
1

Towards Dependable Embedded Model Predictive
Control
Tor A. Johansen

Abstract—While Model Predictive Control (MPC) is the in-
dustrially preferred method for advanced control in the process
industries, it has not found much use in consumer products and
safety-critical embedded systems applications in industries such
as automotive, aerospace, medical and robotics. The main bar-
riers are implementability and dependability, where important
factors are implementation of advanced numerical optimization
algorithms on resource-limited embedded computing platforms
and the associated complexity of verification. This challenge
comes from a requirement of the use of ultra-reliable hardware
and software architectures in safety-critical applications, low-cost
hardware in consumer products, or both. This paper surveys the
state-of-the-art in the emerging field of dependable embedded
MPC, and discusses some key challenges related to its design,
implementation and verification. A novel result is the study of a
simulator-based performance monitoring and control selection
method that monitors and predicts MPC performance and
switches to a highly reliable backup controller in cases when
the MPC experiences performance issues.

Index Terms—Numeric Optimization; Embedded Systems; De-
pendability; Fault-tolerance; System safety

I. INTRODUCTION

Model predictive control (MPC) was developed as a prac-
tical implementation of optimal feedback control for multi-
variable processes that were subject to input and output
constraints. At the current time t0, when the system is in the
state defined by the vector x(t0), MPC solves the following
optimization problem in order to compute optimal control
inputs u(t0), ...,u(tN) on the time horizon N:

min
u(·),s(·)

J(u(t0),,u(tN),s(t0),,s(tN);x(t0)) subject to

x(tk+1) = f (x(tk),u(tk), tk), x(t0) given
g(x(tk),u(tk),s(tk), tk)≤ 0, k = 0,1,2, ...N

where J is a cost-function, f a discrete-time dynamic model,
g is a function that represents constraints, and the vector s(tk)
contains slack variables that are used to relax the constraints
to guarantee the existence of a solution. At every time in-
stant, t1, t2, ..., the procedure is repeated based on updated
information. MPC is proven to enable significant performance
improvements in a range of applications, and has been partic-
ularly successful in the process and petroleum industries, [1].
The industrial success of MPC has led to intense research, and
theoretical issues such as stability and optimality, and how they
are influenced by real-time computational resource limitations,
are by now fairly well understood [2].

The implementation of MPC in the process and petroleum
industries has typically been as a high-level multi-variable

Center for Autonomous Marine Operations and Systems, Department of
Engineering Cybernetics, Norwegian University of Science and Technology,
Trondheim, Norway.

Fig. 1. Two common variations of conventional MPC. Left: (a) Conventional
MPC system architecture. Right: (b) Conventional MPC system architecture
with independent safety system.

controller at a level above a layer of basic single-loop control,
as illustrated in Fig. 1. The basic control has typically been re-
sponsible for plant stabilization, disturbance rejection and set-
point tracking. Thus, the interface between the basic control
and MPC is typically set-point commands to low-level PID-
type controllers. The basic control is typically implemented
within industrial PLC (programmable logic controllers) or
industrial DCS (distributed control systems) that are based on
highly dependable hardware and firmware. However, although
the basic control system provides a significant degree of both
control performance and safety by itself, it is sometimes
accompanied by an independent safety system. The safety
system is designed to take the plant to a safe state when unsafe
conditions are detected or predicted, or call for intervention or
manual control by an operator. This often involves reconfig-
uring, isolating or shutting down a part of the plant. Although
not explicitly represented in the figure, a typical architecture
may also include a higher-level optimization of steady-state
conditions. This often uses nonlinear static models in order to
provide reference points for inputs and states to the MPC, and
is referred to as real-time optimization (RTO). Alternatively,
the static and dynamic optimization is combined in so-called
Economic MPC, e.g. [3].

With the basic control performance and safety already
provided, it has been convenient to allow the MPC to be
implemented in computationally powerful and inexpensive,
yet not very reliable, off-the-shelf computer hardware and
software. This usually means PC-type computers running
office/server-type of operating systems not designed with the
strict resource control and scheduling needed for real-time
response guarantees and ultra-high reliability. Moreover, the
numerical optimization required for MPC has conveniently
been based on sophisticated off-the-shelf numerical code and
libraries that have been developed and improved over long
time. Often, this code is proprietary and/or binary and there-
fore to be considered more or less as a ”black-box” even

2

though basic algorithms have known properties. Arguably, the
dependability of the standalone MPC module has received only
modest attention in many applications and implementations,
and perhaps been driven more by availability and reliability
requirements rather than safety.

Currently, there is significant research activities on algo-
rithms and software for Embedded MPC, aiming to implement
MPC either on ultra-reliable industrial real-time computer
platforms such as PLCs and DCSs, or custom embedded
system hardware (HW) with micro-controllers, FPGAs (Field-
Programmable Gate Arrays) or ASICs (Application-Specific
Integrated Circuits). This development is driven by commer-
cial interests in new applications and other industries following
the success of conventional MPC in process control:

• Desire to use MPC in applications that are characterized
by relatively fast dynamics where the real-time aspects
of MPC computations must be taken very seriously,
e.g. subsea petroleum production (e.g. [4], [5]), oil well
drilling control systems (e.g. [6]), robotic systems (e.g.
[7]), aerospace (e.g. [8]), electric power generation and
distribution systems (e.g. [9]), and scheduling of comput-
ing resources, e.g. in cloud computing [10].

• Desire to use MPC in applications that requires extremely
fast sampling and updates, e.g. power electronics, [11].

• Desire to use MPC in products which require low-cost
embedded systems, e.g. consumer electronics, medical
devices (e.g. [12]), and cars (e.g. [13]).

• Desire to use MPC for low level control, also for plants
that are not pre-stabilized (e.g. [14]).

• Desire to use MPC in safety-critical applications.

This means that MPC might be used within different embed-
ded system architectures, where some of them will impose
significantly stronger responsibility on the MPC in order to
not only provide high-level performance-improving control,
but also basic and safety-related control functionality such
as stabilization, disturbance rejection, and fault tolerance. In
safety-critical applications the consequences of failure of the
MPC system may be catastrophic and unacceptable.

The above trends means that embedded MPC may need
to be made significantly more dependable than conventional
MPC. Dependability means the system’s ability to avoid
failures with unacceptable consequences for the system’s
functionality, [15]. While ”external” faults in sensors, actu-
ators, and the plant can lead to control system failure with
unacceptable consequences, the focus of this study is on the
dependability and vulnerability of the MPC computer control
system with its computer hardware and software. The limited
resources of an embedded system (such as power, memory,
processing capacity and software libraries) in combination
with requirements for predictable performance poses the main
barriers for replacing conventional industrial control algo-
rithms with MPC in embedded systems. For completeness,
we remark that in addition to handling to internal faults, the
MPC’s tolerance to external faults is also an active research
area, e.g. [16], [17], [18], [9].

A summary of potential embedded MPC system architec-
tures is given in Fig. 2. As an extreme case, the architecture
in Fig. 2 part (a) has no additional safety system or even basic
control and stabilization, which increases the dependability

requirements to the core embedded MPC module. The desire
to reduce cost in products where MPC is embedded may favor
this architecture, e.g. in automotive applications [13].

In other applications with strong couplings and nonlineari-
ties, a basic control layer based on PID-controllers may limit
the achievable performance and therefore be unacceptable,
e.g. [4], [5], favouring the architecture in Fig. 2 part (c).
On the other hand, the architectures in Fig. 2 parts (b) and
(d) are similar to conventional MPC and may be favoured in
applications when the MPC is embedded in an existing fault
tolerant system design, e.g. [9].

Top-left: (a) ”Bare” embedded MPC system architecture. Top-right:
(b) Embedded MPC system architecture with separate basic control.

Bottom-left: (c) Embedded MPC system architecture with
independent safety system. Bottom-right: (d) Embedded MPC

system architecture with separate basic control and independent
safety system.

Fig. 2. Four possible embedded MPC system architectures.

Many aspects of dependable embedded MPC are currently
receiving increasing interest in the literature, while others are
not receiving the attention that may be needed in order to
enable embedded MPC in certain application areas.

The purpose and contribution of this paper is to provide a
holistic systems perspective and discuss some requirements
and challenges for dependable embedded MPC. Section II
surveys embedded MPC architectures, algorithms, hardware
and software. Section III discusses the key aspects of de-
pendability, and together these two sections lay a foundation
for dependable embedded MPC. In section IV this leads to
some novel results and advice for practitioners on how depend-
able embedded MPC architectures, algorithms and computer
hardware and software can be designed, implemented and
verified for demanding and safety-critical control applications.
A key element is a fault-tolerant architecture that includes
a simulation-based performance monitor to select between
different control solutions that is presented and illustrated
using a simulation example in section IV. Section V ends
with some concluding remarks on the future of dependable
embedded MPC.

3

II. EMBEDDED MPC ARCHITECTURES, ALGORITHMS,
HARDWARE AND SOFTWARE

This section will provide some further discussion on the
embedded MPC architectures illustrated in Fig. 2 and the
underlying algorithms, hardware and software required to
implement embedded MPC in a highly resource-limited real-
time embedded control system.

The limited resources in combination with requirements
for predicable performance poses the main barriers for re-
placing conventional industrial control algorithms with MPC
in embedded systems. Limited power and cooling means
limited computational resources for computationally intensive
numerical optimization with hard real-time constraints that
normally relies on the accuracy of floating-point arithmetic.
With complex algorithms that have a relatively large footprint,
limited computer memory might reduce performance. One
reason is that transfer of data and instructions from the slower
memory modules to the central processing elements might be a
bottleneck leading to latencies and unused processing capacity.
Another reason is that it also means limited opportunities to
store pre-computed data structures to support the real-time
processing. Redundant hardware or functionality is often a
highly useful factor in developing dependable systems, but
the opportunities are limited by shortage of processing and
storage resources.

A. Embedded MPC architectures
The existence of a dedicated and independent safety system

as shown in parts (c) and (d) of Fig. 2 means that the safety
of the process is not a primary responsibility of the MPC.
Still, even with the existence of such as safety system, there
might be very demanding requirements for the MPC since the
cost and consequences of activating the safety system might
be significant as it may lead to a shutdown causing several
hours or days of non-productive time of an industrial asset.
Performance and reliability of the MPC may be a primary
concern even if it is not safety-critical.

One should have in mind that in some applications it might
be difficult, or even impossible, to develop an independent
safety system that could respond safely to control failures.
Reasons for this could be that there is no well-defined fail-
safe state in the case of control system failure (think of an
aircraft or a ship loosing steering or propulsion). In such cases
the faulty control system should perhaps be overridden by
manual (human) control, or some redundant control system
(hardware or functional redundancy) should take over. Such
redundancy is provided by the separate and independent basic
control system in Fig. 2 (b). As will be investigated in Section
IV, the control re-configuration required to implement this
is quite complicated as it may require a separate diagnosis
function in order to identify if the embedded MPC output is
to be trusted and used, or not.

The ”bare” architecture in Fig. 2 (a) provides no safety or
functional redundancy beyond what is built into the embedded
MPC. There are indeed several safety functions that are recom-
mended to be integrated within an MPC, e.g. state constraints.
Since there is no external backup solution, the demands for
verification and validation of the embedded MPC hardware
and software are likely to be very strict if the consequences

of failure are severe. As will be discussed later, this has
significant consequences for the design and analysis of the
embedded MPC.

The choice of control system architecture is likely to be
highly dependent on several factors, such as requirements
for dependability, hardware and software technology require-
ments, and the related costs of design, verification and valida-
tion. As will be introduced in Section IV, there are additional
novel architectures beyond those in Fig. 2 that might be
attractive. Systematic system design and analysis frameworks
are available in the form of industry standards such as IEC
61508 and 61511, and MIL-STD-882C. They provide methods
and tools for the design and analysis based on the particular re-
quirements of the application. It is considered highly unlikely
that one can find single architectures, algorithms, hardware
and software implementations that fit all applications, and a
system theoretical safety approach may be fruitful in complex
systems [19]. The use of MPC is particularly fruitful in
the systems theory approach to safety, as MPC provides a
systematic approach to integrate safety constraints with other
operational constraints, objectives and performance criteria for
reference tracking, control effort use, or economic objectives.
The use of a systems theory approach is particularly evident
for the design, development, implementation, verification and
certification phases, although relevant also for analysis of
requirements and feasibility, and specification.

B. Hardware and software environments
While today’s conventional MPC is typically run under

some Windows or Unix/Linux variant on PC/server-type of
computers, embedded MPC may run in a variety of different
platforms:

• Industrial controllers, typically well-proven process-
ing units with floating point co-processors and fairly
large amounts of memory for program and data. These
standardized controllers are designed to operate in a
distributed control system (DCS) and typically run some
real-time operating system and comes with well-proven
standard libraries for communication, networking, in-
put/output, configuration management, control and sig-
nal processing. Moreover, they usually support custom
programs (such as MPC numerical optimization) using
high-level programming languages such as C or C++.

• Programmable logic controllers (PLCs), which are
similar to, but usually designed to be even more robust
than, industrial controllers. They can operate stand-alone
or within a DCS. Usually, they have processors with fairly
limited processing and memory capacity, and only top-
end models tend to have floating-point co-processors. The
access to resources and programming is usually limited to
specific block-oriented or highly structured programming
languages (such as IEC 61131-3) with standard blocks for
communication, networking, input/output, configuration
management, control and signal processing. Such limi-
tations contributes to less risk for users’ programming
errors causing system failure. In addition, some offer
structured programming environments with C-like lan-
guage, or reduced C syntax and a few standard libraries,
that can be used to implemented Embedded MPC, [20],

4

[4]. They are designed using extremely robust and reliable
electrical and mechanical design and components, and
made for high endurance in harsh industrial environment
characterized by large temperature ranges, humidity, dust,
vibrations, electromagnetic interference, etc.

• While industrial controllers and PLCs are standardized
modules that can work as building blocks in the design
of a large industrial system, many embedded systems
designed for serial production (e.g. in the automotive and
aerospace industries) tend to be custom designed as elec-
tronic control units with dedicated circuit boards that in-
cludes input/output and interface electronics in addition to
processing units. Embedded MPC can be implemented in
the supported programming languages and operating en-
vironment, typically ranging from small micro-controllers
(without any floating-point co-processing), [21], to very
powerful multi-core digital signal processing (DSP) chips
with floating-point capacity, and to Field-Programmable
Gate Arrays (FPGAs) [22], [23], [24], [25], [26] and
Application Specific Integrated Circuits (ASICs) [27].

C. Embedded MPC algorithms and software
The work-horse of MPC software is numerical optimiza-

tion, usually in the form of quadratic or linear programming
solvers (for so-called linear MPC that is characterized by
a linear model, linear constraints and a linear or quadratic
cost function) or nonlinear programming solvers (for so-
called nonlinear MPC). With a few notable exceptions, the
commercial or public domain numerical optimization software
available for use in MPC are not open-source which usually
means that one is limited to Windows or Unix/Linux binary
libraries. Among the emerging open-source options, the level
of documented verification, certification and testing tends to
be somewhat limited. The limited availability of optimization
software suitable for embedded MPC has led to several re-
cent research activities that targets open source and library-
free portable numerical optimization code using a convenient
programming language and style such as subsets of C and
C++ (avoiding e.g. dynamic memory allocation and pointers).
This software enables embedded MPC implementation, but
as formal verification and documentation of extensive testing
may not always be available, the question of dependability still
remains somewhat open. The developments can be categorized
according to optimization algorithm type as follows:

• Active set convex quadratic programming. The
QPOASES algorithm takes advantage of the fact that
the time-varying parameters of the MPC problem (such
as states and set-points) typically leads to a quadratic
program where the time-varying parameters only ap-
pear linearly in the constraints, and that they typically
make small changes from one sample to the next, [28].
QPOASES searches for the optimal active set by moving
through the parameter space, and inherently includes a
warm-start procedure. The original implementation was
made in C++, but C-versions now exist.

• Interior point convex/quadratic programming. Vari-
ous interior point methods have been implemented as
automatically generated customized C code solvers, i.e.
CVXGEN [29] and FORCES [30], [31]. An effective

variant of an interior point method that uses Riccati-
iterations to compute the gradient is presented in [32].

• Fast gradient convex/quadratic programming. Fast
gradient methods are first order optimization methods that
perform weighted/filtered gradient descent steps and con-
straint projections, usually taking advantage of the very
simple projection needed to solve the dual problem (i.e.
positive Lagrange multipliers) for constraint fulfillment,
[33], [34], [4], [35]. In addition to very simple code
that leads to a small footprint and may allow formal
verification of the code, one can bound the number
iterations needed to achieve a given accuracy.

• Nonlinear programming. The ACADO software tool
contains methods for discretization of continuous-time
nonlinear optimal control problems and numerical so-
lution of the resulting nonlinear program, [36], [37].
The software exploits symbolic computation of gradients
based on a C++ specification of the model, constraints and
objective. In addition to the basic C++ version, efficient C
code can be automatically generated for embedded system
implementations.

Embedded MPC applications tend to require fast update
intervals within a highly resource-limited computer environ-
ment. Although the size of embedded MPC control problems
tends to be significantly smaller than in conventional MPC,
and warm start procedures can be used, one cannot expect that
the optimization solver will be allowed to execute until strict
tolerances on the optimality conditions or stopping criteria
are met in every case. Hence, in order to fulfill the strict
requirements for real-time processing, only a finite (usually
small) number of iterations is allowed. Theoretical studies
have provided theories, stability criteria and sub-optimality
(performance) bounds that cover such limitations, e.g. [38],
[39], [40], [41], [42], [43]. These theories are primarily of
conceptual value as their direct applicability are limited. First,
assumptions may not be theoretically guaranteed or verified
a priori in a given application, or the potentially adverse
impact of uncertainty on models and measurements. Second,
the benefits of a long prediction horizon would require more
computational resources.

Embedded processing units are often highly resource-
limited, and it has been demonstrated that efficiency of the
implementation of embedded MPC not only depends on the
chosen numerical algorithm and the HW platform, but also
on the implementation in software. For example, in [44] it is
shown that significant improvements in computational speed
can be achieved by considering the system memory architec-
ture and exploit in the numerical linear algebra computations
the device’s registers, fast cache, data addressing modes, etc.
It is also experienced that generating branch-free code with
unrolled loops (e.g. [29]) may lead to efficient code execution
at the cost of a larger memory footprint.

Extensive effort has been invested into the research for
algorithms that can pre-compute and store the solution to the
MPC problem as a function of its input parameters (such as
current state, objective and constraints). While some useful
algorithms and software to compute so-called explicit MPC
have been developed, e.g. [45], [46], [47], their practical use
is limited to fairly small-scale applications where it is no need

5

to online update of set-points, constraints and models. The
embedded system implementation typically consists of some
data structure that stores the pre-computed solution, and some
algorithm that can efficiently search through this data structure
for the current optimal MPC solution, [48], [49], [50]. This
approach requires very limited computational resources and
no need for floating-point computations.

From an implementation point of view, a clear distinction
goes between linear and nonlinear MPC, or more precisely,
between convex and non-convex optimization. While linear
MPC requires numerical linear algebraic computations (which
also can be very challenging and lead to failures of the MPC
if not implemented in a suitable manner), nonlinear MPC
requires in addition the accurate computation of gradients and
may come with additional challenges such as lack of convexity
(manifested through existence of multiple local minimums, in-
definite Hessians, etc.), possibly lack of smoothness of the cost
and constraints, and numerous numerical issues. While linear
MPC provides a reasonably ”closed” class of problems for
which general solutions can be made, there seems to be little
hope to be able to make any general solutions for nonlinear
MPC except for certain classes of systems and problems. A
state-of-the-art software tool for embedded nonlinear MPC is
ACADO, [36]. Real-time performance is achieved by a so-
called real-time iteration approach that pre-computes data for
the optimization algorithm based on the previous step while
waiting to receive new state measurements. This reduces the
latency from state measurements are received until the control
input is computed.

III. DEPENDABLE MPC
This section discusses dependability in the context of MPC,

using standard taxonomy and concepts [15]. The first section
deals with requirements and assessment of dependability of
an embedded MPC. The second section analyses potential
faults, errors, failures and their consequences in embedded
MPC, while the third section discusses some general means
to improve dependability in embedded MPC.

A. Requirements and assessment of dependable embedded
MPC

The general attributes of system dependability are reliability,
availability, safety, integrity, and maintainability, [15]. In the
context of embedded MPC the aspects of safety and reliability
are key and therefore given special attention here. The other
attributes are not discussed any further, as they can be assumed
to be managed through industry standard embedded system
design and development procedures without much special
consideration for MPC.

Safety requirements of a system need careful analysis that
may go far beyond the functionality of the MPC itself. The
implications of safety requirements on an MPC design and
implementation will depend strongly on the control system
architecture, as illustrated for some possible cases in Fig. 2,
and the characteristics of the system under control and its
environment. Reliability refers to the continued correctness of
functionality. Some of the concepts involved are much the
same as mentioned in the context of safety above. However,
the requirements can in many cases be different as in some

systems safety and performance are treated separately during
design and development, while in other systems they are all
part of an integrated design and development process. Some
common safety and reliability requirements specific to MPC
can typically be characterized in terms of

• A description of acceptable MPC faults and errors that
can be handled by its inherent fault-tolerance and ro-
bustness [51], or by the basic control system and safety
system. For example MPC may be designed as a fail-
controlled system that can fail in specific failure modes,
[52]. If independent basic control or safety systems are
not available, one will expect that less faults and errors
within the MPC can be acceptable. Further discussion on
typical issues is given in section III-B.

• Requirements for internal fault detection, diagnosis, re-
configuration and accommodation within the MPC, and
accompanying inputs, diagnostic outputs and alarms. Fur-
ther discussion of relevant methods and tools are given
in section III-C.

• A characterization of acceptable mean time between
faults, fault probability, or similar reliability requirements
that can be used for design and analysis such as verifica-
tion, validation, testing and certification procedures, see
also section III-C.

The MPC objective and performance is generally specified in
terms of a cost function and a set of constraints. Typically,
there is an (explicit or implicit) priority hierarchy underlying
this specification as some of the objectives and constraints are
more important than other. The implementation of this hierar-
chy of objectives and constraints leads to selection of weights
and infeasibility handling mechanisms that usually solves a
sequence of optimization problems in order to not violate
high priority constraints unless strictly needed. Commonly,
the most highly prioritized constraints are characterized as
safety-constraints, while others are not considered to be safety-
critical. Hence, in a given situation, the MPC may predict
that certain safety-constraints are likely to be violated at some
point in the near future. While this is useful information
for alarms, plant re-configuration, shutdown and emergency
actions, one need to have in mind that the predictions are
subject to uncertainty due to modeling and measurement
errors. Although robust versions of MPC might build in
margins towards uncertainty in the optimization problem, this
generally comes at a price of conservativeness and higher
computational complexity. In many applications, requirements
to performance, availability and reliability means that unnec-
essary shutdown or alarms should be avoided. In this context,
safety, reliability, and availability may be conflicting objectives
since sometimes one may be improved only at the cost of
reducing one of the others.

B. Potential faults, errors and failures
We start by describing some typical faults and errors, and

then continue with some discussion on how these faults can
lead to MPC failure.

A known MPC design issue is whether to allow constraints
that might prevent a feasible solution from existing. Infeasi-
bility of the optimization problem typically leads to a failure
of the MPC, as the software will not be able to return a valid

6

or useful solution. In some applications, in particular with
short prediction horizons and open-loop unstable processes,
the use of terminal constraints may be used to ensure stability
properties of the closed loop control system, [2]. However,
infeasibility of the terminal constraint along the predicted state
trajectory does not necessarily mean that instability will result
as the terminal constraint formulation may be conservative,
the model is uncertain, or disturbances may be more favorable
than anticipated (one may be lucky!). Likewise, the violation
of some other state constraints along the predicted state
trajectory may also be acceptable (as a last resort) or may
actually not happen due to prediction errors.

One can therefore argue that in any case it makes sense to
formulate the optimization problem with slack variables on all
constraints (except perhaps input constraints that are physical
limitations) or use an explicit constraint priority hierarchy to
support relaxation of the least prioritized constraints when
necessary. Then one can guarantee that a feasible solution
will always exist. Both approaches increase the complexity
of the MPC optimization. Slack variables result in increased
dimension and range of numerical values of weights. With a
constraint priority hierarchy, there are additional optimization
problems that needs to be solved in order to determine which
constraints must be relaxed. One should have in mind that
the use of hard constraints only on input variables means that
it will be fairly straightforward to guarantee that a feasible
solution is found (also initially before any iterations are made),
even for highly non-convex problems. The reason is that the
input variables are usually directly related to the variables
being optimized by an MPC. Non-zero slack variables or
relaxed constraints are indicators or warnings about likely fu-
ture constraint violations, possible instability, or other adverse
conditions. Expected sources of constraint violations are large
disturbances or challenging references for the controller. There
are physical limitations in the process plant or disturbances
that makes constraint violation unavoidable in certain condi-
tions.

Assuming that the MPC problem is formulated such that
a feasible solution always exists, one still needs to worry
about the performance and optimality of the ”solution” re-
turned by the numerical optimization software. Failure to meet
optimality conditions may typically be caused by algorithmic
faults, software implementation errors, resource limitations
(no time to run the necessary number of iterations), lack of
convexity (in nonlinear MPC), numerical inaccuracies e.g. in
the computation of gradients, degeneracies in the problem
that are not well accounted for in the implementation, or
other design or implementation errors. The accumulation of
numerical round-off errors in iterative numerical algorithms
is usually counteracted with robust numerical methods using
double precision floating point numeric data representation.
In embedded systems based on very simple processors, even
robust numerical algorithms may have problems if fixed-point
(integer) numerical data representations are used in order to
reduce the computational cost compared to computationally
expensive single- or double-precision floating-point emulation
using software. Particular number and processing systems may
be designed in order to optimize the numerical performance,
e.g. [24].

For nonlinear MPC, the typical numerical solvers are not
able to distinguish a local optimum from a global optimum.
In some problems with non-convex objective or constraints,
local optimality may not be sufficient to achieve the required
performance.

Performance degradation must be expected under certain
fault conditions, as those discussed previously in this section.
How can this be detected automatically? What are the con-
sequences and severities of failures? One need to distinguish
between minor failures (that are typically not safety-critical)
and catastrophic failures having cost of consequences that may
be much larger than the benefits of the MPC.

In embedded MPC systems that are expected to operate
without interruption for extended periods of time, the issue of
”software aging” is relevant. It refers to progressively accrued
conditions resulting in performance degradation or failure.
Examples are memory bloating and leaking, unavailable re-
sources that were not properly released when they should,
data corruption/overwriting, storage space fragmentation, and
accumulated numerical round-off-errors. Common features
of several recent optimization algorithm implementations in-
tended for embedded systems are avoiding dynamic memory
allocation and careful protection of the memory space.

In addition to the above mentioned faults related to design,
implementation and operation of the system, one should also
be concerned about specification faults, commissioning faults,
incomplete analysis and design, misinterpretations, unwar-
ranted assumptions, documentation errors, inconsistencies, etc.
This is part of general engineering and control design, and not
specific to embedded MPC so we do not treat it further here.

C. System design and development
Best practice for development of dependable embedded

computing includes the following approaches, [15], that are
found to be effective in the context of MPC:

• Fault prevention. In the system design and development,
one can prevent faults by robust algorithm design that
uses recursive numerical methods that will not accumu-
late the effects of round-off errors and avoid potentially
illegal or sensitive numerical operations. A key success
factor in iterative numerical optimization is robust initial-
ization utilizing quality-assured measurements, results of
previous successful iterations or solutions, and application
knowledge to prevent faulty initialization. The choice of
software (SW) and hardware (HW) architecture should
be based on ultra-reliable industrial HW and SW envi-
ronments that provides reliable hardware under a suffi-
cient range of environmental conditions. The embedded
system SW environment should avoid dynamic memory
allocation, use strict typing, and memory protection.

• Fault tolerance. In the system design and implemen-
tation, a common and effective approach involves HW
and SW redundancy. Several industrial computer envi-
ronments has firmware support for automatic switchover
to a hot redundant processor in case of fault or failure.
SW redundancy may include multiple optimizations and
fallback solutions in case of SW failure.
For example, in [53] the fallback solution is a relatively
simple Hildreth’s numerical optimization algorithm that is

7

executed in parallel with a more high-performance solver.
In general, diversity (independent solutions in design
and/or implementation) may lead to increased fault toler-
ance as certain common mode failures can be avoided.
The use of post-optimal analysis, exception handling,
and multi-threaded programming may prevent faults to
lead to failures as the fault-free part of the system may
continue without being impacted. In MPC, monitoring
of constraints and their violation/margin is commonly
used in industrial implementation and model errors might
lead to unacceptable gaps that should be corrected for
by updating models through online estimation. Fault-
hardening of software implementation is studied in [52].

• Fault detection and identification. It is a great advantage
if internal MPC function faults be detected, identified
and signaled as diagnostic information to the rest of
the system (including operator, engineers, basic control,
safety system). Many numerical optimization solvers pro-
vide return codes and warnings that can be used for this
purpose, and additional specific mechanisms can also be
implemented [52].

• Fault removal. Various methods for software and system
testing and verification are effective, such as simulator-
based testing using dedicated fault-injection tools, [54],
[52]. This also includes in particular the use of Hardware-
in-the-loop (HIL) simulation-based testing. Hot (periodic)
reset may be effective to avoid the effect of “software
aging”.

• Fault prediction. MPC includes an inherent dynamic
mathematical model of the system, which means that
simulation is an effective tool in order to not only verify
and test the system, but also to predict which faults or
failure modes can be expected, and what are their conse-
quences for the system, [52]. While HIL-testing and fault-
injection tools [54] are useful also here, its effectiveness
is limited by the fact that the system operates in real time,
which means that HIL-testing would be slow compared
to software simulation on a faster computer system. The
faults are likely to be very rare events, so specially
tailored scenarios would be needed to complement Monte
Carlo simulations and other exhaustive techniques.

MPC requires a very complex software and development
processes, and error-free software may be an impossible goal,
although numerical methods based on fast gradient methods
(as discussed in Section II-C) may enable formal software
verification as it provides small footprint, simple code, theo-
retical convergence and error bounds. As in many other cases,
[55], one could also focus on ways to build MPC software
and systems that are robust and safe in the presence of typical
software errors. A control system will need to face uncertainty
in mathematical prediction models and physical equipment and
materials, so ”perfect software” is in any case not a sufficient
technical requirement for safety and reliability.

As a partial conclusion, we find that with a complex
numerical algorithm as the basis for the embedded MPC it is in
general difficult to assess, based on the optimization software
output if the computed control action is reliable (correct) and
safe, or not, and how well it will perform. The reasons for this
difficult assessment is prediction uncertainty (due to unknown

disturbances and modeling and measurement errors), difficulty
of interpreting slack variables and other auxiliary outputs
and diagnostic information from the optimization software,
possible existence of local minimums, as well as potential
software errors in the optimization software. This leads to
the critical question, how to detect faults in the MPC and
assess their potential for future failure of the control to meet
the control objectives and constraints? Some suggestions and
new results in this direction are provided in Section IV.

IV. PROPOSED ARCHITECTURE FOR DEPENDABLE
EMBEDDED MPC

As discussed in section III-C, there are several means
to ensure the dependability of embedded MPC. Different
techniques are likely to be favorable in different applications
and based on the dependability requirements. The proposed
MPC system architecture is therefore not intended to be a
recommended approach for every embedded MPC, but still
believed to be sufficiently flexible to be useful to a range of
applications and implementations.

(a) Resilient embedded MPC system architecture.

(b) Resilient embedded MPC system architecture with
independent safety system.

Fig. 3. Two versions of a proposed resilient embedded MPC system
architecture.

A. Functional redundancy

The basic idea is to build an architecture for dependable
embedded MPC on the principle of functional redundancy.
This is illustrated in Fig. 3, where multiple control algorithms

8

or implementations propose control alternatives that are evalu-
ated and compared by a separate algorithm called Performance
Monitor and Control Selection which eventually selects the
single control alternative that is expected to achieve the best
control performance (in terms of the MPC cost function and
constraints). The following observations and comments can be
made:

• Assuming that the Performance Monitor and Control
Selection algorithm is able to make a correct decision
(see section IV-B for further descriptions and discussion
on this important non-trivial issue), it is sufficient that
one of the control alternatives provides an acceptable
solution. This is in particular the role of the Backup
Controller illustrated in Fig. 3, and is similar to the
Simplex architecture [56], [57] which has both a safety
controller and a baseline controller that together serves
such a purpose.

• The Performance Monitor and Control Selection process
should not introduce any significant latency or delay in
the execution of the control action. This means that the
calculations should be fast and executed immediately
after the MPC calculations such that the control selection
can be made before a new cycle is scheduled.

• One can think of the Performance Monitor as mak-
ing post-optimal analysis. It can base its analysis on
solver return status that may typically indicate if local
optimality conditions are fulfilled or not, and if some
error conditions have occurred during optimization. In
addition, the Performance Monitor can make its own
independent assessment of the fulfillment of the MPC
performance and constraint satisfaction. As described in
section IV-B, the use of an independent faster-than-real-
time simulator could be a useful tool for this. This may
be particularly important for nonlinear/non-convex MPC
where fulfillment of local optimality conditions may not
be sufficient to achieve the desired performance, or the
solver return status cannot be fully trusted.

• The redundancy can be realized in different ways, e.g. use
time-shifted optimal solution from the previous solution
(as theoretically analyzed in e.g. [43]), use multiple opti-
mization solvers, [53], one solver with different settings
and options, multiple initializations or warm start pro-
cedures, use multiple MPC formulations (possibly with
relaxed constraints, simplified models, perturbed param-
eters in order to avoid degeneracies, etc.), or simpler
”backup controller” solutions such as PID or LQR. As
a minimum, two sufficiently independent control alterna-
tives are needed, although more diversity though multiple
MPC instances or algorithms may be considered favorable
at the cost of additional computational complexity.

• Some level of performance degradation (compared to an
optimal solution) should be considered acceptable within
the proposed system architecture. Upon non-acceptable
performance degradation (e.g. violation of certain con-
straints) of all available control alternatives, shutdown or
fail-to-safe functions might be executed.

• The proposed redundancy may be realized only in soft-
ware or in a combination of hardware and software.
This choice may depend on the system requirements,

reliability of the control hardware, and the ability of
the hardware to catch software faults and exceptions,
including real-time requirements. As mentioned above,
the correctness and reliability of the Performance Monitor
and Control Selection is essential for the dependability of
the redundant embedded MPC architecture.

• The redundant control alternatives can be evaluated us-
ing parallel processing, and can exploit multi-core or
multi-processor architectures, [53], [58], as well as cloud
computing techniques. The performance monitoring can
also be partly executed through parallel independent
evaluations, but the final comparison and control selection
may not be made until all control alternatives have been
evaluated. Hence, with parallel processing there will still
be a small coordination overhead.

• Switching between controllers is known to degrade per-
formance (chattering) and stability in some cases. How-
ever, since the switching criterion should be performance-
based (simulation over a sufficiently large horizon into
the future, always using the same performance criterion),
there seem to be no strong instability mechanisms inher-
ent in the proposed approach. However, further investi-
gation and theoretical research on this issue would be
needed in order to firmly establish some conclusions.

• Risk-based verification scope management as proposed in
[59] is applicable to analyze how verification resources
are most efficiently utilized in this approach. It requires
that the losses due to failure as well as effectiveness
of verification and testing can be estimated. It is quite
straightforward and intuitive to see that when the Backup
Controller is simple and provides performance not too
sub-optimal compared to the MPC, it may be favorable
to invest verification resources on the Backup Controller
and the Performance Monitor, and accept is reasonable
high fault rate of the MPC. On the other hand, when
the Backup Controller leads to significant losses or risks
compared with the MPC, it might be favorable with a
shift of verification effort to in the MPC module.

B. Simulator-based performance monitor

The task of the performance monitor is to predict which
of the alternative control trajectories will provide best perfor-
mance. While conventional control performance monitoring
techniques considers the statistics of recent historic data, or
the current state of the system, [56], [57], our need to avoid
the consequences of faults typically requires a prediction of
future performance. This is a more difficult task, that we will
based on a faster-than-realtime simulation of the alternative
control trajectories, although an analysis of recent historic data
may provide a useful supplement.

We note that the selection of simulation model and nu-
merical simulation accuracy are crucial, as MPC control
trajectories are optimized by solving an open loop optimal
control problem. Predicting the performance of the open-loop
optimal control by simulating its response with a different
model or disturbances would potentially strongly over-estimate
the deviation since the effect of feedback achieved by re-
optimizing the control trajectory at the next sample is not
accounted for. Unfortunately, performance prediction under

9

closed loop conditions with the actual MPC feedback control
would typically not be possible to implement in real time in
a resources-limited environment because a sequence of MPC
problems would need to be solved as part of this simulation.
Hence, in order to implement the performance monitor with a
faster-than-real-time simulation and avoid steady-state differ-
ences, one should take care to ensure that future disturbances
are set up in the same way in the simulator as in the MPC
predictions. This, on the other hand, might lead to deviations
being under-estimated since the effects of model uncertainty
and disturbances on the MPC are optimistic. When relevant,
there should be implemented mechanisms to monitor local vs.
global optima as well as to monitor fulfillment of constraints
in order to account for modeling/prediction errors.

A pseudo-code summary of a simulator-based performance
monitor and control selection is given in Algorithm 1.

while true do
1. Get the current state;
2. Get disturbance estimates;
3. Predict future disturbance;
4. Execute the MPC calculations;
5. Simulate the MPC control trajectories in open loop
on the prediction horizon;
6. Simulate the backup controller in closed loop on
the prediction horizon;
7. Evaluate all results with priorities: Constraint
violations, control performance (cost function), and
other diagnostic information (e.g. operating system,
hardware monitoring, fault detection and diagnostic
modules, optimizer status output, etc.) ;
8. Rank the acceptable solution;
9. Select the best solution;
10. Scheduled the best solution for use;
11. Issue alarms and other diagnosis;
12. Use best trajectory for warm start;

end
Algorithm 1: . Pseudo-code for simulator-based performance
monitor and control selection algorithm.

C. Simulation example

In order to illustrate the proposed Simulation-based Per-
formance Monitoring and Control Selection algorithm and its
benefits when used in the architecture in Figure 3 part (a), we
consider a simulation example. The MPC has the objective of
controlling the angle of attack and pitch angle using elevator
and flaperon inputs of an unstable aircraft. Thus, the system
has two inputs (u1 and u2) and two outputs (y1 and y2), with
constraints on all variables. The control problem formulation
and 4th order linearized state space model is, [60], and the
MPC cost function defined at time t0 is

J(t0) =
N

∑
i=0

w1(y1(ti+1)− r1)
2 +w2(y2(ti+1)− r2)

2

+p1∆u1(ti)2 + p2∆u2(ti)2 (1)

where N = 10 is the prediction horizon (corresponding to
0.5 seconds), r1 and r2 are time-varying reference values,

∆u(t) denotes change since previous sample, and cost function
weights p1 = p2 = 0.5,w1 = 8 and w2 = 20. In addition the
MPC takes into account constrains on the horizon in the
following form, for i = 0,1, ...N:

−25◦ ≤ u1(ti),u2(ti)≤ 25◦, −5◦ ≤ y1(ti),y2(ti)≤ 5◦

As the backup controller we use the linear controller from [61]
that considered the same example. In order to implement a
simulation-based performance monitor, we simulate the nomi-
nal system with the optimal future control trajectory provided
by the MPC and record its predicted performance through the
cost function (1), denoted JMPC(ti). Likewise, we simulate the
nominal system in closed loop with the backup controller and
record its predicted performance on the prediction horizon
through the cost function (1), denoted Jbackup(ti). The MPC
controller is selected for use if it fulfills the following criterion

JMPC(ti)< (1+ γ)Jbackup(ti) OR JMPC(ti)< Jmin

If not, the backup controller is selected. The tuning parameters
are γ > 0 and Jmin > 0, that in our simulations are chosen as
γ = 0.1 and Jmin = 20 as a robust trade-off to prevent undesired
switching due to effects of noise and disturbances.

The first failure mode we simulate is that the MPC output
freezes and stays constant for the period 2.5 ≤ t ≤ 4. Typical
faults leading to this failure mode are faults in the software
code, task or computer executing the MPC algorithm, but it
could also be due to I/O, interface or communication faults or
latencies in the embedded system. While in some cases there
would be other indicators or status information that would
give a clue about the fault, we consider in this example only
the simulation-based performance assessment criterion above.
The simulation results are shown in Figure 4, where we have
added pseudo-random white noise disturbances representing
turbulence and measurement noise. We observe that the frozen
MPC output is partially accepted during the period 2.5 ≤ t ≤
3.0 since the flight conditions are stable and constant control
input is most of the time sufficient for this short period of time
until the set-point changes at t = 3.0. At this point, the inferior
performance of the MPC is quickly detected and the control
selector switches to the backup controller. Upon recovery of
the output from the MPC at t = 4.0, the superior performance
of the MPC is detected and the control selector switches back
from the backup controller to the MPC. Additional simulations
reveal that due to the open loop unstable nature of the aircraft,
complete loss of stability of the aircraft would have occurred
after less than one second without switching to the backup
controller in this scenario.

The second failure mode we simulate is that the MPC output
is inaccurate for the period 2.5 ≤ t ≤ 4. More specifically, we
simulate this by adding normally distributed pseudo-random
numbers with standard deviation 2◦ to the input trajectories
computed by the MPC. Typical faults leading to this failure
modes are similar to the above case, but of intermittent and
less severe character. The simulation results are shown in
Figure 5. We observe the inferior performance of the MPC
is quickly detected and the control selector switches to the
backup controller immediately at t = 2.5. Upon recovery of
the output from the MPC at t = 4.0, the superior performance
of the MPC is detected and the control selector switches back

10

Fig. 4. Simulations with MPC freeze failure mode occuring during 2.5 ≤ t ≤ 4 sec.

to the MPC. Additional simulations show that in this case,
the MPC performance degradation is not severe enough to
cause instability of the aircraft if not switching to the backup
controller, but leads to unsteady behavior and generally poor
performance.

V. CONCLUSIONS

The technology of embedded MPC has emerged quickly
over the last decade, with open source software supporting
the implementation of online numerical optimization and
optimal data structures pre-computed by offline parametric
programming on highly resource-limited embedded hardware
and software architectures. In particular the use of fast gradient
methods for numerical optimization in linear MPC show good
promise for embedded systems due to their small footprint,
computational efficiency, theoretical convergence guarantees,
and simple code that may admit formal verification.

The need for verification of the embedded MPC may in
some applications be relaxed as safety may be accounted
for by building a resilient architecture around the MPC with
redundant functionality and automatic control performance
monitoring. Still, the effects of model uncertainty and un-
known disturbances on the control performance are fundamen-
tal limitations.

Some important future research challenges are related to
tighter performance bounds on numerical algorithms, allowing

the effect of limiting the number of iterations to be predicted
in an accurate non-conservative manner. For nonlinear MPC,
there are many additional challenges due to possible lack of
convexity and regularity of the mathematical programming
problem. Improved tool-chains with methods for automatic
code design, system integration, and verification of the result-
ing implementation would enable more widespread industrial
use of embedded MPC.

ACKNOWLEDGMENTS

This work is funded by the Research Council of Nor-
way, Statoil and DNV through the Center of Excellence of
Autonomous Marine Operations (AMOS) and Systems, by
the Research Council of Norway and Statoil through the
PETROMAKS project Enabling High-Performance Safety-
Critical Offshore and Subsea Automatic Control Systems
using Embedded Optimization (emOpt), and supported by the
European Commission through the Marie Curie ITN Training
in Embedded Model Predictive Control (TEMPO). Thanks to
Stian Ruud and Aleks Karlsen at DNV GL and Gisle Otto
Eikrem and Alexey Pavlov at Statoil for the contributions
through many interesting discussions.

BIOGRAPHY

11

Fig. 5. Simulations with MPC inaccurate output occuring during 2.5 ≤ t ≤ 4 sec.

Professor Tor A. Johansen (MSc,
PhD) worked at SINTEF as a re-
searcher before he was appointed As-
sociated Professor at the Norwegian
University of Science and Technology
in Trondheim in 1997 and Professor
in 2001. He has published several
hundred articles in the areas of con-
trol, estimation and optimization with
applications in the marine, automo-

tive, biomedical and process industries. In 2002 Johansen co-
founded the company Marine Cybernetics AS where he was
Vice President until 2008. Prof. Johansen received the 2006
Arch T. Colwell Merit Award of the SAE, and is currently
a principal researcher within the Center of Excellence on
Autonomous Marine Operations and Systems (AMOS) and
director of the Unmanned Aerial Vehicle Laboratory at NTNU.

REFERENCES

[1] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictivec
control,” Control Engineering Practice, vol. 11, pp. 733–764, 2003.

[2] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, pp. 789–814, 2000.

[3] J. B. Rawlings and R. Amrit, “Optimizing process economic perfor-
mance using model predictive control,” in Nonlinear Model Predictive
Control – Towards New Challenging Applications, ser. Lecture Notes

in Control and Information Sciences, L. Magni, D. M. Raimondo, and
F. Allgöwer, Eds. Springer, 2009, vol. 384.

[4] D. K. M. Kufoalor, S. Richter, L. Imsland, T. A. Johansen, M. Morari,
and G. O. Eikrem, “Embedded model predictive control on a plc using
a primal-dual first-order method for a subsea separation process,” in
Proc. Mediterranean Conf. Control and Automation, Palermo, 2014, p.
TuCT2.1.

[5] B. J. T. Binder, D. K. M. Kufoalor, A. Pavlov, and T. A. Johansen,
“Embedded model predictive control for an electric submersible pump
on a programmable logic controller,” in Proc. IEEE Multiconference on
Systems and Control, Nice, 2014, p. WeC01.2.

[6] O. Breyholtz, G. Nygaard, and M. Nikolaou, “Managed-pressure
drilling: Using model predictive control to improve pressure control
during dual-gradient drilling,” SPE Drilling and Completion, vol. 26,
pp. 182–197, 2011.

[7] L. van den Broeck, M. Diehl, and J. Swevers, “A model predic-
tive control approach for time optimal point-to-point motion control,”
Mechatronics, pp. 1203–1212, 2011.

[8] B. Acikmese, M. Aung, J. Casoliva, S. Mohan, A. Johnson, D. Scharf,
D. Masten, J. Scotkin, A. Wolf, and M. W. Regehr, “Flight testing
of trajectories computed by g-fold: Fuel optimal large divert guidance
algorithm for planetary landing,” in Proc. 23rd AAS/AIAA Spaceflight
Mechanics Meeting. Kauai, USA, 2013.

[9] T. I. Bø and T. A. Johansen, “Dynamic safety constraints by sce-
nario based economic model predictive control,” in Proc. IFAC World
Congress, Cape Town, South Africa, 2014, pp. 9412–9418.

[10] C. Chapman, M. Musolesi, W. Emmerich, and C. Mascolo, “Predictive
resource scheduling in computational grids,” in Proc. IEEE Int. Parallel
and Distributed Processing Symp., 2007.

[11] D. E. Quevedo, R. P. Aguilera, and T. Geyer, “Predictive control in
power electronics and drives: Basic concepts, theory, and methods,” in
Advanced and Intelligent Control in Power Electronics and Drives, ser.
Studies in Computational Intelligence, T. Orowska-Kowalska, F. Blaab-
jerg, and J. Rodriguez, Eds. Springer, 2014, vol. 531, pp. 181–226.

12

[12] C. R. Gutvik, T. A. Johansen, and A. O. Brubakk, “Optimal decompres-
sion of divers - procedures for constraining predicted bubble growth,”
IEEE Control Systems Magazine, vol. 31, pp. 19–28, 1 2011.

[13] P. Falcone, F. Borrelli, E. H. Tseng, and D. Hrovat, “On low complexity
predictive approaches to control of autonomous vehicles,” in Lecture
Notes in Control and Information Sciences - Automotive Model Predic-
tive Control, 2010, pp. 195–210.

[14] D. K. Kufoalor and T. A. Johansen, “Reconfigurable fault tolerant flight
control based on nonlinear model predictive control,” in Proc. American
Control Conference, Washington DC, 2013, pp. 5128–5133.

[15] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concpets
and taxonomy of dependable and secure computing,” IEEE Trans.
Dependable and Secure Computing, vol. 1, pp. 11–33, 2004.

[16] R. C. Shekhar and J. M. Maciejowski, “Robust predictive control with
feasible contingencies for fault tolerance,” in IFAC World Congress,
Milano, 2011, pp. 4666–4671.

[17] E. Camacho, T. Alamo, and D. de la Pena, “Fault-tolerant model
predictive control,” in Emerging Technologies and Factory Automation
(ETFA), 2010 IEEE Conference on, 2010, pp. 1–8.

[18] L. Lao, M. Ellis, and P. D. Christofides, “Proactive fault-tolerant model
predictive control,” AIChE J., vol. 59, pp. 2810–2820, 2013.

[19] N. G. Leveson, Engineering a Safer World. Systems Thinking Applied
to Safety, 1st ed. MIT Press, 2011.

[20] B. Huyck, H. J. Ferreau, M. Diehl, J. D. Brabanter, J. F. M. V. Impe,
B. D. Moor, and F. Logist, “Towards online model predictive control on a
programmable logic controller: Practical considerations,” Mathematical
Problems in Engineering, pp. 1–20, 2012.

[21] P. Zometa, M. Kogel, T. Faulwasser, and R. Findeisen, “Implementation
aspects of model predictive control for embedded systems,” in Proc.
American Control Conf., Montreal, 2012, pp. 263–275.

[22] M. He and K.-V. Ling, “Model predictive control on a chip,” in
Intenational Conference on Control and Automation. Budapest, 2005,
pp. 528–532.

[23] L. Bleris, J. Garcia, M. V. Kothare, and M. G. Arnold, “Towards
embedded model predictive control for system-on-chip applications,” J.
Process Control, vol. 16, pp. 255–264, 2006.

[24] P. Vouzis, L. Bleris, M. Arnold, and M. Kothare, “A system-on-a-chip
implementation of embedded real-time model predictive control,” IEEE
Trans. Control Systems Technology, vol. 17, pp. 1006–1017, 2009.

[25] K. Ling, B. Wu, and J. Maciejowski, “Embedded model predictive
control (MPC) using a FPGA,” in IFAC World Congress, Seoul, 2008.

[26] J. Jerez, K.-V. Ling, G. Constantinides, and E. Kerrigan, “Model
predictive control for deeply pipelined field-programmable gate array
implementation: algorithms and circuitry,” IET Control Theory and
Applications, vol. 6, pp. 1029–1041, 2012.

[27] A. G. Wills, G. Knagge, and B. Ninness, “Fast linear model predictive
control via custom integrated circuit architecture,” IEEE Transactions
on Control Systems Technology, vol. 20, pp. 59–71, 2012.

[28] H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy
to overcome the limitations of explicit mpc,” International Journal of
Robust and Nonlinear Control, vol. 18, pp. 816–830, 2008.

[29] J. Mattingley and S. Boyd, “CVXGEN: A code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, pp. 1–27,
2012.

[30] A. Domahidi, A. Zgraggen, M. Zeilinger, M. Morari, and C. Jones,
“Efficient interior point methods for multistage problems arising in
receding horizon control,” in Proc. IEEE Conf. Decision and Control,
Maui, 2012, pp. 668–674.

[31] A. Shahzad and P. J. Goulart, “A new hot-start interior-point method
for model predictive control,” in Proceedings of the 18th IFAC World
Congress, Milano, 2011.

[32] G. Frison, H. H. B. Sørensen, B. Damman, and J. B. Jørgensen, “High-
performance small-scale solvers for linear model predictive control,”
in Proc. 13th European Control Conference (ECC), 2014, Strasbourg
(France), 2014, pp. 128–133.

[33] C. N. Jones, A. Domahidi, M. Morari, S. Richter, F. Ullmann, and M. N.
Zeilinger, “Fast predictive control: Real-time computation and certifi-
cation,” in IFAC Conference on Nonlinear Model Predictive Control,
Noordwijkerhout, the Netherlands, 2012, pp. 94–98.

[34] P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection
algorithm for embedded linear model predictive control,” IEEE Trans-
actions on Automatic Control, vol. 59, pp. 18–33, 2014.

[35] I. Necoara and V. Nedelcu, “On linear convergence of a distributed dual
gradient algorithm for linearly constrained separable convex problems,”
University Politehnica Bucharest, Tech. Rep., October 2013.

[36] B. Houska, H. J. Ferreau, and M. Diehl, “An auto-generated real-
time iteration algorithm for nonlinear mpc in the microsecond range,”
Automatica, vol. 47, pp. 2279–2285, 2011.

[37] ——, “ACADO toolkit - an open-source framework for automatic
control and dynamic optimization,” Optimal Control Applications and
Methods, vol. 32, pp. 298–312, 2011.

[38] P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings, “Suboptimal model
predictive control (feasibility implies stability),” IEEE Trans. Automatic
Control, vol. 44, pp. 648–654, 1999.

[39] G. Valencia-Palomo and J. A. Rossiter, “Efficient suboptimal parametric
solutions to predictive control for plc applications,” Control Engineering
Practice, vol. 19, pp. 732–743, 2011.

[40] S. Richter, C. N. Jones, and M. Morari, “Computational complexity
certification for real-time mpc with input constraints based on the fast
gradient method,” IEEE Trans Automatic Control, vol. 57, pp. 1391–
1403, 2012.

[41] ——, “Certification aspects of the fast gradient method for solving
the dual of parametric convex programs,” Mathematical Methods of
Operations Research, vol. 77, pp. 305–321, 2013.

[42] A. Bemporad and P. Patrinos, “Simple and certifiable quadratic program-
ming algorithms for embedded linear model predictive control,” in 4th
IFAC Conf. Nonlinear Model Predictive Control, 2012, pp. 14–20.

[43] J. B. Rawlings, G. Pannocchia, S. J. Wright, and C. N. Bates, “On the
inherent robustness of suboptimal model predictive control,” in SIAM
Conference on Control and its Applications, San Diego, 2013.

[44] G. Frison, D. K. M. Kufualor, L. Imsland, and J. B. Jørgensen,
“Efficient implementation of solvers for linear model predictive control
on embedded devices,” in Proc. IEEE Multiconference on Systems and
Control, Nice, 2014.

[45] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
pp. 3–20, 2002.

[46] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in Proc. European Control Conference, Zürich, Switzer-
land, 2013, pp. 502–510.

[47] A. Grancharova and T. A. Johansen, Explicit Nonlinear Model Predictive
Control. Springer, Lecture Notes in Control and Information Sciences,
2012, vol. 429.

[48] T. Poggi, F. Comaschi, and M. Storace, “Digital circuit realization
of piecewise affine functions with non-uniform resolution: theory and
fpga implementation,” IEEE Transactions on Circuits and Systems-II:
Transaction Briefs, vol. 57, pp. 131–135, 2010.

[49] F. Bayat, T. A. Johansen, and A. A. Jalali, “Using hash tables to
manage time-storage complexity in point location problem: Application
to explicit mpc,” Automatica, vol. 47, pp. 571–577, 2011.

[50] ——, “Flexible piecewise function evaluation methods based on trun-
cated binary search trees and lattice representation in explicit mpc,”
IEEE Trans. Control Systems Technology, vol. 20, pp. 632 – 640, 2012.

[51] J. M. Maciejowski and C. N. Jones, “Mpc fault-tolerant flight control
case study: Flight 1862,” in Proc. IFAC Safeprocess Conference, 2003.

[52] P. Gawkowski, M. Lawrynczuk, P. Marusak, J. Sosnowski, and P. Tatjew-
ski, “Fail-bounded implementations of the numerical model predictive
control algorithms,” Control and Cybernetics, vol. 39, 2010.

[53] K. C. Ng, L. Wang, and I. D. Peake, “Safety-critical multi-core soft-
ware architecture for model predictive control,” in Australian Control
Conference, 2011, pp. 434–439.

[54] P. Gawkowski, K. Grochowski, M. Lawrynczuk, P. Marusak, J. Sos-
nowski, and P. Tatjewski, “Testing fault robustness of model predictive
control algorithms,” in Architecting Critical Systems, ser. Lecture Notes
in Computer Science, H. Giese, Ed. Springer Berlin Heidelberg, 2010,
vol. 6150, pp. 109–124.

[55] N. G. Leveson, Safeware. System safety and computers, 1st ed.
Addison-Wesley, 1995.

[56] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “Dynamic control system
upgrade using the simplex architecture,” Control Systems, IEEE, vol. 18,
no. 4, pp. 72–80, Aug 1998.

[57] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and
L. Sha, “The system-level simplex architecture for improved real-time
embedded system safety,” in Proc. IEEE Real-time and embedded
technology and applications symposium, 2009.

[58] R. Gu, S. S. Bhattacharyya, and W. S. Levine, “Methods for efficient
implementation of model predictive control on multiprocessor systems,”
in Proc. IEEE Conf. Control Applications (CCA), 2010, pp. 1357–1362.

[59] S. Ruud and I. B. Utne, “Verification and examination management by
marginal verification risk,” in Submitted for publication, 2014.

[60] P. Kapasouris, M. Athans, and G. Stein, “Design of feedback control
systems for unstable plants with saturating actuators,” in Proc. IFAC
Symp. on Nonlinear Control System Design, 1990, pp. 302–307.

[61] A. Bemporad, A. Casavola, and E. Mosca, “Nonlinear control of
constrained linear systems via predictive reference management,” IEEE
Trans. Automatic Control, vol. 42, pp. 340–349, 1997.

