
Notus first steps (0.4.0)

Stéphane Glockner, Antoine Lemoine, Mathieu Coquerelle,
and students, PhDs, Postdocs

Institut de Mécanique et d’Ingénierie de Bordeaux

Université de Bordeaux, Bordeaux-INP, CNRS UMR 52 95

https://notus-cfd.org

June 5th 2020

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 1 / 67

https://notus-cfd.org

Contents

Notus first steps and its ecosystem
1 Notus code purposes
2 Development environment
3 Installation, compilation
4 Run notus
5 User interface
6 I/O - Visualisation
7 Architecture, some development keys, user mode
8 Documentation
9 Notus Verification & Validation tools

10 Notus Porting & Performance tools
11 Developement tools
12 Git usage

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 2 / 67

Notus code purposes

Open-source project started from scratch in 2015 (CeCILL Licence)

Modelisation and simulation of incompressible fluid flows, multiphysics

2D/3D Finite Volume methods on staggered grids, Massively parallel

Intended users
Mechanical community: easy to use and adapt, proven state-of-the-art numerical methods, towards
numerical experiments

Mathematical community: develop new numerical schemes, fast and efficient framework for comparative
and qualitative tests

Researchers, students, industrials

Some key points

Take advantage of synergies between Research / Teaching / Industry / HPC

A clear and complete development environment

Mask parallelism complexities for easy programming

Porting on GENCI, PRACE, mesocentres

A thoroughly validated and documented code, non-regression approach

What is not Notus
A concurrent of, a commercial tool, a click button code

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 3 / 67

Notus - some examples

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 4 / 67

Several user types

Notus first step: focus on “Notus user”, Simulation & Advanced

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 5 / 67

Contents

1 Notus code purposes
2 Development environment
3 Installation, compilation
4 Run notus
5 User interface
6 I/O - Visualisation
7 Architecture, some development keys, user mode
8 Documentation
9 Notus Verification & Validation tools

10 Notus Porting & Performance tools
11 Developement tools
12 Git usage

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 6 / 67

Development environment

Development framework

Fortran 2008

Allocatable arrays, structured and derived type
Module-oriented programming (private or public internal subprograms)
Optional arguments & intent attribute
Generic subroutine
Preprocessor
Interoperability with C (binding)

Hybrid MPI/OpenMP parallel coding libraries

Git distributed version control system

CMake cross-platform build system

Doxygen documentation generator from source code

Linux only!

Web sites
https://notus-cfd.org

https://doc.notus-cfd.org

https://git.notus-cfd.org

Compilers and MPI libraries

GNU compilers (> 7.3) and Open MPI (2.10)

Intel compilers (> 18) and Intel MPI

Supercomputers

Irene at TGCC, Occigen at
CINES, Jean Zay at IDRIS

Curta at MCIA

Condor at I2M
Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 7 / 67

https://notus-cfd.org
https://doc.notus-cfd.org
https://git.notus-cfd.org

Installation of Notus

Two steps

Third part libraries
BLAS & LAPACK→ system
Other dependencies: ADIOS (MXML), HYPRE, MUMPS (METIS, Scalapack), LIS, ADIOS2, HDF5, T3PIO
Be sure of the version installed→ Git repository with tarballs
https://git.notus-cfd.org/notus/notus third party/

Notus code
https://git.notus-cfd.org/notus/notus

1 - Get and build third part libraries
Clone third part lib repository
$ git clone https://git.notus-cfd.org/notus/notus third party.git notus third part

Build libraries
Help:
$./build notus third party lib.sh -h

Compilation and installation on Ubuntu 18.04:
$./build notus third party lib.sh -m --with-MPI-include /usr/include/mpi

Compilation and installation on CINES Occigen supercomputer:
$./build notus third party lib.sh -m --use-mkl --cc icc --cxx icpc --fc ifort
--mpicxx mpiicpc

→ Readme page: https://git.notus-cfd.org/notus/notus third party

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 8 / 67

https://git.notus-cfd.org/notus/notus_third_party/
https://git.notus-cfd.org/notus/notus
https://git.notus-cfd.org/notus/notus_third_party

Installation of Notus

2 - Get Notus
$ git clone https://git.notus-cfd.org/notus/notus.git notus

or, if you have a git account:

$ git clone git@git.notus-cfd.org:user/notus.git notus

$ cd notus
$ git remote add official git@git.notus-cfd.org:notus/notus.git
$ git remote update

→ to create a gitlab account: https://doc.notus-cfd.org/d3/d64/install getnotus.html

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 9 / 67

https://doc.notus-cfd.org/d3/d64/install_getnotus.html

Installation of Notus

Build Notus with Cmake (Open-source software for managing build process)

Compiler independant

Supports directory hierarchies

Automatically generates file dependencies, supports library dependencies

Builds a directory tree outside the source tree

CMake and Notus
CMakeLists.txt

several development environnement: GNU, Intel
find third party libraries

Release or debug (default) builds
→ always debug for development; release for production

build notus.sh script whatever the target architecture:

To build on a workstation with GCC compilers and OpenMPI:

$./build notus.sh --linux

To build with an Intel compilers suite:

$./build notus.sh --intel

To build on 8 threads:

$./build notus.sh -j 8 --linux

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 10 / 67

Installation of Notus

To Build on Curta supercomputer environment:
$./build notus.sh -j 4 --curta

To clean build directory before building Notus:
$./build notus.sh -cj 4 --linux

To use MUMPS solver library:
$./build notus.sh -mj 4 --linux

To build with optimization compiler options (release mode):
$./build notus.sh -rmj 4 --linux

To build with OpenMP library:
$./build notus.sh -ormj 4 --linux

To get help:
$./build notus.sh -h

→ More details: https://doc.notus-cfd.org/d7/de7/install build.html

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 11 / 67

https://doc.notus-cfd.org/d7/de7/install_build.html

Contents

1 Notus code purposes
2 Development environment
3 Installation, compilation
4 Run notus
5 User interface
6 I/O - Visualisation
7 Architecture, some development keys, user mode
8 Documentation
9 Notus Verification & Validation tools

10 Notus Porting & Performance tools
11 Developement tools
12 Git usage

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 12 / 67

Run Notus

Basic way

Parallel execution→ mpirun command
$ mpirun -np 8 notus test cases/validation/free convection/square.nts

Test case data base in test case directory
verification: laplacian, navier, phase advection, phase change, etc.
validation: laminar flow, free convection, multiphase, etc.

Use your own directory to store your .nts files

Complete list of command line options:
$./notus -h

Advanced ways

notus.py, script with 2 running modes

run mode: run a test case with parameter changes, run using a batch system, specify
mpirun command, etc.
non-regresion mode: run test cases among the existing verification and validation test
cases as well as various tests
complete list of command line options:
$./notus.py -h
$./notus.py non-regression -h
$./notus.py run -h

notus grid convergence to run a grid convergence study

→ More details: https://doc.notus-cfd.org/d9/dfe/run notus.html

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 13 / 67

https://doc.notus-cfd.org/d9/dfe/run_notus.html

Run Notus

Job submission on a supercomputer

Share ressources managed thanks to a job scheduler and workload management (Slurm, PBSpro, etc.)

Command are system dependant→ see supercomputing center documentation (CINES, IDRIS, TGCC,
MCIA, etc.)

You have to submit your job (and wait)→ tools/submission scripts

Limit amount of processors and CPU time

Job dependancy

For large data sets: remote visualization offered by supercomputng center

Choose the amount of processors you need
3D: 100 000 cells / core
2D: 10 000 cells per core
Fill nodes. Number of nodes as a power of 2.

LLNL BlueGene/L technology GENCI TGCC Joliot Curie Supercomputer

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 14 / 67

Notus console output
$ mpirun -np 8 notus test cases/validation/free convection/square cavity.nts

Notus - build: release
commit: 08a8cf8
branch: ibd-anew
Compiled by ifort
on Tue Feb 13 09:19:09 CET 2018

Initialization
Grid information
Number of ghost cells: 02
Partitioning: 0004 x 0002 x 0001 = 000000008
Global size: 0032 x 0032 x 0001 = 000000001024

Momentum stencil type: 1 STAR
Pressure stencil type: 1 STAR
Energy stencil type: 1 STAR
Write grids and fields into ’test cases/validation/free convection/output/square cavity 000000.bp’

Time iteration n°1 time 0.5000E+00

Momentum solver: iterations and residual: 34 0.5108E-15
Pressure solver: iterations and residual: 100 0.2804E-13
Divergence (predicted & corrected): 0.2920E+02 0.8290E-11
Energy solver: residual: 0.8817E-14
Nusselt number, left boundary: 1.627072605124241E+001
Nusselt number, right boundary: 1.627072605341143E+001
Mean velocity magnitude: 1.748763516276342E-001
Stationarity temperature: error linf: 4.3704802876646909E-001
Stationarity velocity u: error linf: 5.2485424141074921E-001
Stationarity velocity v: error linf: 1.3221265398959479E+000
Stationarity velocity error linf: 1.32212653989595
Divergence (Linf & L2 norms): 2.6182E-09 8.2898E-12

Time iteration n°2 time 1.0000E+00
...

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 15 / 67

Notus console output

...

Time iteration n°287 time 0.1435E+03

Momentum solver: iterations and residual: 21 0.8742E-15
Pressure solver: iterations and residual: 12 0.4509E-14
Divergence (predicted & corrected): 0.8112E-12 0.1013E-16
Energy solver: residual: 0.2073E-15
Nusselt number, left boundary: 1.049093321926628E+001
Nusselt number, right boundary: 1.049093321927709E+001
Mean velocity magnitude: 3.792175505471097E-003
Stationarity temperature: error linf: 9.4928509497549385E-012
Stationarity velocity u: error linf: 7.5430200280335313E-013
Stationarity velocity v: error linf: 3.9763027939732076E-013
Stationarity velocity error linf: 7.543020028033531E-013
Divergence (Linf & L2 norms): 4.9960E-16 1.0133E-17

Satisfied convergence

Residual stationarity temperature (L2 norm): 9.492850949754938E-12
Residual stationarity velocity (L2 norm): 7.543020028033531E-13

Write grids and fields into ’test cases/validation/free convection/output/square cavity 000287.bp’

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 16 / 67

Contents

1 Notus code purposes
2 Development environment
3 Installation, compilation
4 Run notus
5 User interface
6 I/O - Visualisation
7 Architecture, some development keys, user mode
8 Documentation
9 Notus Verification & Validation tools

10 Notus Porting & Performance tools
11 Developement tools
12 Git usage

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 17 / 67

User Interface: .nts file

Concept

ASCII .nts files

Self-explanatory keywords, precise grammar

Efficient parser that supports:
variable declaration
formula
’include’
if condition and loop

Associated documentation→ test cases/doc directory

Organisation

Physical fluid properties data base: std/physical properties.nts file

One .nts file per test case, block structure:

include and variable declarations
system{}
domain{}
mesh{}
modeling{}
numerical methods{}
post processing{}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 18 / 67

User Interface: .nts file example

include std "physical_properties.nts";
system { measure_cpu_time;}
domain {
spatial_dimension 2;
corner_1_coordinates (0.0, 0.0);
corner_2_coordinates (1.0, 2.0);
}
grid {
grid_type regular;
number_of_cells (32, 32);
}
modeling {
fluids {fluid "water";}
equations {
energy {

boundary_condition{
left dirichlet 0.0;
right dirichlet 1.0;
top neumann 0.0;
bottom neumann 0.0;
}

source_term {constant -2.0;}
disable_advection_term;
disable_temporal_term;

}
}
}
numerical_parameters {

time_iterations 1;
energy {
solver mumps_metis;
}
}
post_processing {

output_library adios;
output_frequency 1;
output_fields temperature;
}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 19 / 67

User Interface: notus language

Variables declaration and operations

Wherever in the file

Export to Fortran

string s = "Notus";

integer i = 1;

double a = 10.0;

boolean l = true;

a = 3.0d2;

a = 2.0e1;

a = b/c + c + sqrt(a) + cos(b) + pow(b,3);

s = "I" + " love " + "Notus";

integer h2g2 = 42;

export h2g2;

Automatic change at execution

Useful for non-regression mode, parametric study

Add no redefine

integer no redefine scale = 2;

→ mpirun -np 2 notus -D integer:scale=1 test.nts

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 20 / 67

User Interface: system block

system {

[OPTIONAL] Overwrite default output directory (default: "output")
output_directory STRING_EXPRESSION;

[OPTIONAL] Checkpoint metric (default: cpu_time)
checkpoint_metric time_iteration | cpu_time;
[OPTIONAL] Frequency of the checkpoint (time iteration or second; default: 86000)
checkpoint_frequency INTEGER_EXPRESSION;
[OPTIONAL] Restart with given file (i.e.: "output/checkpoint/poiseuille_2D_1.bp")
restart PATH;

[OPTIONAL] Measure CPU time in several parts of the code
measure_cpu_time;
[OPTIONAL] Measure CPU time of each time iteration only
measure_time_iteration_cpu_time;

}

Checkpoint / restart

Restart a simulation at computer precision after:
→ the end of CPU time limitated job on a supercomputer
→ a system crash

Alternative writing in file sets 1 & 2

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 21 / 67

User Interface: domain block

domain {
spatial_dimension 2; # or 3

The coordinates of 2 opposite corners of the physical domain
corner_1_coordinates DOUBLE_ARRAY;
corner_2_coordinates DOUBLE_ARRAY;

[OPTIONAL] Domain periodicity
periodicity_x;
periodicity_y;
periodicity_z;

[OPTIONAL] Define a subdomain
subdomain STRING_EXPRESSION {

SHAPE # See shapes.nts
- use CSG (Constructive Solid Geometry): union, intersection, and difference
- manage transformations: translation, rotation, scale, and inverse
- Many shapes are supported: sphere, rectangular cuboid, surface meshes, etc.

}
}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 22 / 67

User Interface: shape block

circle {
center DOUBLE_ARRAY;
radius DOUBLE_EXPRESSION;
TRANSFORMATION # [OPTIONAL]

}
cuboid {

corner_1_coordinates DOUBLE_ARRAY;
corner_2_coordinates DOUBLE_ARRAY;
TRANSFORMATION # [OPTIONAL]

}
surface_mesh {

OBJ Wavefront is the only supported format (yet)
file PATH;
TRANSFORMATION # [OPTIONAL]

}
TRANSFORMATION ::= invert
| translate DOUBLE_ARRAY
| scale DOUBLE_EXPRESSION
| rotate DOUBLE_EXPRESSION # 2D only
| rotate DOUBLE_ARRAY, DOUBLE_EXPRESSION # 3D only

Pacman
{

difference {
Pac-Man’s body
circle {radius 0.25; center (0,0);}
rectangle { # Mouth

corner_1_coordinates (-0.1,-0.1);
corner_2_coordinates (0.1,0.1);
rotate tau/8.0;
scale (1.5, 1.0);
translate (sqrt(0.05), 0);

}
Pac-Man’s eye
circle {radius 0.025; center (0.05, 0.125);}

}
}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 23 / 67

User Interface: grid block

#one block (non-)uniform grid
grid {

number_of_cells (32, 32);
grid_type regular; #regular, chebyshev, exponential
number_of_ghost_cells INTEGER_EXPRESSION;

}

#composite grid
grid {

grid_type composite; #Generate a grid by parts.
grid_x {

grid_type regular;

grid_type exponential;
expansion_ratio DOUBLE_EXPRESSION; # Last step/first step
first_step DOUBLE_EXPRESSION; # Impose first step
last_step DOUBLE_EXPRESSION; # Impose last step

next_bound DOUBLE_EXPRESSION;
length DOUBLE_EXPRESSION;

number_of_cells INTEGER_EXPRESSION;
}
grid_x {
...
}
grid_y {
...
}
...

number_of_ghost_cells INTEGER_EXPRESSION;
}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 24 / 67

User Interface: modeling block

modeling {

fluids {
Already defined fluid in std/physical_properties.nts
fluid "air";

Definition of new FLUID_PROPERTIES
fluid STRING_EXPRESSION {

density DENSITY_TYPE DOUBLE_EXPRESSION;

DENSITY_TYPE can be either ‘constant‘ or ‘linear_temperature‘
density constant DOUBLE_EXPRESSION; # Constant value
density linear_temperature DOUBLE_EXPRESSION; # Boussinesq

viscosity DOUBLE_EXPRESSION;
conductivity DOUBLE_EXPRESSION;
specific_heat DOUBLE_EXPRESSION;
thermal_expansion_coefficient DOUBLE_EXPRESSION;
reference_temperature DOUBLE_EXPRESSION;

}
}

species {
species "species_1" {

reference_concentration 1.0;
fluid "air" {

diffusion_coefficient 2.0;
solutal_expansion_coefficient 3.0;

}
fluid "water" {

diffusion_coefficient 4.0;
solutal_expansion_coefficient 5.0;

}
}

}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 25 / 67

User Interface: modeling block

equations {

navier_stokes {

boundary_condition {
See boundary_conditions.nts

}
[OPTIONAL]
immersed_boundary_condition {

wall;
}

[OPTIONAL]
initial_condition {

VECTOR_INITIALIZER # See initializer.nts
}
pressure_initial_condition {

SCALAR_INITIALIZER # See initializer.nts
}

[OPTIONAL]
gravity_term (0, -9.81);
source_term {

VECTOR_INITIALIZER # See initializer.nts
}
linear_term {

VECTOR_INITIALIZER # See initializer.nts
}
grad_div_term;
brinkman_term;
capilarity_term {

surface_tension DOUBLE_EXPRESSION;
}

}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 26 / 67

User Interface: initializer block
Initialize a scalar field with 1.0 everywhere except in a circle
{

Initialize at 1.0 everywhere
constant 1.0;

Initialize the scalar field x(1-x) + y(1-y) inside a circle of radius 0.5 centered at (0,0)
shaped_instructions {

shape {
circle {radius 0.5; center (0.0, 0.0);}

}
instructions {

@return @x*(1.0 - @x) + @y*(1.0 - @y);
}

}
}
The above scalar initializer can be written with instructions only
Instructions are the slowest initializer. For better performances, prefer the
use of ‘constant‘ or ‘shaped_instructions‘ to minimize the computational cost.
{

instructions {
@if (@x*@x + @y*@y < 0.5*0.5) {

@return @x*(1.0 - @x) + @y*(1.0 - @y);
} @else {

@return 1.0;
}

}
}

Initialize a vector field with (0.0, 0.0) everywhere except in a unit square
{

Initialize the vector field with (0.0, 0.0) everywhere
constant (0.0, 0.0);

Initialize the vector field with (1.0, 1.0) in a unit square centered at the origin
shape (1.0, 1.0) {

rectangle {corner_1_coordinates (-0.5, -0.5); corner_2_coordinates (0.5, 0.5);}
}

}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 27 / 67

User Interface: boundary conditon block

boundary_condition {
left BOUNDARY_CONDITITION
right BOUNDARY_CONDITITION
bottom BOUNDARY_CONDITITION
top BOUNDARY_CONDITITION
back BOUNDARY_CONDITITION
front BOUNDARY_CONDITITION

}
BOUNDARY_CONDITITION:
wall [{ SHAPE_INITIALIZER }]
neumann [{ SHAPE_INITIALIZER }]
slip [{ SHAPE_INITIALIZER }]
inlet DOUBLE_ARRAY | { VECTOR_INITIALIZER };
moving DOUBLE_EXPRESSION | { VECTOR_INITIALIZER }; # 2D
moving DOUBLE_ARRAY | { VECTOR_INITIALIZER }; # 3D. Attention: it requires 2D (sic) arrays.

Example: parabolic flow on a part of the left boundary (and wall elsewhere except on the right boundary)
boundary_condition {

left wall;
left inlet{

shaped_instructions {
shape {

line_segment {
coordinates 1., 2.;

}
}
instructions {

@return (mean_velocity*6.0*(@y - 1.0)*(1.0 - (@y - 1.0))/(1.0*1.0), 0);
}

}
}
right neumann;
top wall;
bottom wall;
}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 28 / 67

User Interface: modeling block
energy {

boundary_condition {
See boundary_conditions.nts

}
[OPTIONAL]
immersed_boundary_condition {

dirichlet DOUBLE_EXPRESSION | SCALAR_INITIALIZER;
neumann DOUBLE_EXPRESSION | SCALAR_INITIALIZER;
}

[OPTIONAL]
initial_condition {

SCALAR_INITIALIZER # See initializer.nts
}

[OPTIONAL]
disable_advection_term;
disable_diffusion_term;

phase_change {
liquid_phase STRING_EXPRESSION; # Fluid name
solid_phase STRING_EXPRESSION; # Fluid name
latent_heat DOUBLE_EXPRESSION;
melting_temperature DOUBLE_EXPRESSION;

}
source_term {

SCALAR_INITIALIZER # See initializer.nts
}
linear_term {

SCALAR_INITIALIZER # See initializer.nts
}

}

species_transport {
Select the species
species "tc_species_1" {
...
}

}

} Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 29 / 67

User Interface: modeling block

phase_advection {
Select the fluid to advect and associate initial and boundary conditions
fluid STRING_EXPRESSION {

boundary_condition {
See boundary_conditions.nts

}

[OPTIONAL]
initial_condition {

SHAPE # See shapes.nts
}

}
}

turbulence {
Select an LES model
les_model mixed_scale;
...
RANS model
...

}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 30 / 67

User Interface: numerical parameters block
numerical_parameters {

time_iterations 1000; # Set the number of iteration. Cannot be used with ’final_time’.
final_time 12.0; # or set the final time (s). Cannot be used with ’time_iterations’.

Fixed time step
time_step fixed DOUBLE_EXPRESSION;
or adaptative time step
time_step adaptative {

cfl_factor DOUBLE_EXPRESSION;
first_step DOUBLE_EXPRESSION;
min_step DOUBLE_EXPRESSION;
max_step DOUBLE_EXPRESSION;
max_increment DOUBLE_EXPRESSION;
max_ratio DOUBLE_EXPRESSION;

}

time_order_discretization INTEGER_EXPRESSION; # Can be 1 or 2, 1 by default

[OPTIONAL] Stop the simulation before the max time iteration number is all the selected test are satisfied.
stop_tests {

[OPTIONAL] Stop if the elapsed time exceed 10.0 s
elapsed_time 10.0;

[OPTIONAL] Stop the simulation if the incompressibility criterion is small enough
incompressibility 1e-10;
stationarity_temperature 1e-10; # [OPTIONAL]
stationarity_velocity 1e-10; # [OPTIONAL]
stationarity_species 1e-10; # [OPTIONAL]

}

[OPTIONAL] Numerical parameters relative to materials and Immersed boundary parameters
materials {

sampling_level INTEGER_EXPRESSION;
}
immersed_boundary STRING_EXPRESSION {
...
}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 31 / 67

User Interface: numerical parameters block

navier_stokes {
time_step 1.0; # [OPTIONAL]replace main time step defined above

[OPTIONAL], Automatically chosen
velocity_pressure goda; # goda or timmermans

Select an advection implicit or explicit scheme (pick one)

advection_scheme implicit o2_centered | o1_upwind | o2_upwind;

advection_scheme explicit o1_upwind | o2_upwind | weno3_upwind |
weno5_upwind | weno3_upwind_fd | weno5_upwind_fd {

temporal_scheme euler | ssp2_o2 | nssp2_o2 | nssp3_o2 | nssp5_o3;
[OPTIONS]
directional_splitting true | false;
flux_type godunov | lax_wendroff | force | flic;
flux_limiter low_order | high_order | superbee | minmod | van_leer;
}

advection_scheme explicit lw_tvd_sb {
splitting_method lie_trotter | strang;

}

solver_momentum # See basic_solvers.nts
solver_pressure # See basic_solvers.nts

immersed_boundary {
1st order method
method penalization
Second order methods
method direct, linear;
order 2, 1;
Value to assign at outer cells
outer_value velocity (0.0, 0.0);

}
}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 32 / 67

User Interface: numerical parameters block

energy {
time_step 1.d0; # [OPTIONAL] replace main time step defined above

Select an advection implicit or explicit scheme (pick one)

advection_scheme implicit o2_centered | o1_upwind | o2_upwind

advection_scheme explicit o1_upwind | o2_upwind | weno3_upwind |
weno5_upwind | weno3_upwind_fd | weno5_upwind_fd {

temporal_scheme euler | ssp2_o2 | nssp2_o2 | nssp3_o2 | nssp5_o3;
[OPTIONS]
directional_splitting true | false;
flux_type godunov | lax_wendroff | force | flic;
flux_limiter low_order | high_order | superbee | minmod | van_leer;
}

advection_scheme explicit lw_tvd_sb {
splitting_method lie_trotter | strang;

}

solver # See basic_solvers.nts

immersed_boundary {
method direct;
order 2;
outer_value 4.0;

}
}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 33 / 67

User Interface: numerical block

phase_advection {
time_step 1.0; # [OPTIONAL] replace main time step defined above

[OPTIONAL] sampling level to initialize VOF and MOF (default: 10)
initial_condition_samples 50;

vof_plic {
smooth_volume_fraction INTEGER_EXPRESSION;

}
mof {

use_analytic_reconstruction true; # [OPTIONAL]
use_filaments BOOLEAN_EXPRESSION; # [OPTIONAL]
max_filaments INTEGER_EXPRESSION; # [OPTIONAL]
smooth_volume_fraction 2; # [OPTIONAL]
...

}
level_set {

curvature_method normal_divergence; # [OPTIONAL]
curvature_method closest_points; # [OPTIONAL], implies compute_closest_point
compute_closest_point; # [OPTIONAL]

time_order_discretization 0; # Euler
time_order_discretization 1; # RK2 simple
...
flux_type godunov; # First order Godunov scheme (default)
...
reinitialization; # Default reinitialization (see below)
...

}
}

}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 34 / 67

User Interface: solver block
Available basic solver list:
- hypre_bicgstab or hypre_gmres
- mumps_metis
- lis_bi* or lis_*gmres
- notus_bicgstab

Scalar equation
solver hypre_bicgstab {

max_iteration 50;
tolerance 1.0d-10;
initial_preconditioner left_jacobi; # [Optional]

preconditioner smg { => more robust
preconditioner pfmg { => less robust

max_iteration 1;
}

}
Momentum equation multiphase flow
solver hypre_bicgstab {

max_iteration 50;
tolerance 1.0d-10;
initial_preconditioner left_jacobi; # [Optional]

}
Momentum equation / scalar with stencil of size 2
solver hypre_parcsr_bicgstab {

max_iteration 50;
tolerance 1.0d-10;
initial_preconditioner left_jacobi; # [Optional]
preconditioner boomeramg {

max_iteration 1;
tolerance 1.0d-14;
strong_threshold 0.25;
coarsen_type 6;
aggressive_coarsening_level 0;
interpolation_type 0;
post_interpolation_type 0;
relaxation_type 6;

}
}

HYPRE
Massively parallel solvers and preconditioners

Geometric multigrid for scalar equations
Discretization stencil = 1
Use PFMG (SMG slower but more robust)

Algebraic multigrid
More general, slower, less robust than SMG
→ Navier-Stokes, scalar equation for stencil 1 or 2
→ parcsr hypre interface

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 35 / 67

User Interface: solver block

MUMPS Metis
solver mumps_metis {}

LIS solvers
solver lis_bicgstab{

max_iteration 400;
tolerance 1.0d-14;
initial_preconditioner left_jacobi; # [Optional]

preconditioner iluk{
fill_level 1; # default 0

}
preconditioner iluc{

drop_tolerance 0.001; # default 0.05
rate 5.; # default 5

}
preconditioner ilut{

drop_tolerance 0.001; # default 0.05
rate 5.; # default 5

}
}

MUMPS (direct solver)
→ solution up to CPU precision

Slower but competitive in 2D whatever the equation to
solve

Only small tests in 3D (high memory requirements)

LIS (iter. solvers and precond.)
Useful in some cases:
For momentum equation if Jacobi not enough

May be quicker then Hypre at low number of
processors

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 36 / 67

User Interface: post processing block

post_processing {
output_library adios; # none | adios | ensight | pixie | xdmf | adios2
output_frequency 100;

Fluid properties
output_fields conductivity, density, specific_heat, viscosity;

Navier-Stokes related variables
output_fields velocity, divergence, navier_stokes_source_term, permeability, pressure, etc.

Multiphase variables
output_fields volume_fraction;
output_fields mof_phases; # Requires mof
output_fields interface_curvature,level_set_function; # Requires level_set

Species variables
output_fields species_concentration, species_diffusion_coefficient;

Energy variables
output_fields energy_source_term, temperature;

Post-processing variables
output_fields grid_volume, q_criterion, strain_rate_magnitude, vorticity;

Validation/verification variables
output_fields error, reference_solution, reference_solution_face;

Diagnostic quantities computation
diagnostic_quantities mean_kinetic_energy, mean_pressure, mean_temperature, nusselt_number, wall_shear_stress

[OPTIONAL] statistics (compute mean time fields, fluctuation, etc.)
statistics {

start_time 1.0;
compute_time_averaged_fields velocity, pressure, temperature
compute_fluctuation_fields velocity, pressure, temperature, species_concentration;
compute_rms_fields velocity, pressure, temperature, species_concentration;

}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 37 / 67

User Interface: post processing block

add a set of probe points. Many ’probe_point’ blocks can be defined.
probe_point {

output_frequency INTEGER_EXPRESSION;

Define as many point as required (at least one)

Add a probe point using coordinates
point DOUBLE_ARRAY;
...

Fields to output
output_fields OUTPUT_FIELD [, OUTPUT_FIELD , [...]];

}

add a probe line. Many ’probe_line’ blocks can be defined.
probe_line {

output_name STRING_EXPRESSION; # [OPTIONAL]
output_frequency INTEGER_EXPRESSION; # [OPTIONAL]

Definition of the line segment (only one line segment is accepted)

Define the line segment by the coordinates of its end points
line_segment DOUBLE_ARRAY, DOUBLE_ARRAY;
samples INTEGER_EXPRESSION; # Define the number of samples

Axis-aligned line segments

Define the line segment by the coordinates of the cell of its end points (must be axis-aligned)
line_segment cell INTEGER_ARRAY, INTEGER_ARRAY;
...

Fields to output
output_fields OUTPUT_FIELD [, OUTPUT_FIELD , [...]];

}

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 38 / 67

User Interface: post processing block

Full documentation: test_cases/doc directory

advanced_solvers.nts
basic_solvers.nts
boundary_conditions.nts
domain_block.nts
grid_block.nts
initializer.nts
main.nts
modeling_block.nts
notus_language.nts
numerical_parameters_block.nts
post_processing_block.nts
shapes.nts
system_block.nts

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 39 / 67

Contents

1 Notus code purposes
2 Development environment
3 Installation, compilation
4 Run notus
5 User interface
6 I/O - Visualisation
7 Architecture, some development keys, user mode
8 Documentation
9 Notus Verification & Validation tools

10 Notus Porting & Performance tools
11 Developement tools
12 Git usage

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 40 / 67

I/O - Visualisation

I/O: write on disk output data.

Hundred of scientific file formats (open, closed, rely on external
libraries, etc.)

Save disk space→ binary data files

How to write efficiently on thousand of processors→ parallel I/O.

Visualization: representation and analysis of the data

2D/3D field plot

VisIt: large-scale scientific visualization
ParaView: parallel scientific visualization

1D (2D) graph

Python’s Matplotlib
Gnuplot: command-driven interactive 2d and 3d plotting
program
Xmgrace

Manipulating images

Gimp, ImageJ, ImageMagick
mencoder, ffmpeg

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 41 / 67

I/O - Visualisation: ADIOS & Notus

Domain is partitioned, data are distributed
→ How to write and plot data efficiently on thousands of processors?

Use of ADIOS library (Oak Ridge National Laboratory)

Open-source

Adaptable IO System

Simple and flexible way to describe the data

Masks IO parallelism

Different methods: POSIX, MPI-IO, aggregation

From 1 to 100 000 processors

.bp files

ADIOS & Notus
A list of data is created, printed at the end of the time loop

Add a field anywhere in the code:
use mod field list
call add field to list(print list, enstrophy, ’enstrophy’)

ADIOS used also for checkpoint / restart

Visualisation of the results → VisIt (Lawrence Livermore National Laboratory)

With ADIOS file format, VisIt is limited to 2 billion cells.

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 42 / 67

I/O - Visualisation: very large data sets

Pixie
Based on HDF5 library (.h5 files)

Compatible with parallel VisIt (automatic parallel domain decomposition)

Non-uniform rectilinear grids

Notus Pixie output less efficient then ADIOS

XDMF
Data are stored in HDF5 files (.h5), XML description file (.xdmf file)

Non-uniform rectilinear grids

Compatible with Paraview (parallel?) and VisIt (sequential)

ADIOS2
Version 2 of ADIOS library, toward exascale computations

Data are stored separatly, XML description file

Compatible with Paraview (regular rectilinear mesh only)

Ensight

Based on MPI-IO

Data are stored separatly, .case description file

Compatible with Visit and Paraview, less efficient then ADIOS or HDF5

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 43 / 67

Contents

1 Notus code
2 Development environment
3 Installation, compilation
4 Run notus
5 User interface
6 I/O - Visualisation
7 Architecture, some development keys, user mode
8 Documentation
9 Notus Verification & Validation tools

10 Notus Porting & Performance tools
11 Developement tools
12 Git usage

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 44 / 67

Development environment - Architecture

Project tree
src Fortran source files
std Standard database (fluid characteristics, mesh, object files)
test cases Test case description files
tools Useful development and validation scripts
doc Doxygen generated documentation

Source tree
src/lib (notus library sources)

src/notus

notus.f90 (main program)
ui/ (user interface routines)

src/doc

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 45 / 67

Some development keys

Naming

Hundreds of variables

self explanatory variable names (velocity, pressure, temperature, ...)
as few abbreviations as possible

Prefix

module starts with mod
scalar variable module starts with variables
field array module starts with fields
new derived types module starts with type
new types starts with t
ex: struct face field velocity%u %v
scalar names associated to an equation suffixed (navier time step, etc.)

Explicit routine name
solve navier

compute mean velocity

add div diffusive flux to matrix

→ nearly “guessable” variables
→ Auto-documentation
→ Use ‘git grep‘ to locate variables, routines, etc.

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 46 / 67

Some development keys

Code formating

tab = 3 characters

line = 132 characters max

Automatic formatting before committing: formatcode.sh
Usage: formatCode.sh [OPTIONS]

-h print usage and exit

-p format only modified files

-f format only given files

-c COMMIT format only the given commit

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 47 / 67

Some development keys - Masking parallelism

Numerical domain and process ghost cells

The global domain is partitioned into subdomains

Addition of a few layers of cells surrounding the local domain:
nx × ny × nz cells

MPI generic routines to exchange data

2D/3D, whatever overlapping zone size

Integer, double

Cell array, or vector defined on staggered grid
call mpi exchange(pressure)

call mpi exchange(velocity)

→ Mandatory after any spatial derivative computations

MPI Exchange + Fill boundary ghost nodes
call fill ghost nodes(scalar,
boundary condition)

call fill ghost nodes(vector, is vector,
boundary condition)

Global reduction routines
encapsulate MPI ones

generic routines for min, max of local arrays, sum of scalars

OpenMP generic algebraic
operation for 3-dimensional
arrays and face-fields
x = a + b
call field operation add(a, b,
x)

a = a + b*c
call field operation add mult(a,
b, c)

...

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 48 / 67

Some development keys - A set of user routines

Concept

→ Avoid a user to known very well the code

→ User directory src/lib/user

Void routine by default

Uncomment, modify, compile

Initial condition

Boundary conditions

Source terms

Computation of physical properties

Implicit discretization scheme (for scalar equations)

Example
do k=1,nz

do j=1,ny
energy boundary type%left(j,k)=cell boundary type dirichlet
temperature boundary value%left(j,k)=...

enddo
enddo

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 49 / 67

Some development keys - useful modules

use variables domain
→ spatial dimension, etc.

use variables grid
→ nx, ny, nxu, nyv, is, ie, isu, ieu, etc.

use variables spatial step
→ dx(nx), dx u(nxu), etc.

usr variables time discretization
→ time, global time step, time iteration, etc.

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 50 / 67

Contents

1 Notus code purposes
2 Development environment
3 Installation, compilation
4 Run notus
5 User interface
6 I/O - Visualisation
7 Architecture, some development keys, user mode
8 Documentation
9 Notus Verification & Validation tools

10 Notus Porting & Performance tools
11 Developement tools
12 Git usage

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 51 / 67

Documentation - Doxygen

For writing software reference documentation

Documentation is written within the code

Open-source, generates html, pdf, latex files

Doxygen and Notus

https://doc.notus-cfd.org

Upper level doc: installation, git, architecture, howtos, best practises, etc.
(markdown format)

One documentation group per src/lib subdirectories (physics,
numerical methods, io, etc.)
cat /src/lib/mesh/grid generation/doc.f90

!> @defgroup grid generation Grid Generation

!! @ingroup mesh

!! @brief Compute grid coordinates and spatial steps

Documentation inside each Fortran files
cat /src/lib/mesh/grid generation/create regular mesh.f90

!> Create a regular Cartesian mesh (constant step size per direction).

!! The mesh is created in two steps:

!! 1. Provide global face coordinates

!! 2. Compute local variables (coordinates and space steps)

!! The second step is automated in complete mesh structure

!! Require the number of points per directions

!! ingroup grid generation

subroutine create regular mesh()

...

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 52 / 67

https://doc.notus-cfd.org

Contents

1 Notus code purposes
2 Development environment
3 Installation, compilation
4 Run notus
5 User interface
6 I/O - Visualisation
7 Architecture, some development keys, user mode
8 Documentation
9 Notus Verification & Validation tools

10 Notus Porting & Performance tools
11 Developement tools
12 Git usage

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 53 / 67

Verification and Validation V&V

Verification
proves that the continuous model is solved precisely by the discrete approach

analyses the numerical solution of equations
quantifies and reduces of the numerical errors
computes spatial and temporal convergence orders

→ mainly a mathematical and computing process, unlinked to physical problem

Validation
analyses the capacity of a model to represent a physical phenomena

compares numerical solution to experimental results
identifies and quantifies errors and uncertainties of continuous and discrete models,
and experience

→ Accumulation of evidence that the code works!

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 54 / 67

Verification

2 main steps
no bug in the code or unconsistant
solution
quantify numerical errors

start from an exact (built) solution
compute errors, convergence order
compare the given order to the
expected one

Error sources
coding bug

numerical stability condition not
satisfied

insufficiant spatial or temporal
convergence

iterative methods not converged

rounding errors

Hypothesis: smoothed solution in
the asymptotic convergence zone

N discrete solutions fk (1 ≤ k ≤ N)

fh→0 = fk + Chp
k + O(hp+1

k)

pk =
log(

Ek
Ek−1

)

log(
hk

hk+1
)

where Ek = fexact − fk

mesh L∞ error Order L2 error Order
10 2.53e-03 n/a 6.87e-04 n/a
20 6.49e-04 1.97 1.69e-04 2.02
40 1.63e-04 1.99 4.22e-05 2.00
80 4.08e-05 2.00 1.05e-05 2.00

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 55 / 67

Validation

Analyses the capacity of a model to represent a physical phenomena

no exact solution

post processing of physical parameter (velocity plot, Nusselt numbers, lift, drag, etc.)

comparison with experience or other code

quantify error and uncertainty

3 meshes→ convergence order→ Richardson extrapolation

Mesh Nusselt nb. Order Velocity Order
32 1.0490e+01 na 3.7921e-03 na
64 9.1842e+00 na 3.6811e-03 na
128 8.9013e+00 2.2070 3.6387e-03 1.3913
256 8.8424e+00 2.2635 3.6277e-03 1.9381
512 8.8292e+00 2.1622 3.6249e-03 1.9957
Ext. 8.8254e+00 3.6240e-03
Réf. 8.8252e+00

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 56 / 67

Notus V & V tools

1 - compute convergence order
Run the same case varying a parameter (mesh or time step)

→ json file
{"number of cells": [100, 25], "time step": 0.5},
{"number of cells": [200, 50], "time step": 0.25},
{"number of cells": [400, 100], "time step": 0.125},

{"number of cells": [800, 200], "time step": 0.0625}

Python script: ./notus grid convergence -np 8 --doxygen test case name
run (interactivly or submission) the test case with different meshes
collect the results of the chosen quantities
compute convergence order and extrapolated values
output to doxygen format

2 - non regression

list of V&V test cases files

quick or full validation

run the test cases with bash script

results in txt file: OK, NO, FAIL, etc.

commit the results (one per architecture) to Git repository

notus.py script

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 57 / 67

Notus V & V tools: create your own test case

Work in another directory than validation or verification ones

As much as possible, use formula inside the .nts file

Integration into notus test case list:

→ https://doc.notus-cfd.org/db/da5/howto add test case.html

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 58 / 67

https://doc.notus-cfd.org/db/da5/howto_add_test_case.html

Check Portability and Performances

Portability

Associated to V & V process

Numerical solutions should be independant of:
compiler editors, compiler versions, MPI libraries, etc.
computer architectures and processor numbers

Notus portable on:
GNU + OpenMPI; Intel + MPT; Intel + IntelMPI; Intel + BullXMPI
Sequential and Parallel versions
→ “Same” results betwwen 10−8 and 10−15)

Performances
Compare measured scalability to the expected one

Identify and measure relevant parts of the code
partitiong
initialization
time loop: equation preparation, solvers (external), I/O

Lot of functionalities: identify the relevant test cases

Determine optimal use of supercomputers (number of cells per core)

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 59 / 67

Notus, performance tools

Objectives

Verify weak and strong scalability

Verify I/O performance

Ensure non regression of these performances

On several supercomputers (from local to GENCI/PRACE)

Scalability scripts

Template directoy
notus template .nts file
submission template file (depending of the workload manager)

Submission bash script
./submit jobs.sh -t weak -a 9 -c 40 -m 16 -s template sub curie -q ccc msub
./submit jobs.sh -t strong -i 3 -a 9 -c 512 -m 16 -s template sub curie -q ccc msub
./submit jobs.sh -t strong node -c 100 -m 16 -s template sub curie -q ccc msub
→ copy template directory
→ adapt template files
→ submit jobs

Concatenation bash script
./concatenate cpu times.sh -t weak -a 9 -c 40 -m 16

128 0.26000E+01 0.86140E+00 0.94443E+00 0.79417E+00
256 0.29297E+01 0.10660E+01 0.10462E+01 0.81751E+00
512 0.30754E+01 0.11369E+01 0.11025E+01 0.83590E+00
1024 0.38859E+01 0.16025E+01 0.13959E+01 0.88751E+00
2048 0.43207E+01 0.18807E+01 0.15359E+01 0.90404E+00
4096 0.47281E+01 0.22302E+01 0.16268E+01 0.87108E+00
8192 0.65902E+01 0.32613E+01 0.23815E+01 0.94744E+00

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 60 / 67

Notus, performance tools

Weak scalability on Curie and Occigen supercomputers
→ 503 cells per core, number of core increases, constant CPU time expected

Strong scalability
→ constant number of global cells, number
of core increases, linear speed-up expected

HYPRE / LIS comparison:
BiCGStab + Jacobi

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 61 / 67

Contents

1 Notus code purposes
2 Development environment
3 Installation, compilation
4 Run notus
5 User interface
6 I/O -/ Visualisation
7 Architecture, some development keys, user mode
8 Documentation
9 Notus Verification & Validation tools

10 Notus Porting & Performance tools
11 Developement tools
12 Git usage

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 62 / 67

Developement tools - Editing the source code

Atom Integrated Development Environment
Cross-platform editing, File system browser, Multiple panes, ...
https://doc.notus-cfd.org/dd/dd7/howto atom.html

Light and efficient text editors
From workstation to supercomputer, remote access

vim→ tools/vim syntax
https://riptutorial.com/fr/vim

emacs→ tools/emacs/.emacs
https://www.gnu.org/software/emacs/tour/

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 63 / 67

https://doc.notus-cfd.org/dd/dd7/howto_atom.html
https://riptutorial.com/fr/vim
https://www.gnu.org/software/emacs/tour/

Development environment - Git

About Git VCS
Records changes to a file(s) over time

Allows to revert files back to a previous state

Reverts the entire project back to a previous state

Compares changes over time

See who last modified something

Recovers lost files

Fully mirrors the repository

→ https://openclassrooms.com/fr/courses/2342361-gerez-votre-code-avec-git-et-github

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 64 / 67

https://openclassrooms.com/fr/courses/2342361-gerez-votre-code-avec-git-et-github

Development environment - Git

Branch model
One directory

One version = one branch

Official Notus repository master and dev branches cloned to local
repository

Local branches management
create a branch, checkout a branch:
$ git branch my-branch
$ git checkout my-branch

merge branch:
$ git merge branch-to-merge

rebase from dev:
$ git rebase dev

branches available:
$ git branch -a

get differences between two branches:
$ git diff branch name

Server dialogue
get the last dev version:
$ git pull official dev
push a branch to your origin remote repository:
$ git push

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 65 / 67

Development environment and porting - Git

The Three States, basic workflow
File modification in the working directory

Stage the files

Commit

Few commands to start with Git
Change file with text editor
$ git status
$ git add file-name
$ git commit -a
→ add a coment to your commit
$ git commit -a --amend

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 66 / 67

Conclusion

Use of some standard development tools (Git, CMake, Doxygen)

Use of specific libraries: IO, solvers

Single Doxygen documentation: concepts, installation, modeling, subroutines

Different users (from student to researcher, from modeling to numerical methods)

Different computers
A few scripts, easy to use and modify for:

installation
execution
V&V
scalability studies

→ ongoing project, version 0.4.0 only !

Notus team (I2M / TREFLE) Notus first steps and its ecosystem (0.4.0) June 5th 2020 67 / 67

