

Moment-of-Fluid Analytic Reconstruction on 2D Cartesian grids

Antoine LEMOINE¹ Stéphane GLOCKNER² Jérôme Breil³

 1 Univ. Bordeaux, I2M, UMR 5295, F-33400 Talence, France.

²Bordeaux INP, I2M, UMR 5295, F-33400 Talence, France.

³CEA CESTA, 15 Avenue des Sablières, CS 60001, 33116 Le Barp Cedex, France.

January 25th, 2016

Introduction: I2M

- I2M laboratory: Mechanical institute of Bordeaux
- **•** Team incompressible CFD
- PhD: Discrete Helmholtz-Hodge Decomposition
	- Polyhedral meshes
	- Structure detection (vortex, source/sink) in vector fields for CFD
	- Mimetic schemes (Compatible Discrete Operators)
- \bullet Post-doc since May 15^{th} , 2015
	- Volume-of-Fluid (implemented in 2D & 3D)
	- **Moment-of-Fluid** in collaboration with CELIA (Jérôme Breil)
	- **•** Notus project

Source: Eric Gaba – Wikimedia Commons

- Open-source CFD code
- Dedicated to the modelization and simulation of incompressible fluid flows
- Designed to run on massively parallel supercomputers
- Finite volumes, 2D & 3D Cartesian staggered grid
- Validated and documented
- Available for download (soon!) <http://notus-cfd.org>

Introduction: Notus main features

notus Computational Fluid Dynamics

- Multiphysic applications
	- Incompressible Navier-Stokes equations
	- Multiphase flows \rightarrow breaking waves
	- Energy equation \rightarrow energy storage, phase change
	- Fluid structure interactions (elasticity)
- Numerical schemes
	- Multiphase: Level-set, Volume-of-Fluid, **Moment-of-Fluid**
	- Velocity–pressure: Goda, Timmermans
- 2nd-order immersed boundary method to represent any boundary shapes
- External linear solvers: HYPRE, MUMPS
- Output: ADIOS library (developed at Oak Ridge National Laboratory)

[Introduction](#page-1-0)

- [Moment-of-Fluid](#page-7-0)
- [Revisiting MOF on Cartesian grids](#page-20-0)
- [Numerical results](#page-30-0)
- [Conclusion & perspectives](#page-37-0)

VOF-PLIC formulation

Original data

- Ω polygonal cell of vertices $\{p_1, \dots, p_n\}$
- ω_1^\star portion of fluid 1 in the cell Ω
- Exponent *?* → reference data

VOF representation

 $|\omega_1^{\star}|$ volume of fluid 1

PLIC reconstruction

- Constraint: $|\omega_1^{\ell}(\phi)| = |\omega_1^{\star}|$
- $\omega_1^\ell(\phi)$ polygonal approximation of ω_1^\star
- Exponent $\ell \rightarrow$ reconstructed data

Find 2 parameters:

- *n* interface normal
- *d* distance to the origin

Limitations of VOF-PLIC methods

Problem

The volume fraction is insufficient to make a cell-wise reconstruction \rightarrow We need the neighboring cells (gradient of the volume fraction)

PLIC reconstruction

Idea

Add information to have a *local* (cell-wise) reconstruction → Moment of Fluid

1 [Introduction](#page-1-0)

2 [Moment-of-Fluid](#page-7-0)

- ³ [Revisiting MOF on Cartesian grids](#page-20-0)
- ⁴ [Numerical results](#page-30-0)
- **6** [Conclusion & perspectives](#page-37-0)

Moment-of-fluid: Moment?

Momentum of order 0 (volume)

$$
M_0(\omega)=\int_\omega d\bm{x}=|\omega|
$$

Volume fraction (relative to a cell Ω)

$$
\mu(\omega) = \frac{M_0(\omega)}{M_0(\Omega)}
$$

\n- $$
M_0(\Omega) = 4
$$
\n- $M_0(\omega) = 0.9$
\n- $\mu(\omega) = 0.225$
\n

$$
\bm{M_1}(\omega)=\int_\omega \bm{x}d\bm{x}
$$

$$
\boldsymbol{x}_c(\omega)=\frac{\boldsymbol{M_1}(\omega)}{M_0(\omega)}
$$

• $M_0(\omega) = 0.9$ • $M_1(\omega) = (0.45, 0.36)$ $\bullet x_c(\omega) = (0.5, 0.4)$

Moment-of-fluid: Moment?

Momentum of order 0 (volume)

$$
M_0(\omega)=\int_\omega d\bm{x}=|\omega|
$$

Volume fraction (relative to a cell Ω)

$$
\mu(\omega) = \frac{M_0(\omega)}{M_0(\Omega)}
$$

\n- $$
M_0(\Omega) = 4
$$
\n- $M_0(\omega) = 0.9$
\n- $\mu(\omega) = 0.225$
\n

Momentum of order 1

$$
\bm{M_1}(\omega)=\int_\omega \bm{x}d\bm{x}
$$

Centroid

$$
\boldsymbol{x}_c(\omega)=\frac{\boldsymbol{M_1}(\omega)}{M_0(\omega)}
$$

 $M_0(\omega) = 0.9$ $M_1(\omega) = (0.45, 0.36)$ $\boldsymbol{x}_c(\omega) = (0.5, 0.4)$

Moment-of-fluid: Formulation

Data:

- Volume fraction of any portions of fluid *µ* in each cells
- Centroid of any portions of fluid *x^c* in each cells

• Find
$$
\omega^{\ell} = \operatorname*{argmin}_{\omega^{\ell}} |x_c(\omega^{\ell}) - x_c(\omega^{\star})|^2
$$

Moment-of-fluid: Formulation

Data:

- Volume fraction of any portions of fluid *µ* in each cells
- Centroid of any portions of fluid *x^c* in each cells

Reconstruction method:

- $\mathsf{VOF\text{-}PLIC}\colon |\omega^\ell| = |\omega^\star| \text{ for each cell }$ → under-determined problem!
- $\mathsf{MOF}\colon |\omega^{\ell}| = |\omega^{\star}|$ and $\bm{x}_c(\omega^{\ell}) = \bm{x}_c(\omega^{\star})$ for each cell → over-determined problem!

\n- Find
$$
\omega^{\ell} = \operatorname*{argmin}_{\omega^{\ell}} |x_c(\omega^{\ell}) - x_c(\omega^*)|^2
$$
\n- Under constraint $|\omega^{\ell}| = |\omega^*|$
\n

Moment-of-fluid: Formulation

Data:

- Volume fraction of any portions of fluid *µ* in each cells
- Centroid of any portions of fluid *x^c* in each cells

Reconstruction method:

- $\mathsf{VOF\text{-}PLIC}\colon |\omega^\ell| = |\omega^\star| \text{ for each cell }$ → under-determined problem!
- $\mathsf{MOF}\colon |\omega^{\ell}| = |\omega^{\star}|$ and $\bm{x}_c(\omega^{\ell}) = \bm{x}_c(\omega^{\star})$ for each cell → over-determined problem!

Minimization problem:

• Find
$$
\omega^{\ell} = \underset{\omega^{\ell}}{\text{argmin}} \ |\boldsymbol{x}_c(\omega^{\ell}) - \boldsymbol{x}_c(\omega^{\star})|^2
$$

Under constraint $|\omega^{\ell}| = |\omega^{\star}|$

Reference: Dyadechko, V., Shashkov, M. (2007)

 $\mu(\omega^*) = 0.3$ $x_c(\omega^*) = (-0.3, -0.3)$

Objective function: 4**!** possible local minima

 $\mu(\omega^*) = 0.3$ $x_c(\omega^*) = (-0.3, -0.3)$

 $\mu(\omega^*) = 0.3$ $x_c(\omega^*) = (-0.3, -0.3)$

Objective function: 4**!** possible local minima

Remark

One interface reconstruction per minimization iteration: highly time consuming

Examples of static reconstructions

Volume fraction and centroids data from: Dyadechko, V., Shashkov, M. (2007)

Backward advection: Lagrangian remap

Backward advection: Compute the pre-image Ω^{n-1} of Ω^n with a Runge-Kutta 2 method.

We can show that the centroids almost follow an advection equation:

$$
\frac{d}{dt}\boldsymbol{x}_c(\omega)=\boldsymbol{v}(\boldsymbol{x}_c(\omega))+\mathcal{O}(h^2)
$$

 \rightarrow Forward advection of the centroids (RK2)

Remark

Requires a polygon/polygon intersection algorithm

Multimaterial reconstruction: Remark on B-tree dissection

Without B-tree dissection With B-tree dissection

¹ [Introduction](#page-1-0)

- [Moment-of-Fluid](#page-7-0)
- 3 [Revisiting MOF on Cartesian grids](#page-20-0)
- [Numerical results](#page-30-0)
- **6** [Conclusion & perspectives](#page-37-0)

How to improve MOF on Cartesian grids?

- All the cells are convex
	- Sub-polygons remains convex too! \rightarrow All the polygons are convex
	- Improve the Flood Algorithm
	- Fast convex polygon/polygon intersection (O'Rourke et al. (1982))
- All the cells are rectangles
	- \rightarrow Analytic solution to the minimization problem

Flood algorithm on convex cells

 \rightarrow Convexity: no need to sort the ξ_n $\alpha = \frac{V - V_{\text{tot}}}{V}$ $\frac{V - V_{\rm tot}}{V_{\rm trapezoid}}$ $\beta = \sqrt{\left(\frac{|\Gamma|}{|\Gamma_{\rm next}|}\right)^2}$ $|\Gamma_{\text{next}}| + |\Gamma|$ $\left| \int_{0}^{2} + \alpha \frac{\left| \Gamma_{\text{next}} \right| - \left| \Gamma \right|}{\left| \Gamma_{\text{next}} \right| + \left| \Gamma \right|}$ $\frac{\left|\Gamma_{\text{next}}\right|-\left|\Gamma\right|}{\left|\Gamma_{\text{next}}\right|+\left|\Gamma\right|}+\frac{\left|\Gamma\right|}{\left|\Gamma_{\text{next}}\right|.}$ $|\Gamma_{\text{next}}| + |\Gamma|$ *ξ*^{*} = *ξ* + (*ξ*_{next} − *ξ*) $\frac{\dot{\alpha}}{a}$ *β* Reference: Breil, J., Gelera, S., & Maire, P. H. (2011).

Analytic reconstruction: Motivations & proposal

Idea:

- On Cartesian grids, cells are rectangles
- Symmetry: locus of centroids very regular
- $\mu=0.3$ \bullet Possible parametrization
	- Analytic solution to minimization problem

Bonus:

- No problem with local minima
- Upgrade a VOF-PLIC algorithm
- **•** Easier to implement
- **•** Faster for equivalent result

Analytic reconstruction: possible configurations ($\mu \leq 0.5$)

Analytic solution: Parametrization of the hyperbola

Parameters

- Normal $n = (n_x, n_y)$
- Volume *V*

Parametrization

$$
\begin{cases} g_x = \frac{1}{3} \sqrt{2V \frac{n_y}{n_x}} \\ g_y = \frac{1}{3} \sqrt{2V \frac{n_x}{n_y}} \end{cases} \Rightarrow g_y = \frac{9V}{2g_x}
$$

Analytic solution: Closest point to the hyperbola

Problem

- Let $\boldsymbol{p}=(p_x,p_y)$ any point of \mathbb{R}^2 (e.g. the reference centroid)
- Find the closest point of *p* to the hyperbola *H*

$$
\bullet\text{ For all }x\in\left[\frac{2V}{3c_x},\frac{c_x}{3}\right]\qquad H(x)=\frac{9V}{2x}
$$

Solution

- The closest point of p to the hyperbola is its orthogonal projection
- Tangent to the curve for the coordinate g_x : $(1, H'(g_x))$
- Orthogonal projection: $(g_x p_x, H(g_x) p_y) \cdot (1, H'(g_x)) = 0$

The coordinate x of $\boldsymbol{x}_c(\omega^\ell) = (x,H(x))$ is one of the solution of

$$
x^{4} - p_{x}x^{3} + \frac{2}{9}Vp_{y}x - \left(\frac{2V}{9}\right)^{2} = 0
$$

Analytic solution: Parabola

For all
$$
x \in \left[\frac{c_x}{3}, \frac{2c_x}{3}\right]
$$

$$
P(x) = \frac{V}{2c_x} + \frac{6V}{c_x} \left(\frac{1}{2} - \frac{x}{c_x}\right)^2
$$

Let $\boldsymbol{p}=(p_x,p_y)$ any point of \mathbb{R}^2

The closest point of *p* to the parabola *P* is its orthogonal projection The coordinate x of $\boldsymbol{x}_c(\omega^\ell) = (x, P(x))$ is one of the solution of

$$
x - p_x - \frac{12V}{c_x^2} \left(\frac{1}{2} - \frac{x}{c_x}\right) \left(\frac{V}{2c_x} - p_y\right) - \frac{72V^2}{c_x^3} \left(\frac{1}{2} - \frac{x}{c_x}\right)^3 = 0
$$

Analytic reconstruction: Algorithm

- Multiple solutions inside one configuration \rightarrow Maybe outside their definition domain
- Solutions found in many configurations
- Limit the search of solution in one quadrant

Analytic solution: Algorithm

- **1** If $\mu > 0.5$ solve the dual problem $\textbf{2}$ Locate the quadrant where $\bm{x}_c(\omega^\star)$ is
	- $x_c(\omega^{\star}) \in Q_1$ try $\{1, 2, 4\}$
		- $\boldsymbol{x}_c(\omega^\star) \in Q_2$ try $\{2,3,6\}$
		- $x_c(\omega^\star) \in Q_3$ try $\{6,8,9\}$
		- $x_c(\omega^\star) \in Q_4$ try $\{4,7,8\}$
- Solve 2 cubic and 1 quartic
	- \rightarrow Strobach, Fast quartic solver (2010)
	- \rightarrow Strobach, Solving cubics by polynomial fitting (2011)
- **4** Eliminate wrong solutions
- ⁵ Find the closest solution
- ⁶ Compute *n* and *d* from the solution

Results

About 30% to 300% faster than minimization 2nd order verified in time and space

1 [Introduction](#page-1-0)

- [Moment-of-Fluid](#page-7-0)
- ³ [Revisiting MOF on Cartesian grids](#page-20-0)

⁴ [Numerical results](#page-30-0)

⁵ [Conclusion & perspectives](#page-37-0)

Numerical results: Error computation

Local errors

• Distance error

$$
\Delta\Gamma = \max_{\bm{x}^\star \in \Gamma^\star} \min_{\bm{x} \in \Gamma^\ell} |\bm{x} - \bm{x}^\star|
$$

Area of symmetric difference

$$
\Delta \omega = |\omega^\ell \triangle \omega^\star
$$

$$
A \triangle B = (A \setminus B) \cup (B \setminus A)
$$

Global error

• Average deviation (equivalent to $\Delta\Gamma$)

$$
\Delta \Gamma_{avg} = \frac{1}{|\partial \omega^\star|}\sum_{i=1}^N |\omega_i^\ell \Delta \omega_i^\star|
$$

Reference: Dyadechko, V., Shashkov, M. (2007)

Numerical results: Sheared flow spatial convergence

$\frac{1}{2}$ $\frac{1}{2}$

Parameters

- \bullet Iterations: 1000
- Time step: $10^{-4}\,$ s
- Mesh: $N \times N$, $N \in \{16, 32, \cdots, 4096\}$

Vector field

$$
\boldsymbol{u}(x,y,t) = \begin{bmatrix} -2\sin^2(\pi x)\sin(\pi y)\cos(\pi y) \\ 2\sin^2(\pi y)\sin(\pi x)\cos(\pi x) \end{bmatrix} \cos\left(\pi \frac{t}{T}\right)
$$

Spatial convergence

Numerical results: Sheared flow time convergence

Convergence with RK2

 \rightarrow Does not converge! (even with a thinner grid)

Convergence with Euler

 \rightarrow 1st order verified with Euler

Parameters

- Total time: 0*.*5 s
- \bullet Mesh: 1024×1024
- Time step: $\{5\cdot 10^{-4}, \cdots, 1.25\cdot 10^{-4}\}$ s
- \rightarrow Error RK2 $<$ Error Euler

Conclusion

Spatial error dominates

 \rightarrow Try a case without spatial error

Numerical results: Accelerated front flow time convergence

Convergence with RK2

Vector field

$$
u_x(x, y, t) = 0.3\pi \sin(\pi t)
$$

Conclusion 2nd order with RK2

Minimization vs Analytic: Static reconstruction

Static reconstruction (2 materials)

Mesh: 2048²

Time ratio minimization $/$ analytic:

Minimization vs Analytic: Dynamic reconstruction

Advection of 5 materials in a sheared flow

For mixed cells:

- \rightarrow First material uses analytic reconstruction
- \rightarrow Use minimization in remaining space

Mesh: 128^2

Time ratio minimization / analytic :

¹ [Introduction](#page-1-0)

- [Moment-of-Fluid](#page-7-0)
- ³ [Revisiting MOF on Cartesian grids](#page-20-0)
- [Numerical results](#page-30-0)
- ⁵ [Conclusion & perspectives](#page-37-0)

Conclusion & perspectives

Conclusion

- MoF has been revisited on Cartesian grids (only in 2D yet)
- Proposition of an analytic reconstruction algorithm

Perspectives

- Symmetric reconstruction (Hill, R. N. and Shashkov, M. (2013))
- Filament capturing (Jemison, M., Sussman, M., Shashkov, M. (2015))
- MOF 3D
	- Intersection of polyhedron
	- Initialization from surface meshes
	- Analytic solution on Cartesian grid?
	- **Advection**
- Coupling of MOF with level-set (Jemison et al. (2013))

Thank you

Appendix

Dam break – Air / Water

Mesh 400×200 , domain dimensions $(0.993, 0.5)$

Fluid domain $\omega(t)$. Eulerian velocity $u(x, t)$. div $u = 0$.

$$
\frac{d}{dt} \int_{\omega(t)} x dx = \int_{\omega(t)} \left(\frac{\partial}{\partial t} \mathrm{Id}(x) + u(x, t) \cdot \nabla \mathrm{Id}(x) + \mathrm{Id}(x) \mathrm{div} \, u(x, t) \right) dx
$$
\n
$$
= \int_{\omega(t)} u(x, t) dx
$$
\n
$$
= \int_{\omega(t)} \left(u(x_c, t) + \left[\nabla u(x_c, t) \right] (x - x_c) + \mathcal{O}(|x - x_c|^2) \right) dx
$$
\n
$$
= |\omega(t)| u(x_c, t) + \nabla u(x_c, t) \underbrace{\int_{\omega(t)} (x - x_c) dx}_{=0} + \mathcal{O}(h^2)
$$

Thus

$$
\frac{d}{dt}\boldsymbol{x}_c = \boldsymbol{u}(\boldsymbol{x}_c) + \mathcal{O}(h^2)
$$

Advection: 5 fluids on a sheared flow

Limitations of MOF: Filaments

Initial configuration

MOF representation after advection

MOF reconstruction

The filament does not move if the time step is too small!

Limitations of MOF: Possible solution

Initial configuration

MOF reconstruction

Virtual fluid A'

- Detection of filament at the advection step
- Introduction of a virtual fluid A'
- 3-fluid reconstruction

Reference: Jemison, M., Sussman, M., Shashkov, M. (2015)