsymbol{x}, t) d\boldsymbol{x} \\ &= \int_{\omega(t)} \left(\boldsymbol{u}(\boldsymbol{x}_c, t) + \left[\nabla \boldsymbol{u}(\boldsymbol{x}_c, t) \right] (\boldsymbol{x} - \boldsymbol{x}_c) + \mathcal{O}(|\boldsymbol{x} - \boldsymbol{x}_c|^2) \right) d\boldsymbol{x} \\ &= |\omega(t)| \boldsymbol{u}(\boldsymbol{x}_c, t) + \nabla \boldsymbol{u}(\boldsymbol{x}_c, t) \underbrace{\int_{\omega(t)} (\boldsymbol{x} - \boldsymbol{x}_c) d\boldsymbol{x} + \mathcal{O}(h^2)}_{=\boldsymbol{0}} \end{split}$$

Thus

$$\frac{d}{dt}\boldsymbol{x}_c = \boldsymbol{u}(\boldsymbol{x}_c) + \mathcal{O}(h^2)$$

Advection: 5 fluids on a sheared flow

Limitations of MOF: Filaments

0	0.2×	0
0	0.2×	0
0	0.2×	0

Initial configuration

MOF representation after advection

MOF reconstruction

• The filament does not move if the time step is too small!

Limitations of MOF: Possible solution

0	0.2×	0
0	0.2×	0
0	0.2×	0

Initial configuration

Virtual fluid A'

- Detection of filament at the advection step
- Introduction of a virtual fluid A'
- 3-fluid reconstruction

Reference: Jemison, M., Sussman, M., Shashkov, M. (2015)