

Moment-of-Fluid on Cartesian grids

Interface representation & reconstruction

Antoine LEMOINE¹ Stéphane GLOCKNER¹ Jérôme Breil²

 1 I2M 2 CEA/CELIA

November $19th$, 2015

Introduction: representing multiphase flow

How to represent multiphase flow on meshes?

?

Source: BlueWater by trancedman, DeviantArt

Cartesian grid

Physics

- Multiphase flow
- Immiscible fluids
- **Mass conservation**

 \bullet . . .

Numerical representation

- Volume-of-fluid
- **a** Level-set
- **•** Front tracking
- **Moment-of-fluid**
- \bullet . . .

[Introduction](#page-1-0)

[Interface reconstruction](#page-18-0)

[Advection](#page-40-0)

[Numerical results](#page-48-0)

Example: Volume-of-Fluid

Representation \neq Reconstruction

'True' interface

VOF representation PLIC reconstruction

VOF: Volume-of-Fluid PLIC: Piecewise Linear Interface Construction

Original data

- Ω polygonal cell of vertices $\{p_1, \cdots, p_n\}$
- ω_1^\star portion of fluid 1 in the cell Ω

-
-
-
- *n*(*φ*) interface normal
- *φ* angle with the horizontal axis

-
-

Original data

- Ω polygonal cell of vertices $\{p_1, \cdots, p_n\}$
- ω_1^\star portion of fluid 1 in the cell Ω

Representation

 $|\omega_1^{\star}|$ volume of fluid 1

-
-
-
- *n*(*φ*) interface normal
- *φ* angle with the horizontal axis

-
- *d* distance to the origin

Original data

- Ω polygonal cell of vertices $\{p_1, \dots, p_n\}$
- ω_1^\star portion of fluid 1 in the cell Ω

Representation

 $|\omega_1^{\star}|$ volume of fluid 1

Reconstruction

- $\omega_1^\ell(\phi)$ polygonal approximation of ω_1^\star
- $|\omega_1^\ell(\phi)| = |\omega_1^\star|$ (volume conservation)
- $\Gamma^{\ell}(\phi) = \partial \Omega \setminus \partial \omega_1^{\ell}(\phi)$ interface
- *n*(*φ*) interface normal
- *φ* angle with the horizontal axis

-
-

Original data

- Ω polygonal cell of vertices $\{p_1, \dots, p_n\}$
- ω_1^\star portion of fluid 1 in the cell Ω

Representation

 $|\omega_1^{\star}|$ volume of fluid 1

Reconstruction

- $\omega_1^\ell(\phi)$ polygonal approximation of ω_1^\star
- $|\omega_1^\ell(\phi)| = |\omega_1^\star|$ (volume conservation)
- $\Gamma^{\ell}(\phi) = \partial \Omega \setminus \partial \omega_1^{\ell}(\phi)$ interface
- *n*(*φ*) interface normal
- *φ* angle with the horizontal axis

 $\mathsf{Parametrization}\;\Gamma^\ell=\{\boldsymbol{x}\in \Omega/\boldsymbol{x}\cdot\boldsymbol{n}=d\}$

- *n* interface normal
- *d* distance to the origin

How to find *d* and *n*?

What do we want?

- \rightarrow Find a linear interface *as close as possible* of the original interface
	- Problem: 1 constraint, 2 unknown
	- Hard part: finding *n*

Classic methods that use information of surrounding cells:

- **•** Gradient of volume fraction
- **•** Least-square
- LVIRA, ELVIRA
- 0.111
- \bullet Easy part: if we know n , the distance d can be deduced from the volume constraint $→$ Flood algorithm

Initial condition

- Flood direction *n*
- Volume of fluid $|\omega^{\star}| = |\Omega|/2$
- p_4 first point
- *ξ*⁴ first distance

Initial condition

- Flood direction *n*
- Volume of fluid $|\omega^{\star}| = |\Omega|/2$
- p_4 first point
- *ξ*⁴ first distance

Sequential algorithm (find *ξ* ∗)

1 $\xi^* \notin [\xi_4, \xi_3]$ ² *ξ* [∗] ∈*/* [*ξ*3*, ξ*5] **3** $\xi^* \notin [\xi_5, \xi_2]$

Initial condition

- Flood direction *n*
- Volume of fluid $|\omega^{\star}| = |\Omega|/2$
- p_4 first point
- *ξ*⁴ first distance

Sequential algorithm (find *ξ* ∗)

 $\xi^* \notin [\xi_4, \xi_3]$ $\xi^* \notin [\xi_3, \xi_5]$ $\xi^* \notin [\xi_5, \xi_2]$ *ξ* [∗] ∈ [*ξ*5*, ξ*2]

Initial condition

- Flood direction *n*
- Volume of fluid $|\omega^{\star}| = |\Omega|/2$
- p_4 first point
- *ξ*⁴ first distance

Sequential algorithm (find *ξ* ∗)

 $\xi^* \notin [\xi_4, \xi_3]$ $\xi^* \notin [\xi_3, \xi_5]$ $\xi^* \notin [\xi_5, \xi_2]$ *ξ* [∗] ∈ [*ξ*5*, ξ*2]

Initial condition

- Flood direction *n*
- Volume of fluid $|\omega^{\star}| = |\Omega|/2$
- p_4 first point
- *ξ*⁴ first distance

Sequential algorithm (find *ξ* ∗)

 $\xi^* \notin [\xi_4, \xi_3]$ $\xi^* \notin [\xi_3, \xi_5]$ $\xi^* \notin [\xi_5, \xi_2]$ *ξ* [∗] ∈ [*ξ*5*, ξ*2]

Initial condition

- Flood direction *n*
- Volume of fluid $|\omega^{\star}| = |\Omega|/2$
- p_4 first point
- *ξ*⁴ first distance

Sequential algorithm (find *ξ* ∗)

 $\xi^* \notin [\xi_4, \xi_3]$ $\xi^* \notin [\xi_3, \xi_5]$ $\xi^* \notin [\xi_5, \xi_2]$ *ξ* [∗] ∈ [*ξ*5*, ξ*2]

Result

ξ ∗ given by quadratic interpolation

Limitations of VOF methods

 Ω 0.5 0.5 Ω Ω 0.5 0.5 Ω Ω 0.5 0.5 Ω Ω 0.5 0.5 Ω Ω 0.5 0.5 Ω

Original interface

VOF representation PLIC reconstruction

- Original interface is piecewise linear in each cell
- Reconstruction should be exact!

Limitations of VOF methods

 Ω 0.5 0.5 Ω Ω 0.5 0.5 Ω Ω 0.5 0.5 Ω Ω 0.5 0.5 Ω Ω 0.5 0.5 Ω

Original interface

VOF representation PLIC reconstruction

- Original interface is piecewise linear in each cell
- Reconstruction should be exact!

Problem

The volume fraction is insufficient to make a cell-wise reconstruction

Limitations of VOF methods

 Ω 0.5 0.5 Ω Ω 0.5 0.5 Ω Ω 0.5 0.5 Ω Ω 0.5 0.5 Ω Ω 0.5 0.5 Ω

Original interface

VOF representation PLIC reconstruction

- Original interface is piecewise linear in each cell
- Reconstruction should be exact!

Problem

The volume fraction is insufficient to make a cell-wise reconstruction

Idea

Add information to have a local (cell-wise) reconstruction $→$ Moment of Fluid

1 [Introduction](#page-1-0)

2 [Interface reconstruction](#page-18-0)

³ [Advection](#page-40-0)

[Numerical results](#page-48-0)

[Perspectives](#page-57-0)

Moment-of-fluid: Moment?

Momentum of order 0 (volume)

$$
M_0(\omega)=\int_\omega d\bm{x}=|\omega|
$$

Volume fraction (relative to a cell Ω)

$$
\mu(\omega) = \frac{M_0(\omega)}{M_0(\Omega)}
$$

\n- $$
M_0(\Omega) = 4
$$
\n- $M_0(\omega) = 0.9$
\n- $\mu(\omega) = 0.225$
\n

$$
\bm{M_1}(\omega)=\int_\omega \bm{x}d\bm{x}
$$

$$
\boldsymbol{x}_c(\omega)=\frac{\boldsymbol{M_1}(\omega)}{M_0(\omega)}
$$

• $M_0(\omega) = 0.9$ • $M_1(\omega) = (0.45, 0.36)$ $\bullet x_c(\omega) = (0.5, 0.4)$

Moment-of-fluid: Moment?

Momentum of order 0 (volume)

$$
M_0(\omega)=\int_\omega d\bm{x}=|\omega|
$$

Volume fraction (relative to a cell Ω)

$$
\mu(\omega) = \frac{M_0(\omega)}{M_0(\Omega)}
$$

\n- $$
M_0(\Omega) = 4
$$
\n- $M_0(\omega) = 0.9$
\n- $\mu(\omega) = 0.225$
\n

Momentum of order 1

$$
\bm{M_1}(\omega)=\int_\omega \bm{x}d\bm{x}
$$

Centroid

$$
\boldsymbol{x}_c(\omega)=\frac{\boldsymbol{M_1}(\omega)}{M_0(\omega)}
$$

 $M_0(\omega) = 0.9$ $M_1(\omega) = (0.45, 0.36)$ $\boldsymbol{x}_c(\omega) = (0.5, 0.4)$

Moment-of-fluid: Formulation

Data:

- Volume fraction of any fluids *µ* in each cells
- Centroid of any fluids *x^c* in each cells

• Find
$$
\omega^{\ell} = \operatorname*{argmin}_{\omega^{\ell}} |x_c(\omega^{\ell}) - x_c(\omega^{\star})|^2
$$

Moment-of-fluid: Formulation

Data:

- Volume fraction of any fluids *µ* in each cells
- Centroid of any fluids *x^c* in each cells

Reconstruction method:

- $\mathsf{VOF}\colon |\omega^\ell| = |\omega^\star| \text{ for each cell }$ → under-determined problem!
- $\mathsf{MOF}\colon |\omega^{\ell}| = |\omega^{\star}|$ and $\bm{x}_c(\omega^{\ell}) = \bm{x}_c(\omega^{\star})$ for each cell → over-determined problem!

\n- Find
$$
\omega^{\ell} = \operatorname*{argmin}_{\omega^{\ell}} |x_c(\omega^{\ell}) - x_c(\omega^*)|^2
$$
\n- Under constraint $|\omega^{\ell}| = |\omega^*|$
\n

Moment-of-fluid: Formulation

Data:

- Volume fraction of any fluids *µ* in each cells
- Centroid of any fluids *x^c* in each cells

Reconstruction method:

- $\mathsf{VOF}\colon |\omega^\ell| = |\omega^\star| \text{ for each cell }$ → under-determined problem!
- $\mathsf{MOF}\colon |\omega^{\ell}| = |\omega^{\star}|$ and $\bm{x}_c(\omega^{\ell}) = \bm{x}_c(\omega^{\star})$ for each cell → over-determined problem!

Minimization problem:

• Find
$$
\omega^{\ell} = \underset{\omega^{\ell}}{\operatorname{argmin}} \ |\boldsymbol{x}_c(\omega^{\ell}) - \boldsymbol{x}_c(\omega^{\star})|^2
$$

Under constraint $|\omega^{\ell}| = |\omega^{\star}|$

Reference: Dyadechko, V., Shashkov, M. (2007)

•
$$
\mu(\omega^*) = 0.3
$$

\n• $\bm{x}_c(\omega^*) = (-0.3, -0.3)$

Objective function:

Solution: $\phi \approx 0.841$

•
$$
\mu(\omega^*) = 0.3
$$

\n• $\bm{x}_c(\omega^*) = (-0.3, -0.3)$

locus of the centroids for $\mu = 0.3$

Objective function:

Solution: $\phi \approx 0.841$

•
$$
\mu(\omega^*) = 0.3
$$

• $\bm{x}_c(\omega^*) = (-0.3, -0.3)$

locus of the centroids for $\mu = 0.3$

Objective function:

Solution: $\phi \approx 0.841$

•
$$
\mu(\omega^*) = 0.3
$$

\n• $\bm{x}_c(\omega^*) = (-0.3, -0.3)$

Example of static reconstruction: Zigzags

Example of static reconstruction: Compass

Example of static reconstruction: Pie

Example of static reconstruction: Stars

Analytic reconstruction: Motivations

- On Cartesian grids, cells are rectangles
- Rectangle are very simple shapes
- Upgrade a VOF algorithm
- **•** Easier to implement
- No problem with local minima
- **•** Faster?

Analytic reconstruction: possible configurations ($\mu \leq 0.5$)

Analytic solution: Parabola

For all
$$
x \in \left[\frac{c_x}{3}, \frac{2c_x}{3}\right]
$$

$$
P(x) = \frac{V}{2c_x} + \frac{6V}{c_x} \left(\frac{1}{2} - \frac{x}{c_x}\right)^2
$$

Let $\boldsymbol{p}=(p_x,p_y)$ any point of \mathbb{R}^2

The closest point of *p* to the parabola *P* is its orthogonal projection The coordinate x of $\boldsymbol{x}_c(\omega^\ell) = (x, P(x))$ is one of the solution of

$$
x - p_x - \frac{12V}{c_x^2} \left(\frac{1}{2} - \frac{x}{c_x}\right) \left(\frac{V}{2c_x} - p_y\right) - \frac{72V^2}{c_x^3} \left(\frac{1}{2} - \frac{x}{c_x}\right)^3 = 0
$$

Analytic solution: Hyperbola

$$
x \in \left[\frac{1}{3}\sqrt{2V\frac{c_x}{c_y}}, \frac{c_x}{3}\right]
$$
\n
$$
H(x) = \frac{9V}{2x}
$$
\n
$$
u(x) = \frac{9V}{2x}
$$
\n
$$
u(x) = \frac{9V}{2x}
$$
\n
$$
u(x) = \frac{9V}{2x}
$$

Let $\boldsymbol{p}=(p_x,p_y)$ any point of \mathbb{R}^2

The closest point of *p* to the hyperbola *H* is its orthogonal projection The coordinate x of $\boldsymbol{x}_c(\omega^\ell) = (x,H(x))$ is one of the solution of

$$
x^{4} + p_{x}x^{3} + \frac{2}{9}Vp_{y}x - \left(\frac{2V}{9}\right)^{2} = 0
$$

For all

Analytic solution: Algorithm

1 If $\mu > 0.5$ solve the dual problem $\bar{\textbf{2}}$ Locate the quadrant where $\bm{x}_c(\omega^\star)$ is $x_c(\omega^{\star}) \in Q_1$ try $\{1, 2, 4\}$ $\boldsymbol{x}_c(\omega^\star) \in Q_2$ try $\{2,3,6\}$ $x_c(\omega^\star) \in Q_3$ try $\{6,8,9\}$ $x_c(\omega^\star) \in Q_4$ try $\{4,7,8\}$ Solve 2 cubic and 1 quartic Find the closest solution ⁵ Compute *n* and *d* from the solution

Moment of Fluid: Summary

- Stencil reduced to only one cell
- Analytic reconstruction is about 30% faster than minimization
- . What about multimaterial?

Multiphase reconstruction: Serial dissection

The best solution minimizes the sum of the centroid defects.

Source: Dyadechko, V., Shashkov, M. (2008)

Multiphase reconstruction: Examples

Source: Dyadechko, V., Shashkov, M. (2008)

1 [Introduction](#page-1-0)

² [Interface reconstruction](#page-18-0)

³ [Advection](#page-40-0)

[Numerical results](#page-48-0)

[Perspectives](#page-57-0)

Advection

Backward advection: Compute the pre-image Ω^{n-1} of Ω^n with a Runge-Kutta 2 method.

Compute the volume of red and blue fluid.

Remark: Only the vertices of the cell are advected. The volume is not exactly preserved.

We can show that the centroids almost follow an advection equation:

$$
\frac{d}{dt}\boldsymbol{x}_c(\omega)=\boldsymbol{v}(\boldsymbol{x}_c(\omega))+\mathcal{O}(h^2)
$$

Advection algorithm:

- Backward advection of the cell (RK2)
- Intersection of the fluid polygons
- Compute volume and centroids
- Forward advection of the centroids (RK2)

Source: Dyadechko, V., Shashkov, M. (2007)

Advection: 2 fluids on a sheared flow

Advection: 5 fluids on a sheared flow

[Advection](#page-45-0) [Results](#page-45-0)

Advection: 5 fluids on a sheared flow

[Advection](#page-46-0) [Results](#page-46-0)

Advection: 5 fluids on a periodic flow

[Advection](#page-47-0) [Results](#page-47-0)

Advection: Focus on the B-tree dissection

Without B-tree dissection With B-tree dissection

1 [Introduction](#page-1-0)

² [Interface reconstruction](#page-18-0)

³ [Advection](#page-40-0)

4 [Numerical results](#page-48-0)

[Perspectives](#page-57-0)

Numerical results: Error computation

Local errors

• Distance error

$$
\Delta\Gamma = \max_{\bm{x}^\star \in \Gamma^\star} \min_{\bm{x} \in \Gamma^\ell} |\bm{x} - \bm{x}^\star|
$$

Area of symmetric difference

 $\Delta \omega = |\omega^{\ell} \triangle \omega^{\star}|$

$$
A \triangle B = (A \setminus B) \cup (B \setminus A)
$$

Global error

• Average deviation (equivalent to $\Delta\Gamma$)

$$
\Delta \Gamma_{avg} = \frac{1}{|\partial \omega^\star|} \sum_{i=1}^N |\omega_i^\ell \Delta \omega_i^\star|
$$

Reference: Dyadechko, V., Shashkov, M. (2007)

Numerical results: Sheared flow spatial convergence

Case description:

$$
\boldsymbol{u}(x,y) = \begin{bmatrix} -2\sin^2(\pi x)\sin(\pi y)\cos(\pi y) \\ 2\sin^2(\pi y)\sin(\pi x)\cos(\pi x) \end{bmatrix} \cos\left(\pi \frac{t}{T}\right)
$$

Parameters:

- Iterations: 1000
- Time step: 10^{-4} s
- Mesh: $N \times N$, $N \in \{16, 32, \cdots, 4096\}$

[Numerical results](#page-51-0)

Numerical results: Sheared flow spatial convergence

Numerical results: Sheared flow time convergence

Numerical results: Sheared flow time convergence

Parameters:

- Total time: 0*.*5 s
- Time step: $\{5\cdot 10^{-4}, \cdots, 1.25\cdot 10^{-4}\}$ s
- \bullet Mesh: 1024×1024

Order 1 convergence with Euler. Error RK2 < Error Euler

Spatial error dominates ⇒ Case without spatial error

[Numerical results](#page-54-0)

Numerical results: Accelerated front flow time convergence

Limitations of MOF: Filaments

Initial configuration

MOF representation after advection

MOF reconstruction

The filament does not move if the time step is too small!

Limitations of MOF: Possible solution

Initial configuration

MOF reconstruction

Virtual fluid A'

- **•** Detection of filament at the advection step
- Introduction of a virtual fluid A'
- 3-fluid reconstruction

Reference: Jemison, M., Sussman, M., Shashkov, M. (2015)

1 [Introduction](#page-1-0)

² [Interface reconstruction](#page-18-0)

³ [Advection](#page-40-0)

[Numerical results](#page-48-0)

Perspectives

MOF:

- \bullet 3D
- **e** Filaments
- Analytic solutions for triangles and quadrangles

Around MOF:

- Coupling with immersed boundaries
- CLS-MOF
- Order 2 with the energy equation and Navier-Stokes

Appendix

Fluid domain $\omega(t)$. Eulerian velocity $u(x, t)$. div $u = 0$.

$$
\frac{d}{dt} \int_{\omega(t)} x dx = \int_{\omega(t)} \left(\frac{\partial}{\partial t} \mathrm{Id}(x) + u(x, t) \cdot \nabla \mathrm{Id}(x) + \mathrm{Id}(x) \mathrm{div} \, u(x, t) \right) dx
$$
\n
$$
= \int_{\omega(t)} u(x, t) dx
$$
\n
$$
= \int_{\omega(t)} \left(u(x_c, t) + \left[\nabla u(x_c, t) \right] (x - x_c) + \mathcal{O}(|x - x_c|^2) \right) dx
$$
\n
$$
= |\omega(t)| u(x_c, t) + \nabla u(x_c, t) \underbrace{\int_{\omega(t)} (x - x_c) dx}_{=0} + \mathcal{O}(h^2)
$$

Thus

$$
\frac{d}{dt}\boldsymbol{x}_c = \boldsymbol{u}(\boldsymbol{x}_c) + \mathcal{O}(h^2)
$$