The breaking criteria: a way to predict and characterize a breaking wave

Florian DESMONS^{*}, Pierre LUBIN^{*}

* I2M Laboratory, TREFLE Department, Team MFN, France

WCCC-ECCOMAS Congress 2020 – MS402: 11-15/01/2021

- <u>Geometrical</u>: modification of the asymmetry of the wave profile
- <u>Energetic</u>: augmentation of the energy dissipation rate
- <u>Dynamic</u>: flow motion becomes rotational
 → Mass transport

Snapshop from a video made by Olivier Kimmoun (2018) of a breaking wave in a canal

- Prediction
- Detection
- Intensity
- Classification
- Characterization

- Prediction
- Detection
- Intensity
- Classification
- Characterization

- Prediction
- Detection
- Intensity
- Classification
- Characterization

- Prediction
- Detection
- Intensity
- Classification
- Characterization

- Prediction
- Detection
- Intensity
- Classification
- Characterization

- Prediction
- Detection
- Intensity
- Classification
- Characterization

Beginning of my thesis

Small breaking wave

Large breaking wave

Study the breaking wave event following the wavelength, wave steepness and water depth

Numerical Tool : Notus CFD

• Notus CFD

- Developped inside my team
- Navier-Stokes equation
- Multiphase flow
- Initial condition
 - First order Stokes wave Periodic sinusoidal wave
 - Flat bottom
 - 2D
 - Wavelength from 5 cm to 35 cm Capillary-Gravity wave
- <u>Simulations</u>
 - More than 150 simulations
 - 2,5 millions of hours on supercomputers

Scheme of an initial wave characteristics

Scheme of an initial wave characteristics

Characteristics:

- Wavelength : L
- Wave amplitude : A
- Wave depth : D

Scheme of an initial wave characteristics

Characteristics:

- Wavelength : L
- Wave amplitude : A
- Wave depth : D

Relations:

• Wave steepness : $\varepsilon = \frac{2\pi A}{L}$

• Water depth :
$$\frac{D}{L}$$

Scheme of an initial wave characteristics

Characteristics:

• Wavelength : L

- Wave amplitude : A
- Wave depth : D

Relations:

• Wave steepness : $\varepsilon = \frac{2\pi A}{L}$

• Water depth :
$$\frac{D}{L}$$

- Non Breaking (NB)
- Parasitic Capillary Waves (PCW)
- Spilling Breaker High surface tension (SB)
- Plunging Breaker (PB)

Non breaking wave simulation

- Non Breaking (NB)
- Parasitic Capillary Waves (PCW)
- Spilling Breaker High surface tension (SB)
- Plunging Breaker (PB)

Only for small waves L < 50 cm

Parasitic Capillary Waves simulation

- Non Breaking (NB)
- Parasitic Capillary Waves (PCW)
- Spilling Breaker High surface tension (SB)
- Plunging Breaker (PB)

Only for small waves

L < 50 cm

Spilling Breaker simulation

- Non Breaking (NB)
- Parasitic Capillary Waves (PCW)
- Spilling Breaker High surface tension (SB)
- Plunging Breaker (PB)

Plunging Breaker simulation

Breaking Maps : Shallow, intermediate and deep

Every symbol is a simulation

Non Breaking – Parasitic Capillary Waves Spilling Breaker – Plunging Breaker

Breaking Maps : Shallow, intermediate and deep

Every symbol is a simulation

Non Breaking – Parasitic Capillary Waves Spilling Breaker – Plunging Breaker

Breaking Maps : Comparison

Remarks:

- The breaking limit is lower for the shallow water than the deep water
- Even for a flat bottom, the water depth highly influences the breaking type

• <u>Total energy E</u>

Sum of : Kinetic Energy, Potential Energy and Surface Energy

• Energy dissipation rate ξ^1

$$E(t) = E_0 e^{-\xi t}$$

With E_0 the energy just before the breaking

¹ Capillary effects on wave breaking, Journal of Fluid Mechanics, Luc Deike et al. , 2015

Remarks:

- Shallow water dissipation rate is higher than for deep water

Remarks:

- Shallow water dissipation rate is higher than for deep water
- High dissipation rate is related to Spilling Breaker with surface tension

Remarks:

- Shallow water dissipation rate is higher than for deep water
- High dissipation rate is related to Spilling Breaker with surface tension
- Small wavelength is better to dissipate the energy

Conclusion and Perspectives

Three types of breaking wave :

- Parasitic Capillary Waves
- Spilling Breaker with Strong surface tension
- Plunging Breaker

More than 150 numerical simulations on 5 - 35 cm breaking wave

Creation of three Breaking Maps (Prediction): Shallow water, Intermediate water, Deep water

Characterization of the energy dissipation rate for shallow water:

- Small wavelength tends to dissipate faster the energy
- Shallow water dissipation rate is higher than for deep water

« Breaking wave is when it becomes interesting » (Marc Buckley, 2018)