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Abstract

A reference solution to a benchmark problem for a 3D mixed convection flow in

a horizontal rectangular channel differentially heated (Poiseuille-Rayleigh-Bénard

flow) has been proposed in “Part 1: reference solution” of the present paper [Num.

Heat Trans. A, vol.?, pp.?-? (2011)]. Since mixed Dirichlet and Neumann thermal

boundary conditions are used on the horizontal walls of the channel, a tempera-

ture gradient discontinuity is generated. The aim of this paper is to analyze the
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consequences of this singularity on Richardson extrapolation (RE) of the numerical

solutions. The convergence orders of the used numerical methods (finite difference,

finite volume, finite element), observed from RE of local and integral quantities are

discussed with an emphasis on singularity influence. With the grids used, it is shown

that RE can increase the accuracy of the discrete solutions, preferentially with the

discretization methods of low space accuracy order, but only in some part of the

channel and for a restricted range of the extrapolation coefficient. A correction to

the Taylor expansion involved in the RE formalism is proposed to take into account

the singularity and to explain the majority of the RE behaviors observed.

1 Context and objectives

To make up for the lack of numerical reference solution of the three-dimensional

Navier-Stokes and energy equations for mixed convection flows, a benchmark exercise

was proposed in the framework of the French Heat Transfer Society (SFT). A call for

contributions was published in 2006 [1]. Two flow configurations were proposed. The

first configuration is a Poiseuille-Rayleigh-Bénard (PRB) flow (i.e. a mixed convection

flow in a horizontal rectangular channel heated from below) in a large aspect ratio chan-

nel at Reynolds number Re=50, Rayleigh number Ra=5000 and Prandtl number Pr=0.7.

The reference solutions of this configuration have just been published in the first part of

this paper [2]. These are the result of averages of the four solutions obtained by the con-

tributors with four different solvers implemented in their own CFD research codes. Three

discretization methods were used: finite difference (FD), finite volume (FV), and finite

element (FE) methods. All contributors have mobilized a significant amount of compu-

tational resources to achieve reliable spatial convergence with each code. Furthermore,

approximate solutions have been obtained on successively refined grids so that Richardson

extrapolation (RE) could be used to extent the results. This technique is indeed known

to improve the accuracy of the discrete solutions when used in the asymptotic range of

the numerical methods.

However, it is mentioned in [2] that difficulties have appeared during establishing the

reference solutions with RE because mixed thermal boundary conditions on the channel

bottom and top plates were introduced. Indeed, in order to reproduce the operating

conditions of the PRB experiments by Pabiou et al. [3], adiabatic Neumann conditions

are imposed near inlet while isothermal Dirichlet conditions are imposed downstream.

This choice was done to avoid a complicated mathematical formulation of the problem,

using a regularizing function for instance. Therefore, in this benchmark problem, the

temperature field is continuous, but the temperature gradient is discontinuous at the

boundary condition junction. This type of singularity is naturally regularized when FD,

FV or FE methods are used: no peculiarity is observed because the consequences of the
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singularity are generally filtered by the discretization method. However, in the framework

of this benchmark exercise, we wanted to compute solutions as accurate as possible. Thus

we used very fine grids and RE to try to increase the accuracy of the solutions. While the

behavior of the solutions on the finest grids has remained regular, as expected, it has not

been the case when RE was used. The aim of the present paper is to present and analyze

these different behaviors of RE and to determine if RE can still be useful to improve the

accuracy of the results in the presence of a temperature gradient discontinuity compared

with the results obtained on already very fine grids. The consequences of the singularity

are discussed thoroughly so that we can evaluate the degree of validity of the reference

solutions proposed in [2].

One can probably wonder why such a singularity has been introduced in the bench-

mark problem. Singularities are sometimes encountered in benchmark problems as in the

two main popular ones in convection, namely the backward facing step and the lid-driven

cavity flows. In the first case, a velocity gradient discontinuity appears when the inlet

channel is not considered in the computational domain and, when the inlet channel is

considered, due to the reentrant corner, the derivatives of the velocity are unbounded [4].

In the lid-driven cavity case, a velocity discontinuity takes place at the two cavity corners

adjacent to the driving wall. In the literature, RE and the analysis of the singularity

influence are scarcely studied. Moreover, in some articles, RE is not done properly: the

extrapolation is based on the formal convergence order of the used numerical method

without any result on the really observed one. In the literature dealing with the lid-

driven cavity, one can find that it is only recently that a quasi-systematic use of RE has

been proposed [5] for the main vortex characteristics and local velocities. The observed

convergence order, for most of the quantities (stream function, velocity) is approximately

equal to the formal one, except for the position of the vortex center, since it is a priori

undetermined. Corner singularity has only a consequence on the convergence of other

parameters such as the viscous drag force exerted by the fluid boundary surface [5], the

enstrophy Z or the palinstrophy P [6]. Indeed, for this problem, it is not possible to

obtain convergence as there is a jump of the velocity that induces infinite derivatives. As

regards the backward-facing step flow, RE does not seem to have been properly used so

far, for the simplified case or the complete one, where the channel portion upstream of

the step is included. Beyond providing first reference results on a 3D mixed convection

problem (benchmark solution), the originality of the proposed work is to contribute to a

more comprehensive analysis of RE in the framework of problems containing a singularity.

The outline of the paper is the following. The geometry, mathematical model and

flow parameters of the simulated test case and the solvers of the different contributors

are briefly presented in §2. The methodology of RE is described in §3. The fundamental

assumptions for the validity of the RE technique are recalled in §3.1. The influence of

the boundary condition singularity on the convergence order of RE is discussed in §3.2.
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Technical aspects used to compute reference solutions of local values by RE are given in

§3.3. The results are presented and analyzed in §4. In §4.1, RE of integral values over

the whole domain are discussed and used to determine the observed convergence order

of our numerical methods when a singularity is present in the domain. Then, in §4.2,

a selection of extrapolated local extrema of the velocity, temperature and wall Nusselt

number are presented and the determination of their reference values is discussed. Some

streamwise and spanwise profiles of the convergence orders observed from RE of these

quantities are also discussed from the viewpoint of the singularity. Finally, in §4.3, we

propose an explanation for the observed behaviors of RE and a correction to the Taylor

expansion involved in the extrapolation formalism. The conclusions and the difficulties

that have been raised during the study are summarized in §5.

2 Test case and solver descriptions

In this section, the test case geometry, the mathematical model, the parameters of the

benchmark problem and the characteristics of the solvers used by the four contributors

are briefly presented. The detailed description of these elements is given in the first

part of this paper [2], in particular the governing equations (Navier-Stokes and energy

equations with Boussinesq approximation) and the boundary conditions. The geometry

and the thermal boundary conditions of the present PRB flow are given in Figure 1, where

θ = (T−Tc)/(Th−Tc) is the reduced temperature field. A Poiseuille flow is imposed at the

channel entrance and the incoming fluid is cold (θ = 0). No slip boundary conditions are

imposed on the horizontal and vertical lateral walls. After an adiabatic entrance zone of

streamwise aspect ratio Ae, the top horizontal wall is maintained at θ = 0 and the bottom

wall is maintained at a higher temperature (θ = 1). A and B are the streamwise and

spanwise aspect ratios of the computational domain. The PRB flow is characterized by

the following dimensionless parameters: Re = 50, Ra = 5000, P r = 0.7, A = 50, B = 10

and Ae = 2. The resulting flow pattern is a ten longitudinal roll steady flow which is

graphically presented in [2]. It is symmetrical with respect to the median longitudinal

vertical plane and can therefore be computed for y ∈ [0, B/2].

The solvers of the four contributors are denoted by FD1, FE2, FV3 and FE4 in the

present paper. FD1 is a finite difference code and FV3 is a finite volume one. Both use

second order space discretization schemes. FE2 and FE4 are two finite element codes

that use third order space discretization schemes. The main characteristics of the solvers

of the contributors are presented in [2]. The numerical parameters used by each of these

four solvers are given in Table 1. We indicate if the symmetry with respect to the median

vertical plane was used or not, the mesh sizes in each space direction, Nx ×Ny ×Nz, the

time step value, ∆t, an estimation of the computational time (restitution time) and the
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consistency orders1, α°, of each space discretization method for each primitive variable.

Note that, when symmetry is used, Ny is the node number on the width B/2 of the

computational domain.

3 Richardson extrapolation method

3.1 General principle without singularity

When the approximate solutions of a continuous initial and boundary value problem

are computed by discretization methods such as FD, FV or FE methods, RE can be

used to improve the precision of the discrete solutions. Indeed, provided that three main

assumptions are satisfied (see below), it is possible to get an order of accuracy of at least

O(hp+1) when the convergence order of the numerical method is O(hp), where h is the

mesh size. This technique then allows one to compute extrapolated primitive variables

at any point of the computational domain as well as solution functionals such as differen-

tiated or integrated quantities (heat and momentum fluxes, volume or surface averaged

quantities, and so on). A concise and elegant presentation of RE to estimate a posteri-

ori discretization errors in computational simulations can be found in [7]. More details

and deeper discussions on the theory are given in [8, 9, 10]. Examples of extrapolated

solutions in natural and mixed convection problems can be found in [11, 12].

RE first consists in computing the numerical solutions fhi
(1 ≤ i ≤ N) of the dis-

cretized boundary value problem on N different nested uniform grids of size hi, with h1

the coarsest grid and hN the finest one. Non uniform grids with irregular distributions

of the nodes are not allowed. If (assumption {A1}) the exact solution of the continuous

problem, fexact, is sufficiently smooth to justify the use of Taylor expansion (at least up

to the discretization order), then it can be written in the form:

fhi
= fexact + Cαh

α
i +O(hα+1

i ) (1)

where Cα is a coefficient which is dependent on α but independent of hi. Then, the leading

order α of the truncation error due to discretization, the coefficient Cα and the exact

solution fexact can be approximated from the discrete solutions, if two more assumptions

are satisfied. The second assumption {A2} is that the mesh spacings hi used in the

extrapolation must be small enough so that the discrete solutions fhi
are located in the

asymptotic convergence region. In other words, the leading order term Cαh
α
i of the

truncation error must truly dominate the total discretization error fexact − fhi
. In this

case, α will be considered as the observed convergence order from RE.

1the consistency order is the formal convergence order that is the leading order of the space discretiza-
tion truncation error.
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Thus, using three grids (N = 3) such as h1

h2
= h2

h3
, the approximations α̃, C̃α and f̃ ex

of α, Cα and fexact in equation (1) are given by [9, 10]:

α̃ =
ln
(

fh1−fh2
fh2−fh3

)

ln
(

h1

h2

)

C̃α =
fh2

− fh3

hα̃
2 − hα̃

3

(2)

f̃ ex = fh3
− C̃αh

α̃
3

and, using four grids (N = 4) such as h1

h2
= h3

h4
, they are given by:

α̃ =
ln
(

fh1−fh3
fh2−fh4

)

ln
(

h1

h2

)

C̃α =
fh3

− fh4

hα̃
3 − hα̃

4

(3)

f̃ ex = fh4
− C̃αh

α̃
4

with C̃α = Cα+O(hN−1) and f̃ ex = fexact+O(hα̃+1
N ). As a consequence, the approximation

f̃ ex will be closer to the asymptotic solution fexact with decreasing hN and increasing α̃.

Thereafter, α̃ and f̃ ex will respectively be noted α and f ex.

The formal expression of the Taylor expansion (1) is valid for multidimensional prob-

lems, in any coordinates, including space and time, only if (assumption {A3}) the same

grid refinement ratio is applied in all space and time directions. In our stationary prob-

lem, this means that the cell aspect ratios are kept constant from one grid to another.

That is, if N uniform Cartesian grids of size ∆xi, ∆yi and ∆zi (i = 1, ..., N) are used for

RE, the ratios ∆xi

∆zi
must be equal whatever i, and the same holds for ∆yi

∆zi
[8, 9, 11].

On smooth problems, the spatial convergence orders of the codes used to compute the

FD1 and FV3 solutions have been shown to be equal to two (see [13] for the FD1 code)

while, for the two FE codes FE2 and FE4, they have been shown to be equal to three

for the temperature θ and the velocity components u, v, w. That is, for the four codes

used in the present study, the spatial convergence order for u, v, w and θ is equal to the

consistency order, α°, mentioned in Table 1. As a consequence, if the solution fexact of the

problem is smooth enough (say fexact ∈ C2(Ω ∪ ∂Ω), where Ω ∈ R
3 is the computational

domain and ∂Ω ∈ R
2 its boundary), the u, v, w and θ values that will be given as reference

solutions from RE should only be obtained with an associated extrapolation coefficient α

equal to two for the FD1 and FV3 solutions and to three for the FE2 and FE4 solutions.

Otherwise, if α is very different from α°, this means that the discrete solutions used to

compute the extrapolated solution are not in the asymptotic convergence region of RE

(assumption {A2} is not satisfied) or that the solution of the continuous problem is not
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smooth enough (assumption {A1} is not satisfied). This is precisely what is observed in

the present problem and what is developed in the following subsection.

3.2 Singularity influence on the RE convergence orders

The solution of the present problem is not smooth because the temperature gradient

on the horizontal plates is discontinuous at x = 0. This is due to the use of homogeneous

Neumann (adiabatic) conditions for −2 ≤ x < 0 and Dirichlet boundary conditions for

x ≥ 0. To explain the temperature gradient discontinuity, let us consider the isotherms

near this singular point: the left-hand isotherms tend to be perpendicular to the wall

due to the homogeneous Neumann condition while the right-hand isotherms tend to be

parallel to the wall due to the constant Dirichlet condition. With such a change in the

thermal boundary conditions, to avoid any singularity, a wall with a convex 90° step

would be necessary.

To understand the effect of this singularity on the convergence rate of the solutions

and, as a consequence, on the convergence rates, α, associated with RE, let us refer to

the FE framework. Without any singularity, the theoretical FE discretization error of an

elliptic problem is given by the basic interpolation theory to be O(hα°) in the L2 norm,

where the consistency order of the discretization method is given by α°=k + 1, with k

being the polynomial approximation degree and h the characteristic mesh size (k=2 and

α°=3 for θ, u, v and w in the FE2 and FE4 methods). But, as soon as a singularity

is present, the rate of convergence of the numerical model becomes O(hmin(α°,r)), where

r measures the problem regularity influence on the actual convergence rate (see [14],

section 14, p. 404). It seems therefore reasonable to consider that the convergence rates,

α, obtained from RE of integral quantities based on a norm should be equal to min(α°, r),

if the grids are located in the asymptotic convergence regions of the discrete solutions.

However, what happens with RE of other quantities, such as local extrema for instance?

Does α vary between min(α°, r) and max(α°, r)? Does the singularity only influence its

neighborhood or the whole domain? These issues will be dealt with in §4.

Strang and Fix, in chapter 8 “Singularities” of reference [4], propose a theoretical

analysis to a priori determine the regularity r of a singular boundary value problem due

to the discontinuity of its boundary conditions. They analyze the singularity influence on

the convergence rate of FE methods. Their analysis focuses on a test case corresponding

to the displacement computation in a 2D domain with a crack. As shown in Figure 2,

since the crack axis is a symmetrical axis, this test case can be viewed as a 2D pure

diffusion problem (Poisson problem) with a mixed Dirichlet/Neumann condition on one

of its boundaries. We can see that this test case presents the same singularity as in the

present benchmark problem except of its two-dimensionality (the benchmark problem is

3D) and of absence of convection. Strang and Fix [4] showed that the solution around
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the singularity behaves like x1/2, where x is the distance to the singularity, and that the

error of the FE solutions of this elliptic problem is O(h) for any choice of element. Thus,

the problem regularity is r = 1. But they also mentioned that away from the singularity

a higher regularity can be expected due to a decrease of the singularity pollution. In

the present benchmark exercise, the determination of the problem regularity will be done

a posteriori in §4.1.2 by performing specific numerical spatial convergence studies. We

will show, as in Strang and Fix [4], that the regularity r of the solutions attached to the

thermal field tends to 1 near the singularity and increases up to α° away from it.

3.3 Technical aspects of Richardson extrapolation of local values

Grid doubling or integer grid refinement ratios are not required for the validity of RE.

Thus, in the general case, solutions of the coarsest grids are not computed at the nodes

of the finest grid. However, if local values have to be evaluated by RE, it is necessary

to have the values of fhi
at the same points in equations (2) and (3). As suggested by

Roache [8], this is made possible by building an interpolation of the coarse solutions on

the finest grid, the order of which is higher than the space discretization order of the used

numerical method.

Since the consistency order, α°, of the numerical methods used in the present paper

is equal to two or three (see Table 1), a cubic spline interpolation has been used to

compute the solutions of the coarsest grids at the nodes of the finest one, before doing

RE of the temperature, Nusselt number and velocity local extrema (see §4.2.3). Indeed,

cubic spline interpolation is supposed to be third order if the solution is smooth enough

and the points far enough from the boundaries. Other interpolation methods could have

been used: for instance, an evaluation of the influence of Lagrangian interpolations on

RE is proposed in [15]. In the present paper, the values and the coordinates of the local

extrema of the extrapolated solution are also computed using cubic spline interpolation

between the finest grid nodes. This is illustrated in Figure 3 in which a zoom in the w

streamwise profiles computed with the four grids of FD1, together with the extrapolated

profiles, are presented. This figure allows to determine the FD1 value and the streamwise

coordinate of the vertical velocity local extremum noted w2 and x2 in Table 3.

4 Result presentation and analysis

4.1 Richardson extrapolation of integral quantities

4.1.1 Presentation and discussion of the results

The extrapolated values of integral quantities are computed first. These integrals are:

the mean kinetic energy multiplied by two, 2Ec, on the whole domain of volume D, the
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mean pressure difference, ∆Pio, between inlet surface (Si) and outlet surface (So) and

the mean temperature, Tm, on the whole domain that are defined by:

2Ec =
1

D

∫∫∫

D

(

u2 + v2 + w2
)

dx dy dz (4)

∆Pio =
1

Si

∫∫

Si

P dy dz −
1

So

∫∫

So

P dy dz (5)

Tm =
1

D

∫∫∫

D

θ dx dy dz (6)

These values have been computed using either the middle point rule for the FD1 and

FV3 solutions or 3 × 3 × 3 Gauss integration scheme for the FE2 and FE4 solutions.

The advantage of these integrals is that they depend only on the primitive variables:

no differentiation and no interpolation are needed to compute their values on each grid.

Thus, in this case, the validity of RE and the values of the associated extrapolation

coefficient, αEc
, α∆Pio

and αTm
, depend only on the convergence orders of the numerical

methods and on the satisfaction of the three assumptions {A1} to {A3} stated in §3.1.

The values of f = (2Ec,∆Pio, Tm) on the finest grid (noted f fg) and extrapolated by

RE (noted f ex) are given in Table 2 with the associated convergence order, αf , and with

the relative distance between the finest grid and extrapolated solutions: df = (f fg −

f ex)/|f fg|. It has been checked in [16] that the asymptotic convergence region is not

reached by the FE4 solutions for ∆Pio and 2Ec. Therefore RE cannot be used for these

FE4 quantities. Note however that 2Efg
c and ∆P fg

io values on the FE4 finest grid are

very close to the extrapolated values 2Eex
c and ∆P ex

io of the three other contributors:

comparing with the other contributors values, the accuracy of the values on the FE4

finest grid are satisfactory without requiring RE.

To give a quick and simple means of comparing the values obtained by the four

contributors for each quantity presented in this paper, we have computed the arithmetic

mean of the extrapolated or finest grid values and the maximum discrepancy between

them. For a given quantity, we have considered that its reference value is this mean and

that the uncertainty margin on the reference value is the maximum discrepancy between

the values of the four contributors. More precisely, in the case of the integral quantities

computed in Table 2, the reference value, fref , is equal to the arithmetic average of the

extreme values of the FD1, FE2 and FV3 extrapolated values, plus the extrapolated or the

finest grid FE4 value depending on whether RE succeeds or not. The uncertainty margin,

fmarg, is equal to the half difference between the two extreme values. The precision of

the determination, fprec, is equal to the ratio of the uncertainty margin to the reference

value. The reference values of the integral quantities are given in Table 2. The obtained

precisions are of the order of 10−5, with five common figures among the four solutions for

2Ec and ∆Pio and four common figures for Tm.
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It can also be noted that the relative distances, df , between the finest grid solutions

and the extrapolated solutions (when admissible) are higher for the second order methods

(FD1 and FV3) than for the third order methods (FE2 and FE4). All these relative

distances are higher than the precision of the determination of the reference values (except

for 2Ec in FE2 column), showing that RE improves the accuracy of the reference values,

more substantially for the second order methods than for the third order ones. It should

also be added that, for the FE4 contribution, the maximum relative distance on 2Ec (resp.

∆Pio) between the coarsest and finest grids are equal to 4.25× 10−6 (resp. 1.45× 10−5),

which is smaller than the precision of the reference values given in Table 2. It therefore

confirms that RE is useless for the FE4 method to get the same accuracy as the other

methods for these particular quantities.

Finally, in Table 2, one can see that the coefficients αEc
and α∆Pio

obtained when

RE is admissible, are respectively nearly equal to the consistency orders αu,v,w° and αp°

of each numerical method (see Table 1). This corresponds to the expected behavior for

a smooth problem without discontinuity (see §3.1). On the other hand, αTm
is nearly

equal to one for the four contributions despite αθ°=2 for the FD1 and FV3 solutions and

αθ°=3 for the FE2 and FE4 solutions. In the next paragraph, we are going to show that

the lower than expected αTm
values are due to the singularity induced by the thermal

boundary conditions.

4.1.2 Determination of the singularity influence

To analyze the influence zone of the singularity of the present benchmark problem,

extrapolated values of the mean temperature Tm (see equation (6)) and of the L2 norms

of temperature, TL2, and vertical velocity component, WL2 , have been obtained by RE in

several subdomains of the whole computational domain. Here the L2 norm is defined by

fL2 = (
∫∫∫

D
f 2 dx dy dz)1/2. In all the subdomains considered, the extension is maximum

in y and z transverse directions (that is 0 ≤ y ≤ B/2 or B depending on the contributor

and 0 ≤ z ≤ 1) and it varies from x = −2 to x° for the upstream subdomains and

from x = x° to A = 48 for the downstream subdomains, with −2 < x°<48. Then

the convergence orders αTm
, αT

L2
and αW

L2
, observed from RE of Tm, TL2 and WL2

respectively, are computed in the downstream and upstream subdomains. The profiles

of some of these quantities are drawn as a function of x° in Figures 4(a-b) (the whole

profiles can be found in [16]).

Figures 4(a-b) show that RE of Tm, TL2 or TW 2 succeeds, except locally for the FD1

αTm
value in the upstream subdomain (αTm

= 10.2 at x°=-1.75) and for the FE2 αW
L2

value in the downstream subdomains near x°=15. In Figure 4(a), it appears that αTm
→ 1

for the upstream subdomains located near the beginning of the heated plate (x° = 0),

and αTm
increases when the subdomain locations move farther downstream: for the FD1
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solution, the αTm
values on the downstream subdomains stabilize around 1.8 (that is

around the consistency order α° = 2) for 20 ≤ x° ≤ 48, while it increases beyond

α°=3 for the two FE solutions. The behavior of αT
L2

for the FV3 solution is similar

to the behavior of αTm
for the FD1 solution: αT

L2
is nearly equal to one near x° = 0

for the upstream subdomains (αT
L2

≈ 1.3 for x°=0 ) and it increases towards α° in the

downstream subdomains (αT
L2

≈ 1.7 for x°>20 ). The slight differences between the FV3

solution and the other solutions are maybe due to the different discretization schemes used

by the contributors for the convective term of the energy equation: centered difference

schemes for the FD1, FE2 and FE4 solutions and Quick scheme for the FV3 solution. It

can therefore be considered that the influence zone of the thermal boundary condition

singularity on the convergence orders of the quantities linked to temperature extends to

x = 20 to 25 in the present PRB flow, regardless of the numerical method used. As

a conclusion of this analysis, it appears that the effect of the singularity of the present

problem spatially varies: it diminishes with the distance to the singularity. Furthermore

the exponent r introduced in §3.2 to characterize the regularity of the solution tends to

1, regardless of the numerical method used, at least in the neighborhood of the upstream

edge of the heated zone and for the quantities derived from the temperature field.

The dynamics fields should also be affected by this singularity through the buoyancy

term in the momentum equation which makes a coupling of the velocity and temperature

fields. To study this influence, RE of WL2 in the downstream subdomains is presented

in Figure 4(b). RE of WL2 succeeds, except for the FE2 solution for x° < 20. It appears

that αW
L2

≈ 2 = α° for the FD1 and FV3 solutions for any x°, whereas αW
L2

≈ 1.4 near

inlet for the FE4 solution, and αW
L2

tends to values that vary between 3 and 5 for x°>20

for the two FE solutions. Thus, the singularity of the thermal boundary conditions does

not seem to affect the velocity field with the second order FD1 and FV3 methods for

the used grids, whereas it influences the velocity field with the third order FE2 and FE4

methods. In the latter case, the length of the influence zone of the singularity is the same

as for the temperature integrals in Figures 4(a): it reaches x°≈25.

To sum up the above observations, it appears that the RE behavior greatly varies and

that the singularity has not the same influence according to the accuracy order of the

discretization method. The variation range of the extrapolation coefficient αf seems much

larger with the third order methods. It also appears that the grid levels that correspond

to the asymptotic convergence region for the second order methods might not correspond

to the asymptotic region of the higher order methods. An explanation of these very

different behaviors of RE is proposed in §4.2.2 and §4.3.

As a consequence of the above observations, we have considered that the reference

quantities defined in the present benchmark problem should be established from the

extrapolated quantities only if the associated convergence rates α are such as 1 ≤ α ≤ α°.

In practice, we have taken into account numerical errors by using superior tolerance
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margins on α to choose the conserved extrapolated values: in this paper, the reference

solutions are defined from the extrapolated solutions with 1 ≤ α . 2.5 for the FD1 and

FV3 contributions and with 1 ≤ α . 4 for the FE2 and FE4 contributions.

4.2 Richardson extrapolation of temperature, velocity and Nus-

selt number local extrema

4.2.1 Space profiles of the thermal and dynamical fields

In the following, we denote by Nut and Nub the local Nusselt numbers on the top

and bottom walls respectively. They are defined by:

Nut,b(x, y) = −
H

(

∂T
∂Z

)

Z=H,Z=0

Th − Tc

= −

(

∂θ

∂z

)

z=1,z=0

(7)

In the variational context of FE methods, it is possible to compute the Nusselt num-

bers in several ways. The “non consistent” way simply uses the definition (7), i.e. the

z-derivative of the interpolation function for θ is computed. The “consistent” way exploits

the duality between Dirichlet and Neumann boundary condition. The “consistent” flux

at a Dirichlet boundary node is the one that would yield the same solution if prescribed

instead of the Dirichlet condition. Details on how to compute such a flux in a FE frame-

work are given in references [17, 18]. A reported advantage of the “consistent” flux is

that it is generally more precise than the non-consistent one. This is also what we have

observed here (see §4.2.3). In the present study, the FE2 Nusselt numbers are the non

consistent ones while the FE4 contribution proposes the two Nusselt number types. The

consistent Nusselt numbers will be denoted by Nucons
t and Nucons

b while the notations

Nut and Nub will be kept to denote the non consistent Nusselt numbers and to denote

the Nusselt numbers in a generic way.

In Figures 3, 4 and 5 of the first part of this paper [2], several longitudinal and

transversal profiles of the primitive variables θ, u, v and w and of the Nusselt numbers

Nut and Nub are drawn along straight lines into the computational domain. Here, in

§4.2.3, we are interested in determining the reference values of some local extrema on

these profiles.

Note that it is not possible to draw the extrapolated profiles (from RE) of the primitive

variables or Nusselt numbers in the present problem because it is impossible to be located

in the asymptotic convergence region along the whole profiles. In particular, RE diverges

at points where the profiles computed on two distinct meshes intersect. Indeed, when

fhi
= fhj

for hi 6= hj, α diverges in equations (2) or (3). This is illustrated in Figure 5

that focuses on a zone where a curve crossing is present. Such behaviors are also observed

in [19].
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4.2.2 Space profiles of the observed convergence rates from RE

To complete the last observation on the curve crossings, a selection of streamwise and

spanwise profiles of the convergence rates, α, observed from RE of the different primitive

variables and Nusselt numbers are presented in Figures 6 and 7. To avoid overloading

the figures, only one FE profile is presented among the FE2 and FE4 solutions because

the α profiles computed by the two FE codes are very similar. In particular, they diverge

nearly at the same points. All the α profiles of the four contributors are available in [16].

One can see that the α profiles show chaotic behavior and that RE can even fail. This

happens when the values of the studied quantity do not monotonously vary from one grid

to the following finer one. This behavior is indicated by arbitrarily fixing α to zero in

some profiles. As already seen in Figure 5, α profiles present several sharp overshoots and

undershoots at the points where the field profiles on the different grids intersect [19]. This

is the case for instance at x = 0 for all the variables of the four contributions, but also in

nearly all the entrance zone for the FD1, FE2 and FE4 contributions. This is due to the

probable conjunction of two causes. First, the exact solution of the cold Poiseuille flow

imposed as inlet boundary condition at x = −2 is nearly conserved until the beginning of

the heated plate at x = 0 on all the grids. Second, the FD1, FE2 and FE4 contributions

use centered discretization schemes for the convective terms and very small oscillations

are observed in their temperature and velocity streamwise profiles around x = 0 with

their coarsest grids such as Nx ≤ 601 (more precisely, no velocity oscillation is observed

in the FD1 solution and very small velocity oscillations are observed on all the grids

of the FE4 solution). These oscillations generally appear just around x = 0 because a

streamwise acceleration of the flow due to the density variation near the bottom plate

and high transverse thermal gradients are present at the same place. No oscillations are

observed in the FV3 solutions because the Quick scheme is used.

Generally, the FD1 and FV3 α profiles are much more regular than the FE2 and

FE4 ones. The FD1 and FV3 α values for θ, u, v, w are nearly equal to α°=2 in the

downstream zone for x > 20. On the other hand, the FE4 and FE2 RE can fail, even

in the downstream zone, or can succeed but with associated α values very different from

α°=3. This is probably due to the higher precision of the FE methods used here. Indeed,

the values computed on each grid with these methods are very close to each other. For

instance, the maximum relative distance computed for the primitive variables between

the coarsest and the finest grid solutions of the FE2 and FE4 contributions generally

varies between 10−4 and 10−5 (or even less) where it varies between 10−2 and 10−3 for

the FD1 and FV3 solutions. As a consequence, the FE solutions are very sensitive to the

numerical errors, to the entrance singularity and to the curve crossings. A way of limiting

these negative effects on the RE with the high order methods would have been to increase

the size ratio of the successive grids. However this solution has appeared impossible in
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the present case due to the computational costs on grids much finer than those already

used.

Finally, for the four contributions, the α values associated with θ and Nut are generally

smaller than α° for x < 20, except where over- and undershoots are present. These values

approach 1 for x < 10 due to the singularity influence (cf. §4.1.2). The α values associated

with Nut also vary between 1 and α° in the spanwise direction (see Figure 7(c)). This

explains why α ≈ 1.2 for x > 20 in the FV3 Nut profile at (y, z) = (2, 1) (see Figure

7(a)) and α ≈ 1.7 for x > 25 in the FE4 (and FE2) Nut profiles at (y, z) = (5, 1) (see

Figure 7(b)).

4.2.3 Temperature, velocity and Nusselt number local extrema

As it has just been discussed, extrapolated solutions of the present problem cannot be

determined for the whole field but only for some local values, such as local extrema, or for

integral quantities (see §4.1.1 for instance). The extrapolated values and the coordinates

of eighteen local extrema of θ, u, v, w, Nut and Nub have been computed using the

method described in §3.3. These extrema are graphically presented in the Figures 3, 4

and 5 in [2]. Their values are given in Tables 3-5 of the present paper (the extrapolated

values of other local extrema and of their coordinates are given in [16, 2]).

For the FD1, FE2 and FV3 solutions, more than 70% of the whole extrema that have

been computed during this study (more than one hundred in total) have been extrapolated

with an associated extrapolation coefficient, α, whose value is equal to α° ± 20%, that

is very close to the spatial consistency order, α°, of the numerical method used. For the

other extrema, α values do not agree with the consistency order for the various reasons

already listed above: intersection of the profiles computed on the different grids, influence

zone of the thermal boundary condition singularity for x < 20 and, probably, influence

of the boundary conditions on the cubic spline interpolations when the extrema are very

close to the wall. For the FE4 solutions, the α values are very different of α° for the

majority of the extrema. FE4 RE might fail because its second assumption {A2} is not

satisfied (the discrete solutions are not located in the asymptotic convergence region),

although {A2} is satisfied for the other methods. Subsection §4.3 elaborates on this

point and proposes further explanations.

A part of the extrapolated values and coordinates of the local extrema of the primitive

variables for which 1.2 < α < 2.1 for the FD1 and FV3 solutions, and 1.1 < α < 4.5

for the FE2 and FE4 solutions are given in Tables 3-4, together with the associated α

values and the relative distance d between the extrapolated and the finest grid values. In

several cases (mainly concerning the FE4 solutions), only the values and the coordinates

on the finest grid are provided because the associated α values are too high or too small

compared with the α ranges given above. In these cases, the α values are replaced by
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∗ ∗ ∗.

Reference solutions for the local extrema and their coordinates have been determined

in the same way as those of the integral values presented in §4.1.1. These reference

solutions (denoted by fref , xref or yref), with their uncertainty margin (denoted by fmarg,

xmarg or ymarg) and their precision (denoted by fprec) are given in Tables 3-4. Here, the

reference values are equal to the arithmetic average of the minimum and maximum values

of the extrapolated values of the four contributors, except when the FE2 or FE4 RE fails.

In this case, the FE2 or FE4 extrapolated value is replaced by the FE2 or FE4 finest grid

value.

On the other hand, the FD1 and FV3 solutions on the finest grid are never used to

define the reference solutions. Indeed, as it can be seen in Table 3, the relative distances

d on θ, u, v, w for the FD1 and FV3 solutions are nearly always one or two orders higher

than fprec whereas, for the FE2 and FE4 solutions, they are always of the same order or

smaller than fprec (when RE is possible). This means that, with the definition and the

precision of the reference values given here, RE of the discrete solutions obtained by the

FE methods are useless to determine the reference values of θ, u, v, w. RE is useful only

to allow for the second order FD1 and FV3 methods to give solutions with a third order

precision equal to the precision of the FE2 and FE4 methods.

The same observation as for the primitive variables can be done with the consistent

Nusselt numbers Nucons
t and Nucons

b computed with the FE4 method. That is why only

their values on the finest grid are proposed in Table 5. On the other hand, RE is useful

to determine the reference values from the non consistent Nusselt numbers (compare d

and fprec in Table 5 for instance). The extrapolated values of the non consistent Nusselt

numbers and the finest grid values of the consistent Nusselt numbers are thus kept to

define the reference values of the Nusselt numbers.

Following the methodology just described, the reference values of all the primitive

variable local extrema that have been computed in this benchmark exercise can be given

with four to five significant figures and those of the Nusselt number with three to four

significant figures. Their coordinates can generally be given with three significant figures

in x direction and with four significant figures in y direction.

4.3 Explanation of the observed behaviors of Richardson extrap-

olation

The preceding sections have shown a variety of behavior when trying to apply Richard-

son extrapolation: (i) working behavior with an observed convergence order α equal to

the consistency order α° of the discretization method; (ii) working behavior with an ob-

served convergence order α between 1 and α°; (iii) non-working behavior. In this section,

we discuss these observations. The basic idea is to assume that the approximation error
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to a quantity fh can be written as two main terms within the Taylor expansion instead

of one as in equation (1), section 3.1. Namely :

fh(h, Cα°, α°, Cr, r) = fexact + Cα°h
α° + Crh

r +O(h1+max(α°,r)) (8)

where Cα°h
α° is the leading term of the approximation error to the regular part of the

solution (same term as the one in equation (1)) and Crh
r is the leading term of the

approximation error to the singular part of the solution. As before a° is the consistency

order of the discretization and r measures the problem regularity influence on the actual

convergence rate. Here fh → fexact when h → 0.

When h → 0, the term with largest exponent becomes negligible and Richardson

extrapolation allows us to determine the smallest exponent and associated constant C as

in section 3.1. However, in practice, we work with a fixed sequence of 3 (or 4) given h

values, say {h1; h2; h3} =
{

h1;
h1

τ
; h1

τ2

}

with τ > 1. Scaling equation (8) with f̃h = fh
fexact

and h̃ = h
h1

, one gets:

f̃h(h̃, C̃α°, α°, C̃r, r) = 1 + C̃α°h̃
α° + C̃rh̃

r +O(h̃1+max(α°,r)) (9)

In the following, we use the scaled equation (9), leaving out the tildes on f̃ , h̃, C̃α° and

C̃r for notation clarity. For example, our fixed sequence of (scaled) h, is now:
{

1; 1
τ
; 1
τ2

}

.

Then we choose typical numerical values Cα° = 10−4 << 1, τ = 2 and r = 1 and we plot

the observed convergence order α as a function of the ratio ρ = Cr

Cα°

when we apply the RE

process (equation (2) of section 3.1) to our model function fh (equation (9)), neglecting

the O(h1+max(α°,r)) term, in the four following cases : (i) ρ > 0, α° = 2; (ii) ρ > 0, α° = 3;

(iii) ρ < 0, α° = 2; (iv) ρ < 0, α° = 3.

We also define a Richardson efficiency ratio σ as follows:

σ = log
|f ex − fexact|

max
(
∣

∣Cα°h3
α°
∣

∣ , |Crh3
r|
) (10)

where f ex is the extrapolated function. If σ < 0, this means that RE has been successful

in reducing the main component of the error compared to its value for the smallest h.

Figure 8(a) (resp. Figure 8(b)) shows the profile of α and σ as a function of log |ρ|

when ρ > 0 (resp. ρ < 0). On the two plots, we can distinguish three zones:

Zone 1 log |ρ| . −1 where the approximation error of the regular part of the solution

dominates the approximation error of the singular part;

Zone 2 −1 . log |ρ| . 1 where the approximation error of the regular and singular parts

of the solution have the same order of magnitude;

Zone 3 1 . log |ρ| where the approximation error of the singular part of the solution
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dominates. This zone corresponds to the asymptotic range in the present example

since r = 1 and α°=2 or 3.

We can make the following remarks:

1. Zone 1 and 3 are the zones where RE is effective in reducing the error. This was

expected for Zone 3 which is in the asymptotic range as defined in section 4.1, but

not necessarily so for Zone 1;

2. In Zone 2, the behavior of RE depends on the sign of ρ: when ρ < 0, RE is not

applicable, while if ρ > 0, RE still gives a result. However, as the profile of σ on

Figure 8(a) shows, very little improvement in the reduction of the error is to be

expected. We can conclude by saying that in Zone 2, RE is not very useful;

3. For the third-order methods, the interval of log|ρ| on which RE doesn’t bring sig-

nificant error reduction (say |σ| > −0.5) is larger than for second-order methods by

one magnitude order;

4. As shown by the σ profiles, RE is less efficient at reducing the error for third-order

methods than for second-order methods.

Remark 1 is consistent with our observations of the second order methods FD1 and FV3

for which RE seems to improve the results even though we are not in the asymptotic

range. Therefore, most quantities seem to behave as if in Zone 1, with the notable

exception of the mean temperature.

Remark 3 is related to the fact that, for FE4 and FE2, RE was found to be much

more difficult to apply than for the low order methods: this suggests that most quantities

behave as if in Zone 2. This fact can be tempered with Remark 4 which suggests that

less improvement in the error is to be expected for third order method than for second

order method.

Applicability of RE was found to be better for FE2 than for FE4: Remark 2 could

provide an explanation for this observation in that when close to or inside Zone 2, RE

behavior ranges from non-working to almost working depending on the sign of ρ. Also,

FE2 and FE4 not using the same finite elements (Q2−Q1 for FE2 and Q2−P nc
1 for FE4)

could be in different zones.

To conclude this section, although further investigations would be necessary to assess

that the proposed explanations are the right ones, we have found that the simple model

in equation (9) allowed us to reproduce most of the behavior we have observed in trying

to apply RE to the benchmark of this article.
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5 Conclusions

In this paper, the methodology that has permitted to establish the first numerical

benchmark solutions of a three-dimensional mixed convection flow in a horizontal rectan-

gular channel published in [2] is presented in details. This methodology is based on the

use of four different numerical methods (second order FD and FV methods, and third

order FE methods), Richardson extrapolations (RE) on very fine grids and cubic spline

interpolations.

However the difficulty of the present benchmark problem is that a discontinuity takes

place in the thermal gradient over the bottom plate at x = 0, which not only significantly

restricts the conditions of application of RE to establish reference solutions, but also

complicates its analysis. Therefore the theoretical basis of RE is presented and discussed

from the viewpoint of this singularity. It is shown that the convergence order, α, observed

from RE of the local and integral quantities is reduced to one in the neighborhood of the

boundary condition discontinuity and tends to the consistency order, α°=2 or 3, of the

used discretization methods far from the singularity. It is deduced from this result and

other test cases that the problem regularity is close to r = 1 in the vicinity of the

boundary condition discontinuity. Moreover, we have suggested in §4.3 a modified Taylor

expansion to account for the problem singularity in the RE formalism. A simplified

model problem has enabled us to reproduce most of the behaviors we have observed in

the present benchmark problem and it has helped us to interpret them.

The paper has also brought to the fore several practical difficulties in the proper usage

and implementation of RE. It has been shown that the distance between the finest grid

solutions and the extrapolated solutions is much smaller for the third order FE2 and FE4

methods than for the second order FD1 and FV3 ones. Furthermore, the local behavior

of α is more oscillatory for the two third order methods than for the two second order

ones. It was also shown that, for the used grids, RE cannot be applied locally on the

whole fields due to the “crossing” of the computed quantities on the different grids. The

FE2 and FE4 solutions have appeared very sensitive to these field variations and this

behavior has been understood thanks to the model problem introduced in §4.3. Using

larger grid size ratios (resulting in much finer grids) than those required for the present

paper would have probably be another way to solve this problem but for much greater

computational costs.

It is noteworthy that the four numerical models used for this benchmark have displayed

their own sensitivity to the various problem peculiarities (establishment zone, localized

thermal gradient singularity, etc.) and, wherever the RE has been found to be applicable,

the resulting convergence order could also depend on the quantity (primitive or derived

variable) it is based on and its definition (L2 norm, mean value, etc.). This study has

also reminded us that the convergence order of a numerical model can be significantly
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deteriorated due to a loss of regularity of the solution and that the standard RE framework

should not be used without taking precautions in this case. But, if these precautions

are taken, the present study has demonstrated that it is perfectly possible to establish

reference solutions with a high accuracy level.
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Tables

Contributor Nx ×Ny ×Nz

[symmetry]
∆t User time

[computer type (organism/lab)]
Consistency
orders α°

MSME,
FD1

400× 134× 40
600× 200× 60
800× 268× 80
1200×400×120

[no]

0.01
0.01
0.002
0.002

36 min on 1 processor
2 h 20 on 1 processor
25 h on 1 processor
100 h on 1 processor
[NEC SX5 (IDRIS)]

2 for θ, u, v, w;
2 for p

IUSTI,
FE2

601× 121× 41
901× 181× 61
1351× 271× 91

[yes]

0.01
0.01
0.005

19 min on 60 cores
1 h 40 on 150 cores
43 h 15 on 225 cores
[IBM SP6 (IDRIS)]

3 for θ, u, v, w;
2 for p

I2M
Institute,

FV3

601× 161× 41
901× 241× 61
1351× 361× 91

[yes]

0.1
0.1
0.1

8 h on 152 cores
12 h on 152 cores
56 h on 152 cores

[ALTIX ICE 8200 (I2M Inst.)]

2 for θ, u, v, w;
2 for p

CEA, FE4 601× 121× 49
751× 151× 61
801× 161× 65
1001× 201× 81

[yes]

0.5
0.5
0.5
0.5

200 h on 8 cores
400 h on 8 cores
450 h on 8 cores
1600 h on 8 cores

[PC 8 cores (CEA)]

3 for θ, u, v, w;
2 for p

Table 1: Numerical parameters used by the different contributors
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FD1 FE2 FV3 FE4 References

fref

±fmarg

fprec =
fmarg

fref

2Efg
c

2Eex
c

αEc

dEc

1.292479

1.292446

2.22

2.55× 10−5

1.292452

1.292452

2.92

2.35 × 10−7

1.292355

1.292455

2.00

−7.74× 10−5

1.292461

1.292467 °

−1.92

−5.34×10−6 °

1.292453

±0.000008

6.19 × 10−6

∆P
fg
io

∆P ex
io

α∆Pio

d∆Pio

14.41210

14.40647

2.03

3.91× 10−4

14.40784

14.40649

1.99

9.36 × 10−5

14.40235

14.40678

2.00

−3.08× 10−4

14.40694

14.40658 °

0.83

2.55 × 10−5 °

14.40670

±0.00024

1.67 × 10−5

T
fg
m

T ex
m

αTm

dTm

0.448490

0.448594

1.19

−2.32× 10−4

0.448625

0.448604

1.18

4.68 × 10−5

0.448725

0.448606

1.02

2.65 × 10−4

0.448659

0.448613

1.18

1.04 × 10−4

0.448604

±0.000010

2.23 × 10−5

Table 2: Left columns: finest grid (f fg) and extrapolated (f ex) values of the integral
functions f = 2Ec, ∆Pio and Tm, truncation error leading order, αf , from their RE and

relative distance, df = ffg−fex

|ffg|
, between the extrapolated and finest grid values. FE4

column: the symbol ° indicates an erroneous value due to the extrapolation failure (thus
the FE4 finest grid value replaces the FE4 extrapolated value in the reference value
determination). Right column: reference solutions with their tolerance margin and the
precision of their determination.
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FD1 FE2 FV3 FE4 References
fref ± fmarg

xref ± xmarg

fprec =
fmarg

fref

θ1

x1

α1

d1

0.454843

13.696

1.85

3.3× 10−5

0.454844

13.691

3.46

2.0 × 10−6

0.454847

13.692

1.92

2.2× 10−4

0.454845

13.691

2.73

1.4 × 10−6

(454845 ± 2)× 10−6

13.693 ± 0.003

4.4× 10−6

θ2

x2

α2

d2

0.210061

27.319

1.90

−2.4× 10−3

0.210048

27.315

3.11

2.2 × 10−6

0.210056

27.332

1.90

7.2× 10−4

0.210048

27.313

4.42

−2.4×10−6

(210055 ± 7)× 10−6

27.322 ± 0.010

3.3× 10−5

u1

x1

α1

d1

1.572726

0.950

2.00

−1.2× 10−4

1.572725

0.945

3.47

1.3 × 10−6

1.572713

0.944

2.05

3.2× 10−5

1.572725

0.941

∗ ∗ ∗

(1572720 ± 7)× 10−6

0.945 ± 0.005

4.5× 10−6

u2

x2

α2

d2

1.660787

16.299

1.98

1.9× 10−4

1.660795

16.295

1.14

1.2 × 10−7

1.660826

16.291

2.05

−8.2× 10−5

1.660796

16.289

∗ ∗ ∗

(1660806 ± 20)× 10−6

16.294 ± 0.005

1.2× 10−5

w1

x1

α1

d1

0.0032591

4.265

1.99

2.5× 10−4

0.0032597

4.258

3.04

−1.2× 10−4

0.0032605

4.259

1.99

−1.6× 10−3

0.0032594

4.252

∗ ∗ ∗

(32598 ± 7)× 10−7

4.259 ± 0.007

1.8× 10−4

w2

x2

α2

d2

−0.472989

24.907

2.05

−1.8× 10−4

−0.472991

24.901

3.51

−1.1× 10−6

−0.473026

24.898

1.72

1.5× 10−3

−0.472991

24.898

4.06

3.0 × 10−5

(−473007 ± 19)× 10−6

24.902 ± 0.005

4.0× 10−5

Table 3: Extrapolated values or finest grid values (indicated by ∗ ∗ ∗) of f = (θ, u, w)
local extrema along the line (y, z) = (5, 0.5) and of their streamwise coordinates, x;

truncation error leading order, α, of RE and relative distance, d = ffg−fex

|ffg|
, between the

extrapolated and the finest grid values (when the extrapolated value is obtained). In the
References column, the reference value and the margin on the primitive variables and on
their coordinates are given, as well as the precision on the primitive variables.
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FD1 FE2 FV3 FE4 References
fref ± fmarg

yref ± ymarg

fprec =
fmarg

fref

θ1

y1

α1

0.24719

1.0361

1.90

0.24716

1.0368

2.91

0.24714

1.0363

1.96

0.24715

1.0365

3.38

(24716 ± 3)× 10−5

1.0364± 0.0004

1.2× 10−4

θ3

y3

α3

0.77385

3.9042

1.94

0.77384

3.9039

2.86

0.77387

3.9042

2.09

0.77383

3.9041

∗ ∗ ∗

(77385 ± 2)× 10−5

3.9041± 0.0002

2.6× 10−5

u1

y1

α1

1.06513

1.0087

1.95

1.06513

1.0087

2.87

1.06499

1.0086

2.01

1.06509

1.0086

∗ ∗ ∗

(106506 ± 7)× 10−5

1.0086± 0.0001

6.6× 10−5

u3

y3

α3

1.74979

4.4425

1.94

1.74962

4.4425

2.94

1.74987

4.4425

2.02

1.74978

4.4425

∗ ∗ ∗

(174975 ± 13)× 10−5

4.4425± 0.0000

7.4× 10−5

v1

y1

α1

0.035892

0.7049

1.97

0.035912

0.7043

3.15

0.035916

0.7050

2.03

0.035900

0.7051

∗ ∗ ∗

(35904 ± 12) × 10−6

0.7047± 0.0004

3.3× 10−4

v3

y3

α3

0.032867

4.7390

1.96

0.032907

4.7395

∗ ∗ ∗

0.032917

4.7390

1.67

0.032878

4.7388

3.62

(32892 ± 25) × 10−6

4.7391± 0.0004

7.6× 10−4

w1

y1

α1

0.372397

0.2286

2.00

0.372372

0.2285

2.91

0.372496

0.2285

1.98

0.372397

0.2285

∗ ∗ ∗

(37243 ± 6)× 10−5

0.2285± 0.0001

1.6× 10−4

w3

y3

α3

0.490347

3.9028

1.95

0.490335

3.9029

2.91

0.490478

3.9027

1.96

0.490347

3.9028

∗ ∗ ∗

(49041 ± 7)× 10−5

3.9028± 0.0001

1.4× 10−4

Table 4: Extrapolated values or finest grid values (indicated by ∗ ∗ ∗) of f = (θ, u, v, w)
local extrema along the line (x, z) = (30, 0.5) and of their spanwise coordinates, y, and
truncation error leading order, α, of RE. See the Table 3 caption for the description of
the References column. Other extrema values at intermediate coordinates y2 are given in
[16].
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FD1 FE2 FV3 FE4 References
fref ± fmarg

xref ± xmarg

fprec =
fmarg

fref

Nut1

x1

α1

d1

Nuconst1

xcons1

0.44151

21.107

1.86

1.3× 10−3

0.44144

21.106

1.68

9.5 × 10−4

0.44119

21.110

1.95

3.1× 10−3

0.44145

21.105

1.68

1.1× 10−3

0.44150

21.101

0.44135 ± 0.00016

21.106 ± 0.005

3.6× 10−4

Nut2

x2

α2

d2

Nuconst2

xcons2

0.60675

28.085

1.90

−2.5× 10−3

0.60658

28.085

1.70

1.2 × 10−3

0.60615

28.074

1.90

2.9× 10−3

0.60657

28.081

1.68

1.4× 10−3

0.60666

28.077

0.60645 ± 0.00030

28.080 ± 0.006

4.9× 10−4

Nub1

x1

α1

d1

Nuconsb1

xcons1

3.48657

24.997

2.00

1.6× 10−3

3.48650

24.990

3.05

2.0 × 10−4

3.4416°

25.037°

∗ ∗ ∗

3.48650

24.990

3.11

2.8× 10−4

3.48663

24.988

3.48657 ± 0.00007

24.993 ± 0.005

2.0× 10−5

Nub2

x2

α2

d2

Nuconsb2

xcons2

3.38972

29.165

2.06

1.8× 10−3

3.38945

29.165

3.06

1.9 × 10−4

3.3455°

29.222°

∗ ∗ ∗

3.38945

29.164

3.11

2.7× 10−4

3.38958

29.162

3.38959 ± 0.00014

29.164 ± 0.002

4.1× 10−5

Table 5: Extrapolated values or finest grid values (indicated by ∗ ∗ ∗) of f = (Nut, Nub)
local extrema along the line y = 5 and of their streamwise coordinates, x; truncation error

leading order, α, of RE and relative distance, d = ffg−fex

|ffg|
, between the extrapolated and

finest grid values (when the extrapolated value is got). In the reference column, the
reference value and the margin on the Nusselt numbers and on their coordinates are
given, as well as the precision on the Nusselt numbers. For FE4 contribution, Nut and
Nub are the extrapolated values of the non consistent Nusselt numbers and Nucons

t and
Nucons

b are the consistent Nusselt number values on the finest grid. The symbol ° indicates
values that are excluded from the reference determination.
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Figure captions

Figure 1: Geometry and thermal boundary conditions on the top and bottom walls

(the vertical lateral walls are adiabatic). The red dotted lines are the lines along which

θ, u, v and w profiles and their extrema are calculated.

Figure 2: On the left, the square domain (1) with a crack is used by Strang and Fix

[4] to study the effect of the singularity at point B. On the right, the equivalent domain

(2) is obtained using the symmetry of domain (1) through the line ABC. The domain

(2) has the same boundary condition singularity at point B as the present benchmark

problem for the temperature at x = 0 and z = 0 or 1 (see Figure 1).

Figure 3: FD1 solutions of the vertical velocity component streamwise profiles along

the line at (y, z) = (B/5, 0.5), computed on the four grids described in Table 1, to-

gether with the extrapolated solution. The latter can be considered as the asymptotic

solution here because the α values monotonously vary between 2.01 and 2.16 when x

varies between 24.7 and 25.3. In this figure, all the symbols correspond to the compu-

tational or extrapolation points and the curves to the cubic spline interpolation curves.

The small window zooms in the local extremum of the extrapolated curve. The value

w2 = −0.472989 and the coordinate x2 = 24.907 of this extremum are reported in Table

3.

Figure 4: Space evolution of the convergence orders α observed from RE of the

integral quantities Tm, TL2 and WL2 in various upstream or downstream subdomains of

the computational domain.

Figure 5: FD1 solutions of the temperature streamwise profiles along the line at

(y, z) = (B/5, 0.5), computed on the four grids described in Table 1, together with the

extrapolated solution. The latter does not tend to the asymptotic solution near x = 22.35

because the α values (the black filled circles in the figure) diverge where the profiles

intersect. All the symbols correspond to the computational or extrapolated points. The

curves correspond to the cubic spline interpolation curves, except for the extrapolated

solution where they are linear segments linking the extrapolated points.

Figure 6: Comparison of the streamwise profiles of the extrapolation coefficients, α,
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computed by the four contributors for θ, u and w, along the line at (y, z) = (2, 0.2). The

corresponding profiles of θfg, ufg and wfg on the finest grid are also drawn on the figures.

Similar profiles for v are available in [16].

Figure 7: Comparison of streamwise and spanwise profiles of the extrapolation co-

efficients, α, for Nut computed by the four contributors. The corresponding profiles of

Nut−fg on the finest grid are also drawn on the figures.

Figure 8: Profiles of α and σ as a function of log |ρ|.
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Figures

0 A− Ae

x

Poiseuille

inflow

Outflow

1

z

y

−Ae ∂θ
∂z

= 0 θ = 1

∂θ
∂z

= 0

B

θ = 0 Symmetry plane at y=B/2

Figure 1: Geometry and thermal boundary conditions on the top and bottom walls (the
vertical lateral walls are adiabatic). The red dotted lines are the lines along which θ, u, v
and w profiles and their extrema are calculated.
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Boundary conditions :

du/dn=0

A C A
B

C
B

DE

GF

DE

1 2

u=0

Figure 2: On the left, the square domain (1) with a crack is used by Strang and Fix [4]
to study the effect of the singularity at point B. On the right, the equivalent domain (2)
is obtained using the symmetry of domain (1) through the line ABC. The domain (2) has
the same boundary condition singularity at point B as the present benchmark problem
for the temperature at x = 0 and z = 0 or 1 (see Figure 1).
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24,7 24,8 24,9 25 25,1 25,2 25,3
x

-0,473

-0,4725

-0,472

-0,4715

-0,471

-0,4705

w

Nx=400
Nx=600
Nx=800
Nx=1200
extrapolated solution

24,88 24,9 24,92 24,94
-0,47299

-0,472985

-0,47298

Figure 3: FD1 solutions of the vertical velocity component streamwise profiles along the
line at (y, z) = (B/5, 0.5), computed on the four grids described in Table 1, together
with the extrapolated solution. The latter can be considered as the asymptotic solution
here because the α values monotonously varies between 2.01 and 2.16 when x varies
between 24.7 and 25.3. In this figure, all the symbols correspond to the computational
or extrapolation points and the curves to the cubic spline interpolation curves. The
small window zooms in the local extremum of the extrapolated curve. The value w2 =
−0.472989 and the coordinate x2 = 24.907 of this extremum are reported in Table 3.
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(a) Average temperature Tm or L2 norm of temperature TL2
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Figure 4: Space evolution of the convergence orders α observed from RE of the inte-
gral quantities Tm, TL2 and WL2 in various upstream or downstream subdomains of the
computational domain.
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22 22,1 22,2 22,3 22,4 22,5 22,6 22,7 22,8
x

0,173

0,174

0,175
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θ

Nx=400
Nx=600
Nx=800
Nx=1200
extrapolated solution

-0,5

0

0,5

1

1,5

2

2,5

3

α

α

Figure 5: FD1 solutions of the temperature streamwise profiles along the line at
(y, z) = (B/5, 0.5), computed on the four grids described in Table 1, together with the
extrapolated solution. The latter does not tend to the asymptotic solution near x = 22.35
because the α values (the black filled circles in the figure) diverge where the profiles in-
tersect. All the symbols correspond to the computational or extrapolated points. The
curves correspond to the cubic spline interpolation curves, except for the extrapolated
solution where they are linear segments linking the extrapolated points.
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Figure 6: Comparison of the streamwise profiles of the extrapolation coefficients, α,
computed by the four contributors for θ, u and w, along the line at (y, z) = (2, 0.2). The
corresponding profiles of θfg, ufg and wfg on the finest grid are also drawn on the figures.
Similar profiles for v are available in [16]. 33



0 10 20 30 40
x

0

0.5

1

1.5

2

2.5

3

3.5

4

Nu
t

Nu
t-fg

0 5 10 15 20 25 30 35 40 45
x

0

1

2

3

4

5

α

α-FE4
α-FV3
α-FD1

(a) (y, z) = (2, 1)

0 10 20 30 40
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Nu
t

Nu
t-fg

0 5 10 15 20 25 30 35 40 45
x

0

1

2

3

4

5

α

α-FE4
α-FV3
α-FD1

(b) (y, z) = (5, 1)
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Figure 7: Comparison of streamwise and spanwise profiles of the extrapolation coeffi-
cients, α, for Nut computed by the four contributors. The corresponding profiles of
Nut−fg on the finest grid are also drawn on the figures.
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(a) α° = 2 or 3 and ρ > 0.
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Figure 8: Profiles of α and σ as a function of log |ρ|.
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