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Introduction Numerical representation

Introduction: representing multiphase flow

How to represent multiphase flow on meshes?

Source: BlueWater by trancedman, DeviantArt

?

Cartesian grid

Physics
Multiphase flow
Immiscible fluids
Mass conservation
. . .

Numerical representation
Volume-of-fluid
Level-set
Front tracking
Moment-of-fluid
. . .
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Introduction Example: Volume-of-Fluid

Example: Volume-of-Fluid

Representation 6= Reconstruction

’True’ interface

1 1 0.8

1 0.95 0.3

0.8 0.3 0

VOF representation PLIC reconstruction

VOF: Volume-of-Fluid
PLIC: Piecewise Linear Interface Construction
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Introduction VOF-PLIC formulation

VOF-PLIC formulation

Γ?

p1

p2

p3

p4 p5

p6

p7

ω?1

Γ`(φ)

p1

p2

p3

p4 p5

p6

p7
n(φ)

ω`1(φ)

Original data
Ω polygonal cell of vertices {p1, · · · ,pn}
ω?

1 portion of fluid 1 in the cell Ω

Representation
|ω?

1 | volume of fluid 1

Reconstruction
ω`

1(φ) polygonal approximation of ω?
1

|ω`
1(φ)| = |ω?

1 | (volume conservation)
Γ`(φ) = ∂Ω \ ∂ω`

1(φ) interface
n(φ) interface normal
φ angle with the horizontal axis

Parametrization Γ` = {x ∈ Ω/x · n = d}
n interface normal
d distance to the origin
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Introduction Finding the normal and the distance

How to find d and n?

What do we want?

→ Find a linear interface as close as possible of the original interface

Problem: 1 constraint, 2 unknown

Hard part: finding n

Classic methods that use information of surrounding cells:
Gradient of volume fraction

Least-square

LVIRA, ELVIRA

. . .

Easy part: if we know n, the distance d can be deduced from the volume constraint
−→ Flood algorithm

Antoine Lemoine Moment-of-Fluid on Cartesian grids November 19th, 2015 6/ 42



Introduction Finding the normal and the distance

Flood algorithm

flood direction

ξ3

ξ2

ξ1

ξ5

ξ6

ξ4

ξ7

Quadratic evolution
of volume in ξ

p1

p2

p3

p4 p5

p6

p7

Initial condition
Flood direction n
Volume of fluid |ω?| = |Ω|/2
p4 first point
ξ4 first distance

Reference: Breil, J., Gelera, S., & Maire, P. H. (2011).
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Flood algorithm

flood direction

ξ3

ξ2

ξ1

ξ5

ξ6

ξ4

ξ7

p1

p2

p3

p4 p5

p6

p7

Initial condition
Flood direction n
Volume of fluid |ω?| = |Ω|/2
p4 first point
ξ4 first distance

Sequential algorithm (find ξ∗)
1 ξ∗ /∈ [ξ4, ξ3]
2 ξ∗ /∈ [ξ3, ξ5]
3 ξ∗ /∈ [ξ5, ξ2]
4 ξ∗ ∈ [ξ5, ξ2]
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Introduction Finding the normal and the distance

Flood algorithm

flood direction

ξ3

ξ2

ξ1

ξ5

ξ6

ξ4

ξ7

Quadratic evolution
of volume in ξ

ξ∗

p1

p2

p3

p4 p5

p6

p7

Initial condition
Flood direction n
Volume of fluid |ω?| = |Ω|/2
p4 first point
ξ4 first distance

Sequential algorithm (find ξ∗)
1 ξ∗ /∈ [ξ4, ξ3]
2 ξ∗ /∈ [ξ3, ξ5]
3 ξ∗ /∈ [ξ5, ξ2]
4 ξ∗ ∈ [ξ5, ξ2]

Result
ξ∗ given by quadratic
interpolation

Reference: Breil, J., Gelera, S., & Maire, P. H. (2011).
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Introduction Limitations of VOF methods

Limitations of VOF methods

Original interface

0

0.5

0.5

0

0
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0

0
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0

0

0.5

0.5

0

0

0.5

0.5

0

VOF representation PLIC reconstruction

Original interface is piecewise linear in each cell

Reconstruction should be exact!

Problem
The volume fraction is insufficient to make a cell-wise reconstruction

Idea
Add information to have a local (cell-wise) reconstruction −→ Moment of Fluid
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Interface reconstruction

1 Introduction

2 Interface reconstruction

3 Advection

4 Numerical results

5 Perspectives

Antoine Lemoine Moment-of-Fluid on Cartesian grids November 19th, 2015 9/ 42



Interface reconstruction Definitions

Moment-of-fluid: Moment?

Momentum of order 0 (volume)

M0(ω) =
∫

ω

dx = |ω|

Volume fraction (relative to a cell Ω)

µ(ω) = M0(ω)
M0(Ω)

1.2

1.5

ω

Ω

(0,0)

(2,2)

M0(Ω) = 4
M0(ω) = 0.9
µ(ω) = 0.225

Momentum of order 1

M1(ω) =
∫

ω

xdx

Centroid

xc(ω) = M1(ω)
M0(ω)

1.2

1.5

×
xc(ω)

Ω

(0,0)

(2,2)

M0(ω) = 0.9
M1(ω) = (0.45, 0.36)
xc(ω) = (0.5, 0.4)
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Interface reconstruction Minimization

Moment-of-fluid: Formulation

Data:

Volume fraction of any fluids µ in each cells

Centroid of any fluids xc in each cells

Reconstruction method:

VOF: |ω`| = |ω?| for each cell
−→ under-determined problem!

MOF: |ω`| = |ω?| and xc(ω`) = xc(ω?) for each cell
−→ over-determined problem!

Minimization problem:

Find ω` = argmin
ω`

|xc(ω`)− xc(ω?)|2

Under constraint |ω`| = |ω?|

Reference: Dyadechko, V., Shashkov, M. (2007)
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Interface reconstruction Minimization

Minimization: Example

µ(ω?) = 0.3
xc(ω?) = (−0.3,−0.3)

Objective function:

×
xc(ω?)

0 π
2

π 3π
2

2π
0

0.2

0.4

0.6

0.8

1

angle φ

|x
c
(ω
`
(φ

))
−

x
c
(ω
?
)|

2

Solution: φ ≈ 0.841
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Interface reconstruction Minimization

Example of static reconstruction: Zigzags

Volume fraction and centroids data from: Dyadechko, V., Shashkov, M. (2007)
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Interface reconstruction Minimization

Example of static reconstruction: Compass

Volume fraction and centroids data from: Dyadechko, V., Shashkov, M. (2007)
Antoine Lemoine Moment-of-Fluid on Cartesian grids November 19th, 2015 14/ 42



Interface reconstruction Minimization

Example of static reconstruction: Pie

Volume fraction and centroids data from: Dyadechko, V., Shashkov, M. (2007)
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Interface reconstruction Minimization

Example of static reconstruction: Stars

Volume fraction and centroids data from: Dyadechko, V., Shashkov, M. (2007)
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Interface reconstruction Analytic reconstruction

Analytic reconstruction: Motivations

µ = 0.3

µ = 0.8

On Cartesian grids, cells are rectangles
Rectangle are very simple shapes
Upgrade a VOF algorithm
Easier to implement
No problem with local minima
Faster?
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Interface reconstruction Analytic reconstruction

Analytic reconstruction: possible configurations (µ ≤ 0.5)

H P H

P P

H P H
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Interface reconstruction Analytic reconstruction

Analytic solution: Parabola

(0, 0)

(cx, cy)

x

P (x)

×(px, py)

For all x ∈
[
cx

3 ,
2cx

3

]
P (x) = V

2cx
+ 6V

cx

(1
2 −

x

cx

)2

Let p = (px, py) any point of R2

The closest point of p to the parabola P is its orthogonal projection
The coordinate x of xc(ω`) = (x, P (x)) is one of the solution of

x− px −
12V
c2x

(1
2 −

x

cx

)(
V

2cx
− py

)
− 72V 2

c3x

(1
2 −

x

cx

)3
= 0
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Interface reconstruction Analytic reconstruction

Analytic solution: Hyperbola

(0, 0)

(cx, cy)

x

H(x)

×(px, py)

For all x ∈
[

1
3

√
2V cx

cy
,
cx

3

]
H(x) = 9V

2x
Let p = (px, py) any point of R2

The closest point of p to the hyperbola H is its orthogonal projection
The coordinate x of xc(ω`) = (x,H(x)) is one of the solution of

x4 + pxx
3 + 2

9V pyx−
(2V

9

)2
= 0
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Interface reconstruction Analytic reconstruction

Analytic solution: Algorithm

Q1 Q2

Q3Q4

×xc(ω?)

1 2 3

4 5 6

7 8 9

1 If µ > 0.5 solve the dual problem
2 Locate the quadrant where xc(ω?) is

xc(ω?) ∈ Q1 try {1, 2, 4}
xc(ω?) ∈ Q2 try {2, 3, 6}
xc(ω?) ∈ Q3 try {6, 8, 9}
xc(ω?) ∈ Q4 try {4, 7, 8}

3 Solve 2 cubic and 1 quartic
4 Find the closest solution
5 Compute n and d from the solution

Antoine Lemoine Moment-of-Fluid on Cartesian grids November 19th, 2015 21/ 42



Interface reconstruction Analytic reconstruction

Moment of Fluid: Summary

Stencil reduced to only one cell

Analytic reconstruction is about 30% faster than minimization

What about multimaterial?
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Interface reconstruction Multiphase reconstruction

Multiphase reconstruction: Serial dissection

The best solution minimizes the sum of the centroid defects.
Source: Dyadechko, V., Shashkov, M. (2008)
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Interface reconstruction Multiphase reconstruction

Multiphase reconstruction: Examples

Source: Dyadechko, V., Shashkov, M. (2008)
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Advection

1 Introduction

2 Interface reconstruction

3 Advection

4 Numerical results

5 Perspectives
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Advection Backward advection

Advection

Backward advection: Compute the pre-image Ωn−1 of Ωn with a Runge-Kutta 2 method.

Backward advection Polygonal intersection
red fluid

Polygonal intersection
blue fluid

Compute the volume of red and blue fluid.

Remark: Only the vertices of the cell are advected. The volume is not exactly
preserved.
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Advection Backward advection

Advection: Centroids

We can show that the centroids almost follow an advection equation:

d

dt
xc(ω) = v(xc(ω)) +O(h2)

Advection algorithm:
Backward advection of the cell (RK2)
Intersection of the fluid polygons
Compute volume and centroids
Forward advection of the centroids (RK2)

Ωi

x∗
i

Source: Dyadechko, V., Shashkov, M. (2007)
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Advection Results

Advection: 2 fluids on a sheared flow
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Advection Results

Advection: 5 fluids on a sheared flow
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Antoine Lemoine Moment-of-Fluid on Cartesian grids November 19th, 2015 30/ 42



Advection Results

Advection: 5 fluids on a periodic flow
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Advection Results

Advection: Focus on the B-tree dissection

Without B-tree dissection With B-tree dissection
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Numerical results

1 Introduction

2 Interface reconstruction

3 Advection

4 Numerical results

5 Perspectives
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Numerical results

Numerical results: Error computation

∆Γ
∆ω

p1

p2

p3

p4 p5

p6

p7

Reference: Dyadechko, V., Shashkov, M. (2007)

Local errors
Distance error

∆Γ = max
x?∈Γ?

min
x∈Γ`

|x− x?|

Area of symmetric difference

∆ω = |ω`4ω?|

A4B = (A \B) ∪ (B \A)

A B

Global error
Average deviation (equivalent to ∆Γ)

∆Γavg = 1
|∂ω?|

N∑
i=1

|ω`
i4ω?

i |
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Numerical results

Numerical results: Sheared flow spatial convergence

Case description:

u(x, y) =
[
−2 sin2(πx) sin(πy) cos(πy)
2 sin2(πy) sin(πx) cos(πx)

]
cos
(
π
t

T

)
Parameters:

Iterations: 1000
Time step: 10−4 s
Mesh: N ×N , N ∈ {16, 32, · · · , 4096}
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Numerical results

Numerical results: Sheared flow spatial convergence

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

2−10

2−14

2−18

2−22

2−26

Cell number per direction
∆

Γ
a
v
g

N error order

1 024 3.09 · 10−7 2.11
2 048 7.19 · 10−8 2.10
4 096 1.60 · 10−8 2.17
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Numerical results

Numerical results: Sheared flow time convergence

10−3.8 10−3.6 10−3.4

2−23

2−22

2−21

2−20

Time step (s)

∆
Γ
a
v
g

Parameters:
Total time: 0.5 s
Time step:
{5 · 10−4, · · · , 1.25 · 10−4} s
Mesh: 1024× 1024

Does not converge!
Error about 10−7
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Numerical results

Numerical results: Sheared flow time convergence

10−3.8 10−3.6 10−3.4

2−22

2−18

2−14

Time step (s)

∆
Γ
a
v
g RK2

Euler

Parameters:
Total time: 0.5 s
Time step:
{5 · 10−4, · · · , 1.25 · 10−4} s
Mesh: 1024× 1024

Order 1 convergence with Euler.
Error RK2 < Error Euler

Spatial error dominates
⇒ Case without spatial error
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Numerical results

Numerical results: Accelerated front flow time convergence

10−3 10−2
2−23

2−20

2−17

2−14

Time step (s)

∆
Γ
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Velocity:

ux(x, y) = 0.3π sin(πt)

Order 2 with RK2
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Numerical results

Limitations of MOF: Filaments

×

×

×

Initial configuration

0

0

0

0

0

0

0.2×

0.2×

0.2×

MOF representation after advection

×

×

×

MOF reconstruction

The filament does not move if the time step is too small!
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Numerical results

Limitations of MOF: Possible solution

×

×

×

Initial configuration

0

0

0

0

0

0

0.2×

0.2×

0.2×

MOF representation after advection

×

×

×

MOF reconstruction

Virtual fluid A’

A BA’

Detection of filament at the advection step

Introduction of a virtual fluid A’

3-fluid reconstruction

Reference: Jemison, M., Sussman, M., Shashkov, M. (2015)
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Perspectives

1 Introduction
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4 Numerical results
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Perspectives

Perspectives

MOF:

3D

Filaments

Analytic solutions for triangles and quadrangles

Around MOF:

Coupling with immersed boundaries

CLS-MOF

Order 2 with the energy equation and Navier-Stokes
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Centroid advection

Fluid domain ω(t). Eulerian velocity u(x, t). div u = 0.

d

dt

∫
ω(t)

xdx =
∫

ω(t)

(
∂

∂t
Id(x) + u(x, t) · ∇Id(x) + Id(x) div u(x, t)

)
dx

=
∫

ω(t)
u(x, t)dx

=
∫

ω(t)

(
u(xc, t) + [∇u(xc, t)] (x− xc) +O(|x− xc|2)

)
dx

= |ω(t)|u(xc, t) +∇u(xc, t)
∫

ω(t)
(x− xc)dx︸ ︷︷ ︸

=0

+O(h2)

Thus
d

dt
xc = u(xc) +O(h2)
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