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procedure wofz(x,y,re,im); value x,y; real x,y,re,im;

comment This procedure evaluates the real and imaginary part of the function
w(z) = exp(—zz)erfc(-iz) for arguments z = x+iy in.thg‘first«quadrantvof-
the complex plane, The accuracy is 10 decimal places after the -decimal
point, or better. TFor the underlying analysis, see W. Gautschi, "Efficient

to aypprer v

computation of the complex error function," eubmitted—te SIAM J. Math.
Anal.;

begin integer. capn, nu, n, npl; real h, h2, lambda, rl, r2, s, sl, s2, tl,

t2, c; Boolean bg

if y < 4.29 A x < 5.33 then.

begin
s = (1-y/4.29) x sqrt(l-x x %/28.41);
h ¢=-1.6 x 83 h2 := 2 x h;

capn (=6 + 23 x g; nu = 9 + 21 x s

end else begin h := 03 capn ¢= 03 nu ¢= 8 end;

~if h > 0 then lambda s= h2 4 capn;



b ¢=h = 0\ lambda = 0}
rl := r2 := gl := 82 = O3

“'for n := nu step -1 until 0 do

npl := n+lj
tl = y+htnpl x rl; t2 &= x-npl x r2; c := .5/(tl x tl + t2 x t2);
rl := ¢ x tl; ¥2 = ¢ x t2;
‘_i£h>0/\n§capn_t_b_e_n_
tl := lambda + sl; sl := rl x tl - r2 x 823 s2 := r2 x tl + rl x 823
lambda := lambda/h2
end
end;
re := if y = O then exp(-x x x) else

1.12837916709551 x (if b then rl else sl);

im $= 1,12837916709551 x (if b then r2 else s2)

" end wofz
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Abstract: The paper is concerned with the computation of w(z) =
exp(-zz)erfc(-iz) for complex z = x+iy in the first quadrant Ql:
x > 0, y > 0. Using Stieltjes' theory of continued fractioms it
is,first observed that the Laplace continued fraction for w(z),
although divergent on the real line, represents w(z) asymptotically.
for large z in the sector S: -7v/4 < arg z < 5n/4. Specifically, the

n-th convergent approximates w(z) to within -an error of 0(z
z > » in 8. A recursive procedure is then developed which permits
evaluating w(z) to a prescribed accuracy for any z ¢ Ql° The pro-
cedure has the property that~as_lz| becomes -sufficiently large, it
automatically reduces to the evaluation of the Laplace continued

fraction, or, equivalently, to Gauss-Hermite quadrature of

(4/m) J exp(-t%dt/(z»t)°
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EFFICIENT COMPUTATION OF THE COMPLEX ERROR FUNCTION¥

By Walter Gautschi(l)

Introduction,k/The error function of a complex variable, in more or
less disguised forms, occurs in many branches of science and technology.
Properties of this function, and computational methods, have been
studied extensively. A useful survey, as of 1966, may be found in [1],
and more recent work in [2], [11], [14]. 1In many applications the func-~
tion must be evaluated a large number of times. It is therefore important
to search for methods which are as efficient as possible. Current practice
attempts to achieve the desired economy by adopting different methods in
different regions of the complex plane. 1In this paper, instead, we pro-
pose a single algorithm which is uniformly effective for all complex argu-
ments, A corresponding ALGOL procedure is to appear in [8].

In section 1 we review some relevant mathematical properties of the
complex error function. Although much of this material is known, a few
remarks are made which do not seem to be common knowledge. Among these is
the observation that a certain continued fraction, known as the Laplace con-
tinued fraction, while divergent on the real line, approximates the error
function asymptotically in the sense of Poincaré. The computational algo~-
rithm is developed in section 2. Basically, it comsists of evaluating a
truncated Taylor expansion, The increment, h, as well as the number of
terms, N, are made to depend on the argument z at which the function is

evaluated. As lz] increases, h and N decrease, until eventually both

Work supported, in part, by the National Aeronautics and Space
Administration (NASA) under grant NGR 15-005-039 and, in part,
by Argonne National Laboratory.
(l)Department of Computer Sciences, Purdue University, Lafayette,
Indiana 47907,



become zero, at which time the algorithm reduces to that of evaluating the
Laplace continued fraction. Some performance characteristics, and data on.

testing the algorithm, are included in section 3.

1. Mathematical preliminaries. The function

2
(1.1) w(z) = e ? erfc(~iz),
o0 —t2
where erfc ¢ = (2//m) f e dt denotes the complementary error function,
C

was first introduced (and tabulated) by Faddeeva and Terent'ev [4]. As a
function of the complex variable z, w(z) represents an entire function, and
has the property that both its real and imaginary parts are between zero and
one for z in the first quadrant of the complex plane. This property may
well have been one of the motivations for considering (1l.1l) as the basic
form of the error function for complex argument.

Closely related to (1.1) is the integral

2

© ~t
(1.2) £(z) =J c dt.
o z~t
We have in fact
i
= f(z) (Im z > 0)
(1.3) w(z) = 9
i -Z
;-f(z) + 2e (Im z < 0).

While w(z) is an entire function, f£f(z) is analytic for all z not on the

real line, and represents two analytic functions, one in the upper, another



in the lower half-plane, neither of which is the analytic continuation of
the other. For real z, the integral in (1.2) is meaningful only in the
sense of a Cauchy principal value integral.

We note that (1.2) is a special case of a Stieltjes transform
o
J da(t)/(z-t)., Most of the properties to be described below follow
f;om Stieltjes' classical theory [12], [10] concerning integrals of this
type, and are therefore applicable in other situations as well (e.g., in
the computation of the complex exponential integral).

Expanding the integrand in (1.2) in descending powers of z, and in-

tegrating term by term, one obtains the asymptotic expansion

[>]

(1.4) £(z) ~ ) —EET (z > = in |Im 2| > a, a > 0 arbitrary),
s=0 2z -
where
0 (s odd),
co 2
(1.5) ug = J tSe”t ar =
£ V)

r((s+1)/2) (s even)

2 2
are the moments of e_t . Since efz has -the zero asymptotic expansion in:
and /4 L argz < STfy

-m/4 < arg z < iﬂ/%‘ it is not surprising, in view of (1.3), that

[+

. u
(1.6) w(z) ~ %‘ ) —;%I (z » » in -n/4 < arg z < 51/4).
§=0 2z .

With the (formal) expansion (l.4) is associated the continued fraction



known ‘as the Laplace continued fraction. More precisely, (1.7) is associated

with (1.4) in the following sense. Let.

(1.8) Yo 1/2 _];_., _3_/_% _(n-.l,)/2‘= qn(z)
o e o Tz tce - Pn(Z)

denote the n~th convergent of the continued fraction (1.7). It is easily
verified that.qn(z) is a polynomial of degree n-l, while pn(z) is a monic
polynomial of degree n. Then the quotient in (1.8), if expanded in descend-

ing powers of 'z,

(n)
(log) iIL(_Z_)_. = T :)..S___
pn(z) s=o0 zS+1 ’

yields a power series which agrees with that in (1.4) up to and including

. -2n |
the term with =z s i.e,

(1.10) v;n) =u, for s=0,1,2,...,20-L,
It is also known [13] that the continued fraction (1.7) in fact converges to
f(z) for every nonreal z.

Another remarkable connection of the continued fraction (1.7) with the -
integral in (1.2) is obtained if the rational function (1.8) is decomposed

into partial fractions,

q,(2) n

g2y
(1.11) -35;(57 =)

k=1 z - té“)

(n)
Me

Expanding both sides of this equation in descending powers of z, -and compar-.

ing coefficients of like powers, one finds that



n
vén) ) kzl lén)[téé)]s (s = 0,1,2,...).

In view of (1.10) it follows that -
T, (@,s
ng = ) A e for s =0,1,2,.00,20~1,"
k=1

which, on account of (1.5), implies that ) and t

én) are the weights

(n)
k

and nodes, respectively, of n-point Gauss-Hermite quadrature.

Consequently,
a 2@ o 2
(1.12)  lim ) Y = — dt (Im z # 0),
n>e k=1 z--tk =00

i.e., Gauss-Hermite quadrature, applied to the integral in (1.2), con-
verges for every z not on the real line.
Using the well-known remainder term of Gauss-Hermite quadrature it

also follows that

2

(n)]Zn_= Y1 n!

(1.13) o
k 2n

(n) _ ® on -t
Yon ™ Von T . t e

n
dt - ) kén)[t
k=1 ‘
It is interesting to observe that; although (1.12) does not converge
if z = x is real, the Gauss~Hermite quadrature sum (l.11l) for fixed n and

-2n—1)°

z = X + » nevertheless approximates -im w(x) to within an error of O(x
In fact, this is true as z - « in the sector -w/4 < arg z < 5uw/4. 1In other
words, the quadrature sums (l.11), and thus the convergents of the Laplace

continued fraction (1.7) approximate -im w(z) asymptotically as z ~ = in

-1/4 < arg z < 5n/4. This follows by combining (1.6) and (1.9)-(1.1l1),



n A(n)
W@ -3 )~y
k=1 z~tkn

We have used here the

N ¢:))
i 21}:1 us + 0 1 _i z vs
m s+l 2n+3 T s+l
s=0 2 8=0 Z
H -V (n) \
i "2n 2n 1 o i n- Sm
T o F O(zzn+3, (z > in -7 <argz<q).

symmetry of the Gauss-~Hermite weights and nodes,

(n)

which implies that (1.11) is an odd function of z, and therefore Vo =0
for s an odd integer. Also, the series in (1.9), in view of (1.11), ob-
viously converges for Iz] > max tén). By virtue of (1.13) we thus have
(n)
w<z)-irf'xk ~in 1, o2
LY z__tlin) Jm o z2n+l z2n+3

(1.14)

(z > © in - %,< arg z < %EQ.

I1f this is compared with the asymptotic expansion (1.6), i.e.

. 2n—2

§ Y
i ] 1 2n 1
(1.15) w2 -2 | g =s—og 0( 2n+3) ’
s=0 z z z

one notes that the leading term on the right in (1.14) is smaller than the

corresponding term in. (1.15) by a factor of

TEM

AL LI = S
an(n+%);

(n-—)oc;)0

This is why Gauss-Hermite quadrature is so much more effective for computa-

tion than straightforward asymptotiec expansion,



There is yet another approach to the continued fraction in (1.7), which
involves the repeated integrals of the complementary error function. Con-.
sider (see [6] for notations)

2 2

(1.16)  w (2) = ¢”* 1i'erfe(-iz) (n=0,1,2,...), v (2) ==

3

so that in particular
(1.17) wo(z) = w(z).

If Im z > 0, the sequence {wh(z)}:=_’is known to be a "minimal' solution of

1

the linear second-order difference equation

iz 1 -
(1.18) Yo+l ~ oL n T 2(n+1) -1 " 0 (n

0,1;2,.09)0

(For terminology, and subsequent development, see [7].) For any integer

N >0, and v > N, define

1/2

n-l =iz + (n+l)rn’ (n

Vyu=Ll,eee,0),
(1.19)

s VST Vg (n=0,1,2,...,N),

We shall write rizi(z), vév](z) for ¥ 19V if we wish to indicate their

-1

dependency on v and z. It can then be shown that-

(1.20) lim vi?](z) = w_(2) (Imz >0, n=-1,0,1,2,,..),

Vre



and consequently,

lim rﬁfi(z) = Wh(?)/wh-l(z) (Imz >0, n=0,1,2,...).
V>0

In particular, by (1.17),

(1.21) w(z) = lim vgv](z) = —Z-Iim rEX](z) (Im 2z > 0).

V>0 T V>

To see the connection with the Laplace continued fraction, let n =0
in the second line of (1.19), and then in turn n = 0,1,2,...,v in the first

line of (1.19). One obtains

A0 P R | /2 1 3/2 v/2
o W= (=iz)+ (~iz)+ (=iz)+ (=iz)+ °°° (~iz)
_iYoo1/2 1 32 v/2
T 5 z= z- z— z= °*° gz ®

where the second expression follows from the first by an obvious equivalence

transformation. Comparison with (1.8) shows that

Curiously, the function wh(z) defined in (1.16) is related to the n-th

derivative of w(z) by
23 v @ = @Dl v () @ =0,1,2,...),

a result apparently first observed in [5, p. 223].



2. Computational procedure. Our objective is to devise an efficient
procedure for computing the fﬁnction'w(z) defined in (1.1) to a given number
d of correct decimal digits after the decimal point, i.e., to within an
(absolute) error of %-10‘d. We shall assume z to . lie in the first quadrant
Ql of the complex plane, This is no restriction of generality, since

2
(2.1) w(-z) = 2 e ? - w(z), w(z) = w(-2)

can be used to continue w into the remaining quadrants.,

As shown in (1.12), (1.14), Gauss-Hermite quadrature, or equivalently,
the Laplace continued fraction (1.7), provides an effective means of com-
puting w(z) for z ¢ Q and |z| large. To obtain a more concrete idea as to
the errors involved, we construct the altitude map of the meromorphic-

function -

., n Aén)
e (2) =w(z) ~-= ) ——r,
o " kzl z-cf{n)

i.e., the curves of constant modulus ]en(z)] =.r, These may be obtained by

numerical integration of the differential equations

dx _ en(z) dy _ en(z) _ .
Fre -Im E:TET s 36 Re EET?T (z = xtiy),

subject to the .initial conditions

x(0) = 0, y(0) = n,



00" 00" h 00"€ 00°2 | 00"
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where n is the root of Ien(iy)l = r, Selected results are shown in Fig. 1,
where n = 9, and r = 3 1079, d = 2(2)10.

Given any d, it is obviously possible to construct a rectangular region

outside of which 9-point Gauss-Hermite quadrature yields an accuracy of d
decimal places. For d = 10, e.g., Fig. 1 suggests the choice X, = 5.33,

Yo = 4,29, Larger values of n would result in a smaller rectangle R, whereas
smaller values of n would require a larger rectangle R for the same accuracy.
It is not possible, in general, to arrive at an optimal.choice of n, as such
a choice would depend on the relative frequency with which the procedure is
used in various regions of the complex plane. The choice n =.9 appears to
be a reasonable compromise,  -and we shall fix this value for what follows.

To compute w(z) outside of R, we thus apply (1.19) with v = 8 and N = O,
In view of (1.22), (1.11), this is indeed equivalent to evaluating w(z) from
the integral representation (1.2), (1:3) by a 9-point Gauss-Hermite quadrature
rule,

"It remains to consider the case where z € R. If y = Im 2z is relatively
small, a.common-procedure consists of computing w(z) from a Taylor expansion
about z = Rez, or alternatively, to write

2 . 2 rz 2
w(z) = e 2 +-££ F(z), F(z) = e 2 j et'dt,,
S o
and to expand F(z) about.zoy= Rez., There are two disadvantages to this

approachs
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(1) it requires the computation of Dawson's integral, F(x), for
i’= z,. Although good rational approximations are available for F(k)
(see, e.g., [3]), the necessity of computing F(x) is apt to increase
both the length of the program, and the total machine time, for com-
puting w(z);.

(2) the recursive computation of the expansion coefficients is
subject to considerable loss of accuracy, particularly for largg'k~> 0.

Interestingly enough, both these defects are removed if one expands

"downward" rather than "upward", i.e., if one computes w(z) from the

Taylor expansion

w(n)(z+ih)

(2.3) w(z) = (-ih)",

n

o~18

[¢]

where h > 0 is suitably chosen. This approach has the further advantage
of being related to the Laplace continued fraction approach, and in. fact.
gives rise to an algorithm which generalizes algorithm (1.19) (used outside
of R). |

We observe from (1.23) that (2.3) can be written in the form

o]

(2.4) w(z) = ] (20" w_(z+ih).
n=o

Approximating w byfviy] [cf. (1.20)], and truncating the infinite series,

we are led to define

Vi, oy 3 n _[v]
(2.5) oy (z,h) = ] @n)" v "I (z+in).
n=o

]
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Letting tn = (2h)n'V£v](z+ih), one obtains from (1.19) the following

algorithm to compute (2.5),

r =0, ¢ 1/2

n-1 ~ h-iz + (n+l)rn (@ = v,v-1,...,0),

(2.6) < t =0 =

(ad
I
N
=3

i

g =0 + t (n=1,2,.0.,N),-

We note that for h = 0, N = 0, algorithm (2.6) reduces to algorithm (1.19)..

Given £ = %-10fd, it is clearly possible to determine N and v (both

. .depending on z, h, and €) such that
(2.7) o 2,0y - w(@)| <e.

Since the series in (2.4) converges for every z and h, we can indeed find
N such that ]cém](z,h) - w(z)| < €/2, and with N so determined, find v >N
such that |cév](z,h) - oém](z,h)l < e/2. The triangular inequality then
yields the desired result (2.7).

Efficiency being one of our major concerns, we propose to

(i) 1let h, N, and v depend on z in such a way that h=N=0, v = 8

for z outside of R, the rectangle introduced in (2.2);

(ii) empirically determine the smallest integers N and v, subject to
(i) and compatible with (2.7), for each z € R.

.Thefmotivation behind the first of these objectives is to arrive at a
single algorithm for computing w(z) in all of Q> viz. algorithm (2.6),

which, as was already observed, automatically reduces to the Laplace
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continued fraction algorithm (1.19) when h'= N = 0. The objective can . be:

attained in many different ways. Exploratory computations led us to set up

h, N, v tentatively in the form(z)

\ . h = ho s(z), N = {No+le(z)}9 v = {v0+vls(z)} if z ¢ R,
(2.8)

h=N-=o0, v=28 1f ze Q\R,
where

x+iy),

s@ = - V- &’ 2

(o] o

andkho, No"Nl’ Vs vy are parameters which remain to be determined. Our
second objective (ii) will serve to dete%mine the last four of these param-
eters, while the first, ho’ will be chosen so as to minimize machine time.
A basic aid in this parameter study is a gauging routine I', which does
the following: given z = x+iy, h, and €, it returns nearly optimal values
N = NP’ v = v_ compatible with (2.7). The detailed steps involved in T are

r

as follows:. .

(1) Select N = N sufficiently large (say, N = 40).

v
(2) Determine v, the smallest integer v > N such that.

\L
max. lo[v+10](z,h) - c[v](z,h)l < ¢/100, The quantities c[v](z,h),
O<N<N - N N -_— N

N =0,1,...,N,are considered sufficiently accurate to represent

true partial sums of the Taylor series (2.4).

2: . .
( ){u}.denotes the integer closest to u, i.e., the largest integer con-

tained in utl/2.



ty (millisec.)

1.2

1.4



(3) Find'Nr:as the smallest integer N < N - 3 satisfying
e V. v,
|c[v] [v](z,h)| <-e. If there is no such integer N,

N+3(.Z’h) -

N

increase N by 10, and repeat steps (1)-(3).
(4) Determine Vo as .the smallest integer v satisfying
Io[v+1](z,h) -*o&v](z,h)l < €.
T

Np

A first application of the gauging routine I' is made in determining
the parameter ho' The choice of ho affects both the convergence of
5£v](z,h),.as v > ©, and the convergence of the Taylor expansion (2.4).
In fact, large values of»ho give rise to fast convergence of cév](z,h),_
but slow convergence in (2.4), while small values of h_ yield slow con~
vergence of aév](z,h) (particularly if y = Im z is small), but fast con-
vergence in (2.4). A good choice of h_ is therefore one which strikes a
balance between these two opposing effects. In order. to search for such
a value, we let y = O (where these effects are most pronounced) and apply
I' with input parameters z = x, h = h0 s(x), €, for selected values of x

and'ho° After each application of T we measure the machine time required

N = N, are the in-

to compute oév](x,h) by algorithm (2.6), where v = Vi r

'10, the results are shown.

tegers returned by I'. With x = 5.33, ¢ = %10
in Fig. 2, where machine time (in milliseconds) is plotted versus ho for
x = 0(1)5., 1It-is seen from these graphs that a3 good.choice offh0 is

ho = 1,6,

We next apply T' to determine the parameters No’ Nl, Vs vl_in (2.8).

A first pair of constraints is obtained by letting z = O and requiring that.

(2.9) N+ N, = 8

14
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o ©O .
where NP’ 2 are the results returned by I' with input parameters z =.0,
h = hd’ €+ A narrow band near the separation line y = Ye is then examined

" moreé' carefully, since our preliminary computations indicated that Nr'and

Vr approach limits larger than 0 and 8, respectively, as y 4 Yoo With Nr

the largest NP’ and Vp the largest.v., returned by I for input .parameters

T

z(near the line y = yo)9 h = hos(z), €, we let

(2.10) N =N s Vg, = Vps

which, together with (2.9), determines the desired parameters uniquely.

In our. case of interest (xo =,5°33, Yo = 4,29, hb =.1.6, € = %10_10), the

~

2

o’ 0
results are NF = 29, Vr = 30, r= 6, vp = 9, giving

(2.11) h = 1.6 s(z), N = {6+23 s(2)}, v = {9+21 s(z)} if z € R.

Note that v > N for all z, as required in'algorithm (2.6).
It"remains to examine whether this choice of parameters is indeed com-.
patible with (2.7). This is done by applying I' with input parameters z = xtiy,

h =h, s(z), € over a grid of points z € R, and by checking the inequalities
{Nd + Ny s(z)} 3_NF(Z) s {Vo,+ vl_s(z)} 3_vr(z),

where Nr(z) and VF(Z) are the output values of I' at the point z. Using the

grid x = 0(.5)5(.05)5.4, y = 0(.2)4(.05)4.4, and € = %1070, it was found

that both inequalities are consistently satisfied.
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With the values of h, N, v, defined in (2.8), (2.11), the desired func-

tion w(z) is thus approximated b -o[v](z,h) in (2.5), which in turn can be
Y oy

calculated by algorithm (2.6). The result is essentially the Algorithm in

[8], except that in this procedure the sum,cévl(z,h) is evaluated somewhat
N
differently. Letting s = [v[v](z+ih)]-l ; (2h)k v[v](z+ih), s.. = 0, one
n. n o k N
: : kel
can write indeed
(
rv =0’ SN=0’
: _ 1/2
(2.12) < Th-1° h-iz+(n+)r
n n=vyv=ly...,0,
_ n R
S_1 = rn_l[(Zh) + sn] (if n <N)
\
and then has
4
L, (h > 0),
[v] a
(2.13) oy (z,h) = <
2---r_1 (h = 0),
k/?

The advantage of this algorithm over algorithm (2.6) is its increased
speed on a digital computer [cf. section 3] together with the fact that no

array of storage must be provided to hold the quantities rnwl(n = 1,2,...,0),

3. Performance characteristics and tests. We begin.by comparing the.
computing times of the algorithm in [8] (referred to below as Algorithm...)
with those of a similar algorithm, in which (2.12), (2.13) is replaced by

(2.6). Both algorithms are compiled and executed on the CDC 6500 computer.
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We ‘select: five layers S, (n=0,1,...,4) in R, defined by"

S : 0 <X <X,

nyo/S <y :n(n+1)yo/5 (xo = 5.33, y, =4,29),

and time the algorithms on-each'Sn. The average time on Sn is obtained

by measuring the computing time of evaluating w(z) for 1000 values of z,

distributed uniformly in Sn,»and by dividing the measured time by 1000,

Both algorithms are timed similarly in the region outside of R (where com-

puting time is independent of z). The results

(3

are shown. in Table 1.

It is seen that the second algorithm is slower than the first by a factor

of 1.6-2.2,

Computing time (in millisec.)
z in
Algorithm... (2.6) replacing (2.12),(2.13)
So 6.7 14.5
S1 6.0 12,6
S2 5.2 10.7
S3 4.4 8.7
S4 3.6 6.8
QR 2.2 3.6

Table 1. Timing of Algorithm... and a related algorithm.

(3)

Such timings are subject to slight variations, even on,the same

computer, due to such incidental factors as compiler, executive
system, clock reading routine, etc.
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" For cpmparison we also timed the library subroutine for the exponential
function,ex:for selected values of x in the interval 1.< x < 20. The time
observed was rather consistently .315 milliseconds. The computation of w(z)
(both real and imaginary part) by Algorithm... thus takes about as long as
7-21 exponentiations, depending on.the location of the argument z.

In order to_gain further confidence in.the accuracy claimed;lAlgorithm..;
is run for x.= 0(.02)5.32(.005)5.35, 5.4(,2)6, y = 0(.02)4.28(.005)4.31,
4;4(.2)5, the results being compared with those obtained by the same algorithm, "
where h is replaced by 1.6, N by 33, and v by 36. (This combination of param-
eter values yields 14?correct decimal digits for z mnear. the origin.) The

largest absolute deviation is found to be 5.18 x 10"11 in the real part, and

1 in’'the imaginary part. For the maximum relative deviation the

8

4,91 x 1071
figures are 1,18 x 10 ° and 6.64 x 10-9,'respectively.

The region very close along the real axis is known to be a difficult
region in which to compute w(z), particularly its real part. To see how well
our. algorithm does in this region, it is used to compute'l‘ Re w(xt+iy) for.

x = 0(1)10 and y = 810" (s = 1,2,3,5,7; r = 4,3,2). Theﬁfesults,are,comr‘
pared with those in Hummer's table [9]. Remarkably enéugh,.although some of
the answers (for large x .and small y) have order of magnitude 10—7, there is

agreement to 8 significant digits (the precision in [9]), excepting occasional

end figure errors of 1-7 units.

Acknowledgments. The author is indebted to Professor Henry C. Thacher, Jr.,

for stimulating conversations, and to Mr. Thomas J. Aird for writing the pro~

gram to produce the altitude map of Fig. 1.



19

References

[1] B. H. Armstrong, Spectrum line profiles: the Voigt functiom, J. Quant.

Spectrosc. Radiat. Transfer 7 (1967), 61-88.

[2] C. Chiarella and A. Reichel, On the evaluation of integrals related:

to the error function, Math. Comput. 22 (1968), 137-143.

[3] W. J. Cody, K. A. Paciorek, and H. C. Thacher, Jr., Chebyshev approxi-.

mations for Dawson's integral, to appear in Math. Comput.

[4] V. N. Faddeeva and N. N. Terent'ev, Tables of values of the function -
. rz 2
w(z) = e % (1+ %é f et dt) for complex argument (Russian), Gosud.
T 0 ,
Izdat, Teh.-Teor. Lit,, Moscow, 1954, {English tramnslation by D. G. Fry,

Pergamon Press, New York, 1961.}

[5] A. Fletcher, J., C. P, Miller, and L. Rosenhead, An Index of Mathematical

Tables, Scientific Computing Service Limited, London, 1946.

[6] W. Gautschi, Error function and Fresnel integrals, Ch, 7, Handbook of
Mathematical Functions (M. Abramowitz and I. A. Stegun, Eds.), Nat.

Bur, Standards Appl. Math. Ser. 55 (1964), 295-329.

[7] , Computational aspects of three-term recurrence relations,

SIAM Rev, 2;(1967), 2482,

[8] , Algorithm... - Complex error function, submitted to

Comm. ACM. -

[9] D. G, Hummer, The Voigt function: An eight-significant~figure table

and generating procedure, Mem. Roy. Astronom. Soc. 70 (1965), 1-31.



[10]"

[11]

[12]

[13]

[14]

20

0. Perron, Die Lehre von den Kettenbruchen, 3rd ed., Vol. II, Teubner,

Stuttgart, 1957.

A. Reichel; Error estimates in simple quadrature with Voigt functioms,:

Math. Comput. 21 (1967), 647-651.

T. J. Stieltjes, Reserches sur les fractions continues, Ann. Fac.

Sci. Toulouse 8 (1894), 1-122; 9 (1895), 1-47. {Oevres Complates de

Thomas Jan Stieltjes, Vol. II, 402-566,}

0. Szasz, Bemerkungen zu Herrn Perrons Erweiterung eines Markoffschen

Satzes uber die Konvergenz gewisser Kettembruche, Math. Ann. 76 (1915),

301-314.,

H. C. Thacher, Jr.; Computation of the complex error function by con-

tinued fractions, Blanch Anniversary Volume, 315-337, Aerospace Research

Lab,, U. S. Air Force, Washingten, D. C., 1967,



