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SUMMARY

We propose a non-iterative method to connect non-matching block-structured meshes applied to the
resolution of the Navier–Stokes equations. The present article gives a complete description of the method
based on the implicit treatment of the connecting condition. We also extend it to curvilinear meshes. The
spatial convergence order of the method is shown to be two and the approach is validated on different
2D laminar flows frequently found in the literature. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A key step in a numerical simulation is the generation of a mesh, the first function of which
is to accurately follow the contour lines of the geometry. Generally speaking, meshes can be
distinguished as structured or unstructured, Cartesian or curvilinear, orthogonal or not, monoblock
or multiblock, etc. The starting point of this work is a computational fluid dynamics (CFD)
code written for one curvilinear, structured and orthogonal block. To extend its use to complex
geometries, it was natural to work on block-structured meshes. The freedom given by non-matching
interfaces allows geometry curves to be followed more precisely thanks to the fact that the blocks
are independent.

We first present the numerical context of this work by describing the models and numerical
methods of our CFD code Aquilon (Aq. on the figures and tables) and continue with a presentation
of the domain decomposition framework.

Next, we propose a method, first introduced in [1], of connecting non-conforming meshes.
It is non-iterative and relies on the implicit treatment of the interface condition. We apply it to
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the Navier–Stokes equations for laminar divergence-free flows in the framework of the augmented
Lagrangian method. Special attention is paid to the interpolation techniques used. For a better
comprehension of the implementation of the method, we present it first for Cartesian block-
structured meshes and then generalize to orthogonal curvilinear coordinate systems.

Finally, we show that the spatial convergence order of the method is two and validate it on
academic test cases such as the flow over a backward facing step, the lid-driven cavity flow and
the flow around a cylinder (stationary or not).

2. NUMERICAL CONTEXT

2.1. Numerical methods

We are interested in the incompressible Navier–Stokes equations:

∇ · u= 0 (1)

�

(
�u
�t

+ ∇ · (u ⊗ u)

)
= −∇ p + ∇ · �(∇u + ∇ tu) (2)

The implementation of the boundary conditions is done thanks to a penalization technique which
derives from a Fourier boundary condition found in thermal science [2] and expressed by

�T
�n

+ Bi(T − T∞) = 0 (3)

where T is the temperature, T∞ a reference temperature, and Bi the Biot number. According to
the values of Bi, one can impose a Dirichlet condition (Bi =∞), a Neumann condition (Bi = 0),
or a Fourier condition if the value of Bi is bounded between 0 and ∞.

A penalization term is added to the Navier–Stokes equations, written BIU(u− u∞) where BIU
is an order 2 diagonal tensor of component (BIUu , BIUv), with 0�BIUu �∞ and 0�BIUv�∞.

Thus, the Navier–Stokes system can be written as

∇ · u= 0 on �

�

(
�u
�t

+ ∇ · (u ⊗ u)

)
+ BIU(u − u∞) = −∇ p + ∇ · �(∇u + ∇ tu) on �

(∇u) · n= 0 on ��

(4)

Time implicit discretization is used and the inertial term is linearized at order one. The resolution
of the Navier–Stokes equations requires a consistent pressure and a divergence-free velocity field
to be obtained at each time step. This coupling is difficult to treat for incompressible flows where
pressure does not appear explicitly in the mass conservation equations. Two classes of methods
exist, depending on the fact whether the Navier–Stokes operator is split or not:

• None time splitting and exact space methods:

◦ Coupled resolution of velocity and pressure. It is tedious and complex because the matrices
are very ill conditioned.

◦ Artificial compressibility method described by Peyret and Taylor [3]. It takes into account
a perturbation parameter which acts on pressure in the mass continuity equation. Pressure
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BLOCK-STRUCTURED MESHES 1241

is eliminated from the momentum equations. This technique often gives ill-conditioned
matrices and needs an iterative method such as the Uzawa algorithm [4].

◦ Implicit approaches which are minimization methods under constraint. The augmented
Lagrangian method is one of them and has been analysed by Fortin and Glowinski [5]. It
is used in our code for laminar, incompressible, turbulent, multiphase flows [2, 6–9] and
is described later on.

• Time splitting methods. These consist of a prediction/diffusion step and a correction/projection
one for the velocity and pressure field. The following methods are often distinguished:

◦ Projection methods introduced by Chorin [10, 11] and their variants [12, 13].
◦ Incremental methods for the pressure correction introduced by Goda [14] and then improved
by Timmermans et al. [15].

◦ Prediction/correction algorithms such as SIMPLE (semi implicit method for pressure linked
equations) or SIMPLER (SIMPLE revised) [16, 17] which use a pressure correction equa-
tion to modify the velocity field.

2.1.1. The augmented Lagrangian method. The book of Fortin and Glowinsky [5] presents numer-
ous applications of this method applied to the resolution of partial differential equations, especially
the Stokes and Navier–Stokes problems. The Stokes system is formulated as a velocity–pressure
minimization–maximization problem requiring the computation of a saddle point (u, p) associated
with the augmented Lagrangian of the problem. The pressure is considered as a Lagrange multiplier
and the incompressibility constraint is introduced implicitly into the momentum equations. Then,
the saddle-point (u, p) is computed using an iterative Uzawa algorithm. On a more formal point
of view, if

L2(�) =
{
f,
∫

�
| f |2 d�<∞

}

H1
0 (�) =

{
f ∈ L2(�),

� f

�xi
∈ L2(�), i ∈ [1, 3], f |�� = 0

}

a functional J (v) is defined for each v∈ H1
0 (�), resulting from the weak formulation of the

momentum equations, and has to be minimized under the constraint

M ={v∈ H1
0 (�), ∇ · v= 0}

which is equivalent to find u∈ M such as

J (u) = min
v∈M(J (v)) (5)

The constraint is then satisfied thanks to a Lagrange multiplier q , transforming the problem
with the constraint M to a problem without constraint. The Lagrangian is defined as

L : M × L2 → �

(v, q) 	→ Lr (v, q) = J (v) −
∫

�
q∇ · v d�

(6)
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The minimization problem consists of finding the saddle-point (u, p) ∈ M × L2 of the
Lagrangian L which verifies

L(u, p) = min
v∈M

(
max
q∈L2

(L(v, q))

)

= max
q∈L2

(
min
v∈M (L(v, q))

)
(7)

To improve the convergence properties, for each (v, q)∈ M × L2, the augmented Lagrangian is
defined as

Lr : M × L2 → �

(v, q) 	→ Lr (v, q) = J (v) −
∫

�
q∇ · v d� +

∫
�

dr

2
|∇ · v|2 d�

(8)

A saddle-point of L is also a saddle-point of Lr (and reciprocally). It is demonstrated for the
Stokes problem and admitted for the Navier–Stokes equations, that, coming back to the strong
formulation, the saddle-point is also the solution of the system

∇ · u= 0

�

(
�u
�t

+ ∇ · (u ⊗ u)

)
+ BIU(u − u∞) = −∇ p + ∇ · �(∇u + ∇ tu) − dr∇(∇ · u)

(9)

The calculation of the solution is done thanks to the Uzawa iterative method [5] which generates
the following k-iterations (uk, pk) that can be stopped by setting a criterion based on the divergence
of the velocity field, i.e. ‖∇ · u‖��, with � small

Initialization
uk=0 = un and pk=0 = pn

Iterations
for k = 0, K − 1
computation of uk+1 solution of:

�n
(
uk+1

�t
+∇ · (uk+1 ⊗ uk)−uk+1∇ · uk

)
+BIU(uk+1−u∞)

= − ∇ pk + ∇ · �(∇uk+1+∇ tuk+1)+dr∇(∇ · uk+1)+�
uk

�t

(10)

updating of pk+1 with:
pk+1 = pk − dp∇ · uk+1

Solution
un+1 =uK , pn+1 = pK

It has been demonstrated [5] for the Stokes equations that the Uzawa algorithm converges under
the condition 0<dp�2dr . The use of high values of dr (up to 104, 105) increases the convergence
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BLOCK-STRUCTURED MESHES 1243

of the algorithm but leads to ill-conditioned matrix associated to the discretization of the problem.
Nevertheless, associated with a direct solver, this can be a judicious choice.

From a practical point of view, for the test cases described below, we have chosen dp= dr and
one to four iterations of the Uzawa algorithm. For a stationary problem, one iteration is enough,
convergence being done on the time iterations. For unstationary problems, we have used four
iterations at each time step to reach divergence level below 10−5.

Contrary to the time splitting methods, this algorithm does not even suffer from error introduced
by the splitting of the operators. The precision of the method is only driven by the time and space
schemes precisions. Finally, it has to be noted that no boundary condition is needed for the pressure,
which is calculated explicitly in the whole domain.

Verifying the incompressible constraint at the computer precision can be expensive with regard
to the CPU time. When the Uzawa algorithm is applied with few iterations, the resulting divergence
of the velocity field is small but not identically null. To circumvent this drawback, we have used
the vectorial projection method introduced by Caltagirone and Breil [18].

2.1.2. Vectorial projection method. Velocity un+1 is decomposed into u∗+u′ where u∗ is computed
by the augmented Lagrangian step and is considered as a predictive divergence-free velocity. The
latter verifies

�n
(
un+1

�t
+ ∇ · (un+1 ⊗ un) − un+1∇ · un

)
+ BIU(un+1 − u∞)

=−∇ pn + ∇ · �(∇un+1+∇ tun+1) + dr∇(∇ · un+1) + �
un

�t
(11)

By replacing un+1 by u∗ + u′ in (11), and with dr →∞, we obtain

∇(∇ · un+1) = ∇(∇ · u∗) + ∇(∇ · u′) = 0 (12)

or

∇(∇ · u′) =−∇(∇ · u∗) (13)

Both velocities un+1 and u∗ satisfy the physical boundary conditions. We deduce that the
boundary conditions of u′ are homogeneous.

The existence of the solution of the algebraic square system associated with Equation (13) is
ensured by the fact that the second member is in the range of the discrete operator. In addition,
one can check that the image is orthogonal to the kernel and thus their intersection is reduced to
the null vector. The latter property makes possible to ensure the uniqueness of the solution, at least
when the system is solved by an iterative method of Krylov type (BiCGStab in our case) while
starting the iterative algorithm by an initial guess in the range of the operator (zero for example).

2.1.3. Spatial discretization. This is based on the finite volume method on velocity–pressure
staggered grids of the Marker and Cells type [19]. Pressure unknowns are associated to the cell
vertices, whereas velocity component are face centred. The centred scheme of order 2 is used in
this work for the inertial and constraint terms.

A Dirichlet boundary condition on the normal component of the velocity field has to be verified on
the pressure nodes which belong to the physical boundary. The existence of velocity points outside
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the domain requires to write the penalization term of the Navier–Stokes equations BIU(u−u∞) as
BIU(flim(u)−u∞) where flim is a linear combination of the discrete unknowns (a centred scheme
is used).

The linear system is sparse, composed of nine diagonals in 2D. The multifrontal spare direct
solver MUMPS [20] is used to solve the Navier–Stokes linear system and a BiCGStab iterative
solver, ILU preconditioned, is used for the linear system associated with the vectorial projection
method.

2.2. On some domain decomposition methods

In this numerical context, it is natural to be interested in domain decomposition techniques which
offer a general framework for the treatment of block interfaces. Domain decomposition is based
on the idea that the solution of a global problem can be obtained by assembling solutions of
smaller, more regular ones. There are two fields of application: the first concerns the resolution
of large linear systems, the second multiphysical problems (scale change, fluid/structure coupling,
heterogeneous domains, etc.).

The principle of domain decomposition is quite simple. The domain is divided into sub-domains
on which the original problem is written again in such a way that solutions are coupled thanks to
appropriate conditions on the interfaces. Iterative techniques are usually used to solve the problem.
The main example is the Dirichlet/Neumann algorithm for the Laplacian problem where the
transmission condition connects the variables and their normal derivatives [21].

Generally speaking, domain decomposition deals with overlapping (or not) and conforming
(or not) sub-domains. Historically, H. A. Schwarz was the originator of these techniques, with
the additive and multiplicative algorithms. The main drawback of the Schwarz method is that
overlapping is necessary for convergence. An improvement consists in replacing overlapping by
a supplementary condition, the literature for which is very rich. The Dirichlet condition can be
replaced by a Robin condition [22].

Our strategy is to work with overlapping. The challenge is then to find an adequate projection
operator on the interfaces between the blocks. In this field, the mortar method has been proposed
[23–25]. A method, based on the Robin condition, also deals with these problems [26, 27].

Another approach, the Chimera method [28, 29], is generally applied to aeronautical problems.
Originally, this method aims to simplify mesh generation, coupling between blocks being achieved
by an iterative Dirichlet/Dirichlet condition. Other interface conditions have also been proposed
[30] (Dirichlet/Neumann, Dirichlet/Robin). Brezzi et al. [31] have proved that the Chimera method
is a variant of the Schwarz algorithm.

Non-matching meshes raise the classical question of interpolation. This difficulty becomes
important when it is necessary to interpolate under constraint (here ∇ · u= 0). The question is to
know if precise and conservative operators exist. Generally, interpolation is conservative when it is
based on finite volume techniques [32]. Fluxes (of mass, momentum or energy) through interfaces
are calculated using local balance with a neighbouring block or a projection. Non-conservative
interpolation is based on mathematical interpolation of the variables (Lagrange interpolation for in-
stance). Some authors who use a non-conservative interpolation have shown that mass conservation
is directly linked to the order of the interpolation method [33]. Although the conservative/non-
conservative dilemma remains important, it has been minimized by Meakin [34]. According to
him, what is important in the treatment of the interface is the sharpness of the grid. A precise
non-conservative method can give better results than a less precise conservative one.
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2.2.1. Towards an implicit connection between blocks. We have chosen an implicit resolution of
the conservation equations and the connecting conditions at the interface. The method is built on
non-conservative interpolation of the variables. Polynomial coefficients are present in the global
linear system and couple, at the same time, the solution both at each block and at the interfaces. This
method can be seen as a non-iterative, implicit Dirichlet/Dirichlet condition for which minimal
overlapping is necessary.

3. AN IMPLICIT METHOD FOR CONNECTING BLOCKS

Block-structured meshes allow a domain to be cut out according to the geometric contour. Generally,
blocks have different orientations from one another, which induces a discontinuity of the mesh lines
through the interfaces. We must connect the blocks by transferring the missing information from
block to block. Polynomial interpolations are built and integrated as special boundary conditions
in the global linear system. The proposed solution for transferring the information between blocks
consists in implicitly interpolating a field � at the nodes situated on the interfaces by using the
nodes of the adjacent block. This interpolation can be considered as a new implicit boundary
condition used for the discretization of the equation at the nodes strictly inside the different blocks
(see Figure 1).

We will first present the method in the case of Cartesian blocks with parallel interfaces, then
extend it to the case of Cartesian blocks of any orientation, and finally generalize it to curvilinear
grids.

3.1. Parallel blocks

The variable � (u or v) defined on block (b) is interpolated, which gives the new boundary condition
on block (a). We recall that the penalization term of the momentum equations used for the boundary
conditions is written BIU(flim(u) − u∞). Here, the expression of u∞ at the nodes of an interface
is the result of the interpolation of the values of u on the adjacent block. The interpolation of the
normal component of the velocity field to the interface is performed on pressure nodes, whereas
velocity nodes are used for interpolating the tangential component (see Figure 2).

Interpolation is based on the construction of a polynomial basis of a given order. For instance,
if � represents u or v, the interpolation of � at a point M0(x0, y0) that belongs to a block (a) (or

Figure 1. Connecting method for non-conforming meshes.
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Figure 2. Interpolation of the velocity vector on a staggered grid.

at a point M ′
0(x0, y0) for v), is obtained from the values of � on block (b) by the relation:

�(a)(x0, y0) = fint(�
(b)
i ) =

N∑
i=1

Fi (x0, y0)�
(b)
i (xi , yi ) (14)

in which the Fi are the values at the point (x0, y0) of the N polynomials that constitute the
polynomial basis, and �(b)

i are the N values of the field � at the interpolation nodes Mi (xi , yi ) of
block (b).

The interpolations must now be constructed locally to each node of the interface. The technique
consists in building a canonical basis of Q-type polynomials of order d thanks to the neighbouring
nodes of M0(x0, y0). The number of nodes required depends on the order of the chosen polynomial.

In order to reduce the values of the coefficient of the polynomial, M0 is chosen as the centre of
the frame. A polynomial Q(d)

i built using the Mi nodes, 1�i�(d + 1)2 is written

Q(d)
i (x − x0, y − y0) =

d∑
m=0

d∑
n=0

amni (x − x0)
m(y − y0)

n (15)

It has the following properties:

∀i, j, 1�i, j�(d + 1)2, Q(d)
i (x − x0, y − y0) = �i j (16)

A (d + 1)2x(d + 1)2 linear system is built (17), Equation (16) being a line of the matrix.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a001 · amn1 · add1

· · ·
a00i amni addi

· · ·
a00(d+1) · amn(d+1) · add(d+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · 0 · 0

· · ·
0 · 1 · 0

· · ·
0 · 0 · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)
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Figure 3. Representation of the Navier–Stokes matrix on 2 blocks.

with B given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x1 − x0)
0(y1 − y0)

0 · (xi − x0)
0(yi − y1)

0 · (xd+1 − x0)
0(yd+1 − y0)

0

· · ·
(x1 − x0)

m(y1 − y0)
n (xi − x0)

m(yi − y1)
n (xd+1 − x0)

0(yd+1 − y0)
n

· · ·
(x1 − x0)

d(y1 − y0)
d · (xi − x0)

d(yi − y1)
d · (xd+1 − x0)

0(yd+1 − y0)
d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

The inversion of the linear system (one for each interface node) is carried out once during the
preparation step of a simulation (before the time loop resolution). The value of the field � at node
M0(x0, y0) is then given by

�(a)(x0, y0) =
(d+1)2∑
i=1

Q(d)
i (0, 0)�(b)(xi , yi ) (19)

It can be seen that the polynomial coefficients Qd
i (0, 0) are not time dependent. By writing

Equation (19) at time n + 1, the Q(d)
i can be placed in the linear system (see Figure 3) of the

momentum equations. Thus, on a matrix line corresponding to an interface node, non-zero elements
are the main diagonal and the elements with a column number correspond to the unknowns used
to interpolate the field.

3.2. Cartesian blocks with any orientation

In the general case, the interface is not parallel to the mesh lines of the adjacent block. We consider
now the case of two blocks (a) and (b) with non-collinear local frames (i (a), j (a)) and (i (b), j (b))
(see Figure 4). Both components of the velocity vector are thus necessary for the interpolation
of each component. Frame changes are then required. As the velocity vector can be defined at
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Figure 4. Interpolation of the velocity vector with frame change.

Figure 5. Interpolation of the velocity vector (curvilinear mesh).

the pressure node, the interpolation is performed at these nodes. Thus, for each component, the
number of interpolations is doubled compared to the previous case:

u(a)(x0, y0) = cos �
(d+1)2∑
i=1

Q(d)
i (0, 0)u(b)

i (xi , yi ) − sin �
(d+1)2∑
i=1

Q(d)
i (0, 0)u(b)

i (xi , yi )

v(a)(x ′
0, y

′
0) = sin �

(d+1)2∑
i ′=1

Q(d)

i ′ (0, 0)v(b)
i ′ (xi ′, yi ′) + cos �

(d+1)2∑
i ′=1

Q(d)

i ′ (0, 0)v(b)
i ′ (xi ′, yi ′)

(20)

with � the angle between the frames (i (a), j (a)) and (i (b), j (b)), and u(b), v(b) the velocity com-
ponents at the pressure node.

3.3. Curvilinear blocks

In the case of curvilinear blocks, the velocity field is defined on a local frame that is different at
each point of the domain (see Figure 5).
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It is necessary to make frame changes locally to each node. Let (i (a), j (a)) be the frame of an
interface node. We have

u(a)(x0, y0) =
(d+1)2∑
i=1

Q(d)
i (0, 0)u(b)

0 (xi , yi )

v(a)(x ′
0, y

′
0) =

(d+1)2∑
i ′=1

Q(d)

i ′ (0, 0)v(b)
0 (xi ′, yi ′)

(21)

where u(b)
0 and v

(b)
0 are expressed in the frame (i (a), j (a)). The frame change from (i (b), j (b)) to

(i (a), j (a)) gives

u(b)
0 (xi , yi ) = cos(�i )u

(b)
i (xi , yi ) − sin(�i )v

(b)
i (xi , yi )

v
(b)
0 (x ′

i , y
′
i ) = sin(�i )v

(b)
i ′ (xi ′, yi ′) + cos(�i )v

(b)
i ′ (xi ′, yi ′)

(22)

We obtain

u(a)(x0, y0) =
(d+1)2∑
i=1

Q(d)
i (0, 0) cos(�i )u

(b)
i (xi , yi ) − sin(�i )v

(b)
i (xi , yi )

v(a)(x ′
0, y

′
0) =

(d+1)2∑
i ′=1

Q(d)

i ′ (0, 0) sin(�i )v
(b)
i ′ (xi ′, yi ′) + cos(�i )v

(b)
i ′ (xi ′, yi ′)

(23)

Finally, the expression for the penalization term on an interface node is given by BIU(flim(u)−
fint(u)), with

fint(u) =

⎛
⎜⎜⎜⎜⎝

N∑
i=1

�iuu
(2)(xi , yi ) +

N∑
j=1

	iuv
(2)(xi , yi )

N∑
i=1

�ivu
(2)(xi , yi ) +

N∑
j=1

	ivv
(2)(xi , yi )

⎞
⎟⎟⎟⎟⎠ (24)

Coefficients �iu , �iv , 	iu and 	iv contain the expressions of frame changes, the values of
interpolation polynomials, and the interpolation coefficients of the velocity on the pressure grid.

Pressure is also interpolated to ensure continuity of the pressure (to the order of the interpolation
polynomial).

3.4. Mass conservation

The non-conservative interpolation produces non-conservation of the mass between the blocks.
Divergence is not null, especially at the interface nodes. We observe two behaviours: in the case
of confined flows (driven cavity problem for instance), divergence levels are almost constant on
each block; in the case of open flows (flow around a backward facing step, around a cylinder for
instance), divergence is null on the whole domain except at the interface nodes. Even if, as we
will see, the results of a series of test cases are good, this remains a drawback of the method. We
propose to apply a correction to the method locally to each block, the mass non-conservation on
the whole domain remaining unchanged.
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From the predictive velocity field u∗ given by the Uzawa algorithm, we modify the boundary con-
ditions associated with the vectorial projection method on each block using the Green–Ostrogradski
formula (25) which links the integral of the velocity divergence over the whole block to the flow
rate at the interface ∫∫∫

�i

∇ · u∗ dv =
∫∫

��i

u∗ · n ds (25)

The idea is to recover flow rate conservation on the boundary of each block by applying a
velocity correction ũ∗ such that ∫∫

��i

(u∗ + ũ∗) · n ds = 0 (26)

With Equation (25), we have∫∫
��i

ũ∗ · n ds = −
∫∫∫

�i

∇ · u∗ dv (27)

The correction is applied only at the interfaces �i of each block because boundary conditions
are already satisfied at the physical boundaries. Therefore, locally to each block, we have∫∫

�i

ũ∗ · n ds =−
∫∫∫

�i

∇ · u∗ dv =−D�i (28)

Thus, we can consider a homogeneous or a local correction at each interface node.
If ũ∗

l is the correction applied to the velocity u∗
l at an interface node, nl the outward normal

and Sl the local section, the homogeneous correction is written

ũ∗
l · nl = D�i∑N

j=1S j
(29)

And the local correction depending on the local flow rate is given by

ũ∗
l · nl = D�i (u

∗
l · nl Sl)

S j
∑N

j=1 u
∗
l · nl S j

(30)

This correction can be applied to the vectorial projection method to ensure ∇ · (u∗ + u′) = 0
locally to each block. The correction ũ∗ is used to set a Dirichlet boundary condition on the interface
(see Equation (31)). A few iterations of a BiCGStab with ILU preconditioning are enough to reach
null divergence on each block.

Solution of the augmented Lagrangian u∗ =uK and p∗ =pK

Vectorial Projection

• at each interface �i of section Si associated with a block �i ,
calculation of ũ′∞i from equation:

ũ′∞i = − D�i

Si
ni (31)

• calculation of u′ solution of:

∇(∇ · u′) + BIU(flim(u′) − ũ′∞) = − ∇(∇ · u∗)
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4. CONVERGENCE STUDY

4.1. Poiseuille flow (Cartesian meshes)

Simulations were carried out on the various block-structured meshes shown in Figure 6. Results
are given for convergence criteria below 10−10 for stationarity.

With a Q1 polynomial, the solution of Poiseuille flow, which is of order 2, cannot be reproduced
without errors (see Table I). With Q2 or Q3 polynomials, errors are close to the computer accuracy.

4.2. Green–Taylor vortex

The main interest of this flow is that, unlike in Poiseuille flow, the inertial term is not null. The
Green–Taylor vortex is modified to obtain a stationary solution not identically null. The momentum
equations are enriched by the following source term:

S=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 
2�

2H2
cos

( 
x

2H

)
sin
( 
y

2H

)

− 
2�

2H2
sin
( 
x

2H

)
cos

( 
y

2H

) (32)

The solution is

u(x, y, t) = − cos
( 
x

2H

)
sin
( 
y

2H

)
(1 − e−
2�t/2H2

)

v(x, y, t) = − sin
( 
x

2H

)
cos

( 
y

2H

)
(1 − e−
2�t/2H2

)

p(x, y, t) = −�

2

(
cos2

( 
x

2H

)
+ cos2

( 
y

2H

))
(1 − 2e−
2�t/2H2 + e−
2�t/H2

)

(33)

The boundary conditions are obtained directly from the analytical solution and are modified at
each time step. The test case was run with two non-conforming structured blocks (see Figure 7).

Figure 6. Representation of the different blocks for Poiseuille flow study; the number of
elements per block is indicated.

Table I. L2 norm of the error for Poiseuille flow.

Case 1 Case 2 Case 3 Case 4 Case 5

Q1 1.98× 10−3 7.81× 10−3 3.63× 10−2 2.05× 10−2 1.04× 10−3

Q2 1.02× 10−10 4.36× 10−13 3.18× 10−10 2.32× 10−12 4.15× 10−13

Q3 1.75× 10−10 2.71× 10−13 7.73× 10−9 30.3× 10−12 5.66× 10−13
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1252 C. ROMÉ, S. GLOCKNER AND J. P. CALTAGIRONE

Figure 7. Block-structured mesh example for the Green–Taylor flow study.

Figure 8. L2 norm of the error as a function of mesh size for the Green–Taylor flow study.

Table II. L∞ norm of the error on velocity field at T = 1 s.

�t (s) 0.1 0.05 0.01 0.005 0.001

L∞ error 7.72× 10−4 3.87× 10−4 7.93× 10−5 4.08× 10−5 1.00× 10−5

Local slope 0.99 0.98 0.96 0.87
(in log/log scale)

The domain is a square of side length 0.2m (H = 0.1). The fluid used has a density of
1.176 kg/m3 and a viscosity of 1.85× 10−5 Pa s.

Simulations were performed using or not using the vectorial projection method. We first focus
on the stationary solution. With Q2 interpolation polynomials, the spatial convergence order is
two, as shown in Figure 8. Validation on pressure was not established. Indeed, divergence at the
end of the Uzawa algorithm was not null (around 10−6) and accumulated in the pressure.

Then, a time convergence study has been carried out (a two blocks non-conforming mesh size
of 4300 nodes is used). Errors on velocity field at time T = 1 s are presented in Table II. Local
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Figure 9. Block-structured curvilinear meshes.

Figure 10. Convergence order for radial flow; radial (left) and polar (right) sections.

slope in a log/log scale gives a time convergence order of one, coherent with the scheme used
(Euler time scheme and linearization at order 1). With very small time step, the stagnation of the
error is due to the saturation of the time error by the spatial one.

4.3. Couette and radial flows (curvilinear meshes)

In order to validate the method on 2D curvilinear meshes, we studied the spatial convergence order
on two academic cases (Couette and radial flows) based upon two structured non-conforming blocks
(see Figure 9). The interfaces can be along the radius or at a constant angle (radial or polar section).

Results are presented for each type of section and for Q1, Q2 and Q3 interpolation polynomials.
The L1 norm of the error compared to the analytical solution was chosen to represent the order
of convergence.

As shown in Figures 10 and 11, the spatial convergence order is 2 whatever the polynomial
used. We note that the level of errors obtained with the Q1 polynomial is higher than for the Q2

and Q3 polynomials.
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Figure 11. Convergence order for Couette flow; radial (left) and polar (right) cutting.

Figure 12. L1 norm of the velocity divergence for radial flow (polar section).

4.4. Conclusion on the convergence order of the method

Generally speaking, it can be observed that the spatial convergence order of the code is not
deteriorated by the interpolation. The Q1 polynomial is not really interesting because error levels
are too high. The Q3 polynomial is not of a great interest: error levels are slightly lower than with
the Q2 polynomial but they need many more points to interpolate. Moreover, velocity divergence
levels are also dependent on the order of interpolation (see Figure 12). For the further simulations,
we chose the Q2 polynomial because it was a good compromise between error level, velocity
divergence and ease of implementation.

5. NUMERICAL SIMULATIONS

5.1. Driven cavity (Re= 1000)

5.1.1. Description of the test case. Since the early work of Burggraf [35], lid-driven cavity flow
has been considered as a classic test problem for the assessment of numerical methods and the
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Figure 13. Streamlines of the driven cavity flow.

Table III. Comparison of the intensity and the position (x, y) of the main vortex.

Reference Mesh size Maximum streamline X Y

Aq. block-structured 121 344 (≈ 3482) 0.11877 0.4687 0.5664
Aq. monoblock 5122 0.11893 0.4693 0.5642
Botella and Peyret 5122 0.11894 0.4692 0.5652
Bruneau 2562 0.1163 0.4687 0.5586
Barragy et al. 2562 0.11893 — —
Schreiber et al. 1412 0.11603 0.4714 0.5643
Ghia et al. 1282 0.11793 0.4687 0.5625

validation of CFD codes. In the present article, we refer to the work of Botella and Peyret [36].
Their article is a benchmark rich in References [37–40], for which the main results are given
for the singular driven cavity flow at a Reynolds number of 1000. The upper boundary tangential
velocity leads to the formation of a main vortex that fills the main part of the cavity. In the lower
corners, secondary and ternary vortices appear (see Figure 13).

The mesh is divided into five structured blocks (see Figure 13): the first block occupies the main
part of the domain; the two lower (upper) blocks have step spaces a third (half) the size of the
main block. There are 121 344 elements (≈ 256× 256 on the main block, 64× 64 for an upper
block and 96× 96 for a lower one). In this case, the block-structured mesh is used to refine the
description of the flow in the corners of the domain.

The main results found in the literature are given on the intensity and position of the vortices.
Our results are obtained with convergence criteria on stationarity below 10−12. We also present
results obtained on a monoblock mesh with a Chebychev polynomial step size variation.

5.1.1.1. Position and intensity of the vortices. The results presented in Tables III–VII show a
good correlation between our values and those of other authors.

5.1.1.2. Velocity and pressure profile. Figures 14 and 15 show comparisons of the velocity
profiles between monoblock, block-structured and those obtained by Bottela and Peyret [36].
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Table IV. Comparison of the intensity and the position (x, y) of the left secondary vortex.

Reference Mesh size Maximum streamline X Y

Aq. block-structured 121 344 (≈ 3482) −1.7285× 10−3 0.1354 0.1120
Aq. monoblock 5122 −1.7314× 10−3 0.1358 0.1116
Botella and Peyret 5122 −1.7297× 10−3 0.1360 0.1118
Bruneau 2562 −1.91× 10−3 0.1289 0.1094
Schreiber et al. 1412 −1.7× 10−3 0.1357 0.1071
Ghia et al. 1282 −1.7210× 10−3 0.1406 0.1094

Table V. Comparison of the intensity and the position (x, y) of the right secondary vortex.

Reference Mesh size Maximum streamline X Y

Aq. block-structured 121 344 (≈ 3482) −2.3481× 10−4 0.9167 0.0781
Aq. monoblock 5122 −2.3347× 10−4 0.9157 0.0776
Botella and Peyret 5122 −2.3345× 10−4 0.9167 0.0781
Bruneau 2562 −3.25× 10−4 0.9141 0.0820
Schreiber et al. 1412 −2.17× 10−4 0.9143 0.0714
Ghia et al. 1282 −2.3113× 10−4 0.9141 0.0781

Table VI. Comparison of the intensity and the position (x, y) of the left ternary vortex.

Reference Mesh size Maximum streamline X Y

Aq. block-structured 121 344 (≈ 3482) −4.7314× 10−8 0.00781 0.00781
Aq. monoblock 5122 −5.0239× 10−8 0.00789 0.00736
Botella and Peyret 5122 −5.0399× 10−8 0.00768 0.00765
Ghia et al. 1282 −9.3193× 10−8 0.0078 0.0078

Table VII. Comparison of the intensity and the position (x, y) of the right ternary vortex.

Reference Mesh size Maximum streamline X Y

Aq. block-structured 121 344 (≈ 3482) — 0.9952 0.00463
Aq. monoblock 5122 6.3462× 10−9 0.9950 0.00497
Botella and Peyret 5122 6.33255× 10−9 0.9951 0.00482
Bruneau 1282 3.06× 10−9 0.9961 0.0039

Small differences on velocity profiles between the monoblock and block-structured solutions can
be explained by grid resolution differences. As regards the pressure profiles (see Figure 16), good
agreement can be observed with those obtained with a monoblock mesh, except on the interface
of the upper blocks. The overpressure (depression) observed in the upper right (upper left) block
is the result of the velocity divergence levels, which are constant in each block (around 10−5).
We did not observe these phenomena on other test cases presented in this paper where pressure
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Figure 14. U profiles (left) at X = 0.5 and V profiles (right) at Y = 0.5.

Figure 15. U profile (left) at X = 0.1 and 0.9. V profile (right) at Y = 0.1 and 0.9.

was continuous through the interfaces. There is no doubt that a Neumann condition relaxes the
constraint through the different blocks. When the domain is closed, a lack of conservation of mass
and momentum due to interpolation explain the pressure shift observed.

5.2. Flow around a backward facing step (Re�1000)

5.2.1. Description of the test case. The backward-facing step is one of the most fundamental
examples where laminar separation is caused by the sudden change in the geometry. The extension
of the section induces a reverse pressure gradient that leads to a separation of the flow into several
zones: a recirculation appears behind the step and, when the Reynolds number increases, a second
recirculation appears on the upper wall. The experimental reference works are those of Armaly
et al. [41] and, to a lesser degree, the work of Lee and Matescu [42]. The Reynolds number, based
on the height of the channel Hd , the bulk velocity at the entrance of the channel Umoy and the
kinematic viscosity, vary between 100 and 1000.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1239–1268
DOI: 10.1002/fld
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Figure 16. Pressure profiles at X = 0.1, 0.5 and 0.9.

Figure 17. Block-structured mesh for the backward-facing step flow.

Armaly’s experiments were performed on a channel of width equal to 36.7 times the step
height. Flow can be considered as 2D below Re= 400, wall effects being not negligible for higher
Reynolds numbers. Comparisons between the experiments and the results of other authors were
made on the detachment and reattachment positions.

In the present work, we used a monoblock mesh and a block-structured one (see Figure 17):
the domain was divided into three blocks, the middle one being twice as fine as the others. The
interface between block 2 and block 3 was positioned at the middle of the recirculation, at a
distance of 6.5m from the step foot (see Figure 18).

We will compare the results obtained using two non-conforming meshes (3456 and 24 576
elements) with those obtained with a monoblock mesh and those of several other authors. The
stationarity criterion was set to 10−10 whatever the Reynolds number. We have separated the results
in two parts: for Re�400 and for Re>400. In the first case, there is no upper recirculation and 3D
effects are negligible.

5.2.1.1. Lower recirculation Re�400. Agreement with the experiments and various numerical
results [15, 43–45] is very good as shown in Figure 19.

These results were obtained without the vectorial projection method. Velocity divergence is
null over the whole domain except at the interface node where it is around 10−4 due to the non-
conservative interpolation. We performed other simulations with the vectorial projection method.
Therefore, divergence is null on the interface without any strong influence on the recirculation
length as shown in Table VIII.
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Figure 18. Streamlines through the interfaces (Re= 500).

Figure 19. Recirculation length (Xr/H) for Re� 400. Xr is the length of the lower
recirculation and H the step height.

Table VIII. Influence of the vectorial projection method on the recirculation
length (Re�400).

Re 100 200 300 400

Recirculation length 2.99 5.06 6.79 8.30
Correction in % 4.3× 10−2 2.3× 10−1 4.2× 10−2 5.1× 10−2

5.2.1.2. Lower recirculation for Re>400. The upper recirculation appears and the reattachment
point of the lower recirculation continues to move off the foot of the step. The experimental
results of Armaly and Lee are quite different (see Figure 20). If we compare our results to those
of Armaly, the length of the lower recirculation is underestimated with an error of 8.6% by the
monoblock mesh and 9% by the block-structured one at Re= 500. At Re= 1000, errors are around
19%. Williams and Baker [45] have shown with a 3D simulation that these differences are due
to 3D effects. Indeed, most other 2D numerical studies found in the literature [43–47] show the
same order of error (see Figure 20 and Table IX).
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Figure 20. Lower recirculation length (Xr/H) for Re>400.

Table IX. Lower recirculation length, Re= 800.

Lee Armaly Aq. monoblock Aq. block-structured Lee Gartling Kim Sohn

Xr 12.9 14.2 12.05 11.99 12 12.2 12 11.6

Table X. Influence of the correction on the lower recirculation length (Re>400).

Re 500 600 700 800 900 1000

Recirculation length 9.53 10.50 11.29 12 12.65 13.28
Correction in % 4.2× 10−2 7.6× 10−3 4.4× 10−3 1.7× 10−2 1.9× 10−2 2.4× 10−2

Finally, Table X shows very low differences if we use the vectorial projection method to reach
null divergence over each block.

5.2.1.3. Upper recirculation for Re>400. The abscissa of the detachment point on the upper
wall is underestimated, from Re= 600, compared to the results of Armaly (see Figure 21 left).
Compared to the Lee’s results, it is overestimated until Re= 750 and then underestimated. Again,
3D effects explain these differences. They are less obvious if one looks at the abscissa of the upper
reattachment point (see Figure 21 right).

It must be noted that the length of the upper recirculation at Re= 800 is overestimated by around
18% with a monoblock mesh and by 15% with a block-structured one. As noted by Armaly, the
lengths of the lower and the upper recirculations are strongly coupled, an underestimation of one
of them involving an overestimation of the other. Our results are in agreement with other numerical
studies found in the literature (see Table XI).

The flow rate difference between the entrance and the exit of the domain is around 6.10−4 m3 s−1

whatever the Reynolds number. The non-conservative interpolation finally has little influence on
the accuracy of the results. Velocity divergence on the interface between the blocks is relatively
small, and decreases with mesh refinement as shown in Figure 22.
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Figure 21. Abscissae of the detachment (Xs) and reattachment (Xrs) points versus Reynolds number.

Table XI. Comparison of the abscissae of the detachment and reattachment points at Re= 800.

Exo. Lee Exp. Armaly Aq. monoblock Aq. block-structured Lee Gartling Kim Sohn

XS 10.3 11.5 9.69 9.80 9.6 9.7 — —
Xrs 19.5 20 20.57 20.41 20.6 20.96 — —
Xrs − Xs 9.2 8.5 10.88 10.61 11 11.26 11.5 9.26

Figure 22. Mean divergence on the block interface as a function of the mesh size
for different Reynolds numbers.

Figure 23 shows several velocity profiles and a good agreement between the monoblock and
the block-structured solutions. The non-conservative interpolation does not produce significant
differences with conforming meshes.
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5.3. Flow around a cylinder

The flow around a cylinder has been widely studied from the theoretical, experimental and numerical
points of view. The problem can be characterized by the Reynolds number, based on the diameter
of the cylinder and the entrance velocity. We are interested in two flow ranges:

• 4<Re<49: the inertial term of the momentum is not negligible. One can observe a detachment
of the streamlines around the cylinder and the presence of two symmetrical, stable vortices,
the lengths which increase with the Reynolds number.

• 49<Re<190: the flow is not stationary. The result is a Von Karman alley with alternating vortex
detachment, the frequency of which increases with the Reynolds numbers characterized by the
Strouhal number.

5.3.1. Parameters of the test case. To validate our method, we studied the length of the recir-
culation; the detachment angle and the drag coefficient Cx for Reynolds numbers below 49. We
compared our results with the experimental work of Taneda [48], Tritton [49], Acrivos et al. [50],
Coutanceau and Bouard [51], and with the numerical works of Dennis and Chang [52], Nieuw-
stadt and Keller [53], Fornberg [54] and, more recently, He and Doolen [55]. For higher Reynolds
number, we compared our results on the Strouhal number to the law of Williamson and Brovon
[56], which is in good agreement with experiments.

Figure 23. u component profiles for monoblock and block-structured meshes at Re= 800.

Figure 24. Block-structured mesh composition for the study of the flow around a cylinder.
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Table XII. Recirculation length, detachment angle and drag
coefficient at Re= 10.

Authors L/r �d Cx

Aq. block-structured 0.549 25.47 3.077
Dennis and Chang [52] 0.53 29.6 2.846
Nieuwstadt and Keller [53] 0.434 27.96 2.828
Coutanceau and Bouard [51] 0.68 32.5 —
He and Doolen [55] 0.474 26.89 3.170

Table XIII. Recirculation length, detachment angle and drag
coefficient at Re= 20.

Authors L/r �d Cx

Aq. block-structured 2.16 41.98 2.070
Dennis and Chang [52] 1.88 43.7 2.045
Nieuwstadt and Keller [53] 1.786 43.37 2.053
Coutanceau and Bouard [51] 1.86 44.8 —
Fornberg [54] 1.82 — 2.000
He and Doolen [55] 1.842 42.96 2.152

Table XIV. Recirculation length, detachment angle and drag
coefficient at Re= 30.

Authors L/r �d Cx

Aq. block-structured 3.57 47.93 1.702
Nieuwstadt and Keller [53] 3.09 — 1.716

Table XV. Recirculation length, detachment angle and drag
coefficient at Re= 40.

Authors L/r �d Cx

Aq. block-structured 4.94 50.99 1.503
Dennis and Chang [52] 4.69 53.8 1.522
Nieuwstadt and Keller [53] 4.357 53.34 1.550
Coutanceau and Bouard [51] 4.26 53.5 —
Fornberg [54] 4.48 — 1.498
He and Doolen [55] 4.490 52.84 1.499
Prabhakar [57] 4.55 — 1.55

Figure 24 shows the block-structured mesh composition we used. It is based on the superposition
of three blocks: the first two are Cartesian blocks with a hole, the last one is a disk. Space step
size becomes increasingly thin. The total number of elements is 33 168. Around the cylinder of
diameter 1, there are 240 elements according to �, and space step size in the r direction is 0.25m.

5.3.2. Stationary flow 4<Re<49. As shown in Tables XII–XV, the recirculation length is generally
overestimated compared to other numerical results found in the literature. The error reaches 26%
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Figure 25. Recirculation length (left) and drag coefficient (right) versus the Reynolds number.

Figure 26. Streamlines of the flow around a cylinder at Re= 40.

Table XVI. Strouhal number at various Reynolds numbers.

Re Block-structured Williamson

80 0.158 0.155
100 0.170 0.166
120 0.180 0.175
140 0.185 0.182
160 0.192 0.188

with respect to Nieuwstadt and Keller [53] at Re= 10. Differences decrease with the increase of
the Reynolds number (around 10% at Re= 40). Nevertheless, our values are in the uncertainty area
of the experiment (see Figure 25 left). The same comments can be made regarding the detachment
angle. Results obtained on the drag coefficient (see Figure 25 right) are much closer to those found
in the literature. Figure 26 shows the mesh and the streamlines around the cylinder and through
the interfaces.
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Figure 27. Drag and lift coefficients at Re= 160.

Figure 28. Streamlines of the flow around a cylinder during a period at Re= 160.
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5.3.3. Unstationary flow 49<Re<190. As shown in Table XVI, results are very close to the
Williamson Strouhal law. The overestimation is around 3%. At Re= 160, Figures 27 and 28 show
the time variation of the lift and drag coefficients and the streamlines around the cylinder during
a period.

6. CONCLUSION

In the present work, we have proposed and validated a connecting technique for non-conforming and
overlapping block-structured meshes. It is non-iterative and based on an implicit non-conservative
interpolation. This is performed in the context of the augmented Lagrangian method and the
iterative Uzawa algorithm. The linear system of the Navier–Stokes equations is modified: lines
that correspond to the interface nodes link the blocks together. Thus, the discretization of the
equations and the connecting conditions are implicit.

With a series of test cases for which the analytical solution is known, we have demonstrated
that the spatial convergence order is 2. Numerical simulations of laminar and incompressible flows
show the feasibility and validity of the method.

Nevertheless, the interpolation used does not allow the incompressibility constraint to be fully
attained over the whole domain. The problem of mass conservation through the interface remains.
This problem is altogether logical because the interpolation acts as a Dirichlet condition on the
interfaces.

We have modified the vectorial projection method to ensure mass conservation locally to each
block. New conditions on the interfaces have been written that take into account the flow rate
difference at each interface between blocks. In particular cases, it could be possible to take into
account the flow rate difference between blocks or to bring each block flow rate to a reference
one (to the entrance flow rate for instance). In the future, it will be necessary to connect gradient-
type information between the blocks (normal constraint) to ensure a better conservation of the
momentum and the incompressible constraint. The main difficulty to be dealt with lies in the
implicit treatment of this new condition.
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18. Caltagirone JP, Breil J. Sur une méthode de projection vectorielle pour la résolution des équations de Navier–
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