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Abstract1

Surface albedo is a key parameter in the Earth’s energy balance since it affects the amount of solar2

radiation directly absorbed at the planet surface. Its variability in time and space can be globally3

retrieved through the use of remote sensing products. To evaluate and improve the quality of satellite4

retrievals, careful intercomparisons with in situ measurements of surface albedo are crucial. For this5

purpose we compared MODIS albedo retrievals with surface measurements taken at 53 FLUXNET6

sites that met strict conditions of land cover homogeneity. A good agreement between mean yearly7

values of satellite retrievals and in situ measurements was found (R2= 0.82). The mismatch is8

correlated to the spatial heterogeneity of surface albedo, stressing the relevance of land cover9

homogeneity when comparing point to pixel data. When the seasonal patterns of MODIS albedo is10

considered for different plant functional types, the match with surface observation is extremely good at11

all forest sites. On the contrary, in non-forest sites satellite retrievals underestimate in situ12

measurements across the seasonal cycle. The mismatch observed at grasslands and croplands sites is13

likely due to the extreme fragmentation of these landscapes , as confirmed by geostatistical attributes14

derived from high resolution scenes.15

Keyword: MODIS, surface albedo, validation, FLUXNET, terrestrial ecosystems, plant functional16

types, remote sensing,17

1. Introduction18

Land surface broadband albedo directly affects Earth’s climate by determining the fraction of19

shortwave radiation absorbed at the ground and therefore influencing the surface energy budget20

(Dickinson, 1983). Surface albedo is a crucial parameter in determining the magnitude of energy fluxes21

in the soil–plant–atmosphere continuum (Bonan, 2008; Chapin et al., 2008), affecting surface22

temperature, evaporation and transpiration, cloud formation and precipitation, thus ultimately23

impacting gross primary productivity (Dickinson, 1983; Lawrence & Slingo, 2004; Ollinger et al.,24
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2008; Sellers et al., 1997). Several authors have investigated the interplay between albedo and drought1

(Govaerts & Lattanzio, 2008) or fires (Randerson et al., 2006), and the climate sensitivity to variation2

in surface albedo caused by major changes in land cover as the expansion of agricultural land in the3

northern hemisphere during the 18th century (Myhre et al., 2005; Vavrus et al., 2008). Surface albedo is4

also a key factor in the expected positive feedback between surface temperature and global warming at5

northern latitudes (Chapin et al., 2005) and may play a relevant role in offsetting the carbon6

sequestration potential of afforestation programs (Anderson et al., 2010; Betts, 2000; Betts et al., 2007;7

Bird et al., 2008; Rotenberg & Yakir, 2010).8

Given the relevance of surface albedo in the Earth’s climate system, monitoring this parameter in space9

and time is fundamental for the development of global climate models (Alton, 2009; Frida A-M et al.,10

2006; Hollinger et al., 2009; Tian et al., 2004) and for climate change and ecosystem research in11

general (Betts, 2000; Charlson et al., 2007; Charney et al., 1977; Dirmeyer & Shukla, 1994; Hall & Qu,12

2006; Henderson-Sellers & Wilson, 1983; Pinty et al., 2011a). An important step toward the13

availability of global surface spectral albedo has been the launch of NASA’s Terra and Aqua satellites14

and the MODerate-resolution Imaging Spectroradiometer (MODIS) (Lucht et al., 2000b; Salomonson15

et al., 1989; Schaaf et al., 2002). The MODIS sensor provides global maps of surface albedo16

reconstructed from retrieved models of reflectance anisotropy at a 500-m gridded spatial resolution17

every 16 days for the first seven MODIS spectral bands (0.47–2.1 �m) and for three broadband regions18

(0.3–0.7, 0.7–5.0, and 0.3–5.0, �m) (Lucht et al., 2000b; Moody et al., 2008; Schaaf et al., 2002).19

Comparing satellite albedo retrievals with surface measurements and with independent satellite20

products is fundamental in evaluating the accuracy of remote sensing products and improving retrieval21

algorithms (Liang et al., 2002; Pinty et al., 2011b). Several recent studies have evaluated the22

consistency of global albedo products using in situ data at various spatial and temporal scales (Chen et23

al., 2008; Jin et al., 2003a; Jin et al., 2003b; Liang et al., 2002; Liu et al., 2009; Román et al., 2010;24

Román et al., 2009; Wang et al., 2010) and under specific snow cover conditions (Stroeve et al., 2005).25
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Most of these studies stress that a direct comparison is very challenging because of scale mismatch and1

heterogeneity of the land surface at the satellite measurement scale that reduces the spatial2

representativeness of ground point measurements (Liang et al., 2002; Román et al., 2010; Román et al.,3

2009). As a consequence, a careful selection of ground points and the characterisation of their spatial4

representativeness are crucial for a meaningful point-to-pixel comparison (Liang et al., 2002; Lucht et5

al., 2000a; Román et al., 2009).6

Intercomparisons of surface and satellite albedo have been performed so far at a limited number of7

locations (Jin et al., 2003a; Liu et al., 2009; Román et al., 2010; Román et al., 2009; Salomon et al.,8

2006; Wang et al., 2010) and a global analysis across different continents and plant functional types9

(PFTs) is still lacking. The objective of this work is to provide a comprehensive intercomparison in10

time and space of in situ measurements and satellite retrievals of snow-free broadband surface albedo.11

For this purpose we compared MODIS gridded albedo retrievals at the 500-m scale with ground12

measurements performed across the FLUXNET network (Baldocchi et al., 2001), the largest global13

data set of energy and mass flux measurements at ecosystem scale.14

The geographical extent of the terrestrial data set allowed the comparison of several PFTs in a15

comprehensive and consistent way across the seasonal cycle. In addition, the large number of16

experimental sites in the network provided an unprecedented opportunity to perform a careful17

evaluation of the surface heterogeneity at the reference plots, based on a combination of qualitative and18

quantitative metrics. For this purpose images from Google Earth, MODIS and Enhanced Thematic19

Mapper Plus (ETM+) have been used at various spatial scales (from 1x1 to 7x7 km). Differences20

between satellite retrievals and in-situ albedo have been analyzed as a function of surface21

heterogeneity, PFT and seasonality. Results of the intercomparison have been finally discussed22

considering the different sources of uncertainty that affect the terrestrial and satellite datasets.23

24

25
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2. Materials and methods1

2.1. Surface data set2

In this study, we used in situ radiometric measurements available in the FLUXNET “La Thuile”3

database (www.fluxdata.org, October 2010) released in December 2007, which includes half hourly4

observations of ecosystem fluxes and meteorological data from more than 250 sites, for a total of 9605

site-years.6

Albedo is computed as the ratio of downward and upward global radiation as observed with double7

pyranometers (e.g. CMA-11, CMA-6 or CNR-1, Kipp&Zonen, Delft, The Netherlands). Surface albedo8

is typically estimated in the spectral range 280-2800 nm (accounting for more than 98.5% of the9

surface solar radiation according to ASTM G-173 reference spectra) and is therefore comparable with10

the broadband MODIS albedo (300-5000nm). Giving that the field of view (FOV) of pyranometers is11

typically 180 deg, the footprint of surface reflectance measurements is theoretical infinite. However,12

due to the cosine response of the sensor, 50% of the signal originates in a FOV of 90 deg and 80% in a13

FOV of 127 deg. The footprint of surface albedo therefore depends on the height of the albedometer14

above the canopy top (ranging from 5 to 10 m) and typically extends up to 10-20 m from the tower at15

80% of the signal.16

The uncertainty of surface albedo measurements depends on the absolute accuracy of phyranometers17

(about 5%) and on the non-ideal cosine response (about 3%). Most of the errors associated with the18

absolute accuracy of the instrument are similar for upward and downward fluxes and therefore19

compensate. Overall the expected accuracy is in the order of 4-7% in clear sky and 1-4% in overcast20

condition (Pirazzini, 2004; Pirazzini et al., 2006).21

The geographical distribution of the sites is strongly clustered in Europe and North America (97 and22

106 sites corresponding to 38% and 42% of the total), which are the regions with the longest history of23

continuous ecosystem flux measurements (Baldocchi et al., 2001). Several sites in the database are24
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located in tropical Amazonia and East Asia, while the coverage in Africa, Central Asia, and Australia1

remains sparse and limited in the number of observation years. Despite the uneven geographical2

distribution, the “La Thuile” database guarantees a good coverage of the most important plant3

functional types, among which evergreen needle leaf forest (ENF), grassland (GRA), deciduous4

broadleaf forest (DBF), and cropland (CRO) are the most represented with respectively 28%, 18%,5

13% and 12% of the sites.6

Out of the 138 FLUXNET sites reporting continuous measurements of incoming and outgoing7

shortwave radiation (300-2800 nm; CMA-11, CMA-6 or CNR-1, Kipp&Zonen, Delft, The8

Netherlands) 18 have been excluded after a QA/QC analysis of the albedo data series. The QA/QC9

procedure was based on the following criteria: occurrence of an offset in the incoming or reflected10

radiation (night-time data systematically and significantly different from zero), occurrence of phase lag11

between incident and reflected radiation and systematic occurrence of unrealistic values (e.g. reflected12

radiation higher than incident radiation).13

The land cover characteristics of the remaining 120 sites have been carefully classified using high14

resolution satellite images (available via Google Earth�), to identify those matching the requirement15

of homogeneity in the area surrounding the measurement tower (Jin et al., 2003b; Román et al., 2010;16

Román et al., 2009). Although MODIS albedo is gridded at 500-m resolution the land classification has17

been performed at 1km2, taking into account the uncertainty in the geospatial registration of satellite18

products and the fact that the albedo retrieval algorithm is based on multi-angle observations covering19

larger areas at edge of scan.20

The classification process was based on the following four steps:21

1. visual identification of the number and extension of different PFTs in the 1km2 area22

surrounding the tower;23

2. verification of the correspondence between the dominant PFT in the 1km2 area and the PFT at24

the tower site as reported in the FLUXNET database;25
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3. qualitative ranking of landscape heterogeneity in three classes (low, medium, high) based on the1

plant canopy characteristics (tree density, patchiness, etc.);2

4. attribution of a confidence level in the classification of the sites (low, medium, high) based on3

the quality of the image.4

To guarantee the highest level of homogeneity and to minimize issues associated with spatial5

representativeness in the point-to-pixel comparison, only those sites characterized by the lowest level6

of heterogeneity and with only one PFT in the 1km2 area were included in the analysis.7

2.2. MODIS products8

The MODIS albedo retrievals at the FLUXNET sites were generated using three MODIS products,9

namely, MCD43A1 (BRDF-Albedo Model Parameters 16-Day L3 Global 500m), M*D04 (Aerosol10

product daily L2 Global 10km), and MCD43A2 (BRDF-Albedo Quality 16-Day L3 Global 500m). All11

these products are from the Collection V005 MODIS reprocessing campaign. The MODIS surface12

reflectance anisotropy and albedo product is based on all high quality, cloud-free, atmospherically13

corrected surface reflectances that are obtained over a 16-day period. When sufficient observations are14

available to adequately sample the surface anisotropy, an appropriate rendition of the15

RossThickLiSparseReciprocal Bidirectional Distribution Reflectance Model (BRDF) model is retrieved16

(Lucht et al., 2000b; Schaaf et al., 2002). This retrieval is attempted every 8 days at a 500 m gridded17

resolution. This retrieval model is used to generate intrinsic values of clear-sky direct surface albedo18

(referred to as directional hemispherical reflectance or black-sky albedo) and wholly diffuse albedo19

under isotropic illumination (bihemispherical albedo or white-sky albedo). These can be combined20

under particular illumination and atmospheric aerosol optical depth conditions (Lucht et al., 2000b;21

Román et al., 2010) to provide clear-sky albedos comparable to those measured in situ at a flux tower.22

Albedo quantities are reported at a 500-m gridded resolution, but all multi-angle observations that23

encompass areas are utilized in the retrieval. Therefore, although extended observation coverage is24



9

somewhat compensated for in the retrieval process, it is best to consider regions larger than 500 m1

when comparing observations made from satellite to those made on the ground.2

The calculation of clear-sky surface albedo at the tower sites involved the following two steps. The first3

step was the generation of the aerosol optical depth values for each site and each calendar date using4

the MODIS – Terra (MOD04) and MODIS-Aqua (MYD04) aerosol swath products. To generate the5

optical depth, the MODIS Adaptive Processing System - MODAPS (Masuoka et al., 2000; Masuoka et6

al., 2007) was used to prepare M*04 subsets at 50 x 50 km region centered at the site. All pixels that7

had optical depth values greater than 0.35 or a cloud fraction greater than 0.6 were filtered out and not8

used in the optical depth generation. All pixels that had fill values for solar zenith angle were also9

rejected. After the filters were applied, a combined M[OY]D optical depth file was generated for each10

site, taking valid optical depth values from Terra and Aqua and generating one mean value for the11

optical depth per site per day. This method of course is not as accurate as having instantaneous sun12

photometer data (Holben et al., 1998) at the site, but the mean gives an approximation of the aerosol13

optical depth over the local solar noon.14

The second step was the calculation of the clear sky surface albedo on the basis of the MODIS-derived15

550nm aerosol optical depths calculated in the previous step, the local solar zenith angle, the16

MCD43A1 product, and QA flags from MCD43A2 for each site involved in the analysis and for each17

date. If a date has no valid MCD43A1 pixels or if the optical depth was a fill value, no albedo was18

calculated for that date. As far as quality criteria are concerned only “full BRDF inversion” pixels19

(QA=0 processed, good quality) were included in the calculation, while the "Snow_BRDF_Albedo"20

band of the MCD43A2 product was used to identify and exclude snow albedo retrievals. Following this21

procedure clear-sky MODIS albedo at local solar noon were retrieved at each FLUXNET site for all22

days with available aerosol MODIS product (M*D04) information, snow-free conditions, and solar23

elevation angles greater than 20 deg. On the same dates, the flux tower measurements of albedo have24

been averaged for the hour centered at solar noon.25
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To integrate the observations at the FLUXNET sites in the global picture, snow-free global albedo1

averages per PFT and latitudinal band were computed from the MODIS V005 0.05 degree Climate2

Modeling Grid (CMG) product and stratified with the MCD12C1 land cover product. Yearly averages3

have been calculated on each pixel fulfilling the following requirements: QA=0 (majority processed,4

good quality), snow coverage less than 10% (based on MODIS estimates), and major PFT coverage5

greater than 70% of the pixel. Note that the 0.05 degree MCD43C1 product is an average of the 500m6

pixel underlying each 0.05 degree pixel and the quality flag only represents the quality of the majority7

of the underlying pixels.8

2.3. Landscape heterogeneity9

One of the key issues in the intercomparison of satellite retrieval and surface observations is the10

objective and quantitative evaluation of landscape heterogeneity and the representativeness of in situ11

measurements (Liang et al., 2002; Román et al., 2009; Susaki et al., 2007).12

For this purpose we applied the methodology presented by Román et al. (2009) and based on the13

estimation of geostatistical attributes from high resolution scenes (Enhanced Thematic Mapper Plus).14

The spatial patterns and scales of landscape heterogeneity have been estimated from variogram models15

fitted at FLUXNET sites over the spatial scales of MODIS observations.16

In synthesis, the methodology adopted for the estimation of geostatistical indexes is based on the17

comparison of variogram model parameters retrieved at different spatial resolution (i.e. from 1.0 km2 to18

1.5 km2 squared subsets). By examining the variogram parameters at two scales, the spatial19

characteristics of a given measurement site is compared against the larger landscapes extending to20

several MODIS pixels.21

Four different geostatistical attributes of spatial representativeness have been used to describe the22

overall variability (RCV), spatial extent (RSE), strength of the spatial correlation (RST), and23
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spatial structure (RST) of surface albedo for a given measurement site. Further details on the methods1

and algorithms used to calculate these attributes are reported in Román et al. (2009).2

Using a weighted combination of the four geostatistical attributes a comprehensive metric of the3

landscape heterogeneity (STscore) has been computed to evaluate and compare FLUXNET sites:4

STscore =
|R | + |R | + |R |

3
�

In addition, the landscape heterogeneity at a larger spatial scale (7x7 km) has been quantified as the5

standard deviation of MODIS albedo (14 x 14, 196 pixels) area centered at the FLUXNET site.6

7

8

9

10
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3. Results and discussion1

3.1. The terrestrial data set: spatio-temporal distribution and representativeness2

As a result of the visual classification of land cover characteristics, 49% of the 120 sites performing3

reliable continuous measurements of broadband albedo were rejected for reasons of landscape4

heterogeneity and 7% because of low confidence in the PFT classification.5

Of the remaining 53 sites (among which there were 15 ENF, 8 CRO, 7 DBF, and 7 evergreen broad-6

leaf forests (EBF)) the largest fraction is located in Europe (19) and North America (15 USA, 77

Canada). The remainder of the sites are located in Africa (4), South America (3), Asia (3) and Australia8

(2) (Fig. 1, Table 1).9

[Figure 1]10

[Table 1]11

Across all sites, 18666 days of synchronous MODIS retrievals and in situ surface albedo were12

available. On average, this worked out to 333 and 400 days of data for each forested and non-forested13

site, respectively (on average about 80 observations per site and year), but there was considerable14

variability among sites. To date, this is the largest data set that has been used to compare satellite and in15

situ albedo measurements.16

Although the data set spans the years 2000-2007, the vast majority (87%) of observations were made17

between 2003 and 2006 (Fig. 2a). Because of filtering for snow and cloud cover, and the dominance of18

Northern hemisphere sites in the data set, the number of observations is lower during winter months19

(November through February) (Fig. 2b).20

[Figure 2]21

The seasonal variation of the global average of snow-free albedo is remarkably small for forests, likely22

because ~70% of the sites are evergreen forests with leaf area index, canopy structure and chemistry23

not as dynamic as those of deciduous ecosystems. The seasonal trend of snow-free albedo is somewhat24
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more pronounced for non-forest ecosystems, which include crops and grasslands (Running et al., 1995)1

(Fig. 2b).2

The spatial representativeness of the FLUXNET albedo data set in the global albedo domain has been3

explored by superimposing the MODIS retrievals at the sites on the global distribution of MODIS4

albedo (Fig. 3) for the same PFT or latitudinal class. Concerning the latitudinal distribution, 75% of5

FLUXNET sites are clustered in the 30-55° N band (Fig. 3a), and in this latitude band the surface6

albedo observed at the sites is substantially lower (20%) than the MODIS latitudinal average. This is7

due to the non-representative distribution of FLUXNET sites, which are mostly located in dense and8

productive temperate forests of the Northern Hemisphere. The difference between latitudinal MODIS9

averages and site-measurements of albedo is less evident in the Southern hemisphere, where also the10

number of FLUXNET site is remarkably lower.11

[Figure 3]12

In terms of PFTs (Fig 3b), 79% of sites analyzed here are classified as one of ENF, EBF, CRO, GRA or13

DBF. When PFT averages are compared with the global average of MODIS albedo, most of the sites14

fall within the 10-90 percentile intervals of the global MODIS observations, with the exception of EBF15

for which MODIS retrievals at the sites show lower values of albedo. For the other PFTs (woody16

savanna (WSA), open shrubland (OSH), savanna (SAV), mixed forest (MF)) the number of sites is too17

low to speculate on the global representativeness of the FLUXNET dataset.18

19

3.2. Point to pixel comparison20

The comparison of MODIS albedo retrievals with in situ measurements has been limited to the21

FLUXNET sites with the highest degree of homogeneity in order to minimize the effect of the scale22

mismatch. Examples of high resolution images (available via Google Earth�) used to evaluate site23

homogeneity are reported in Fig. 4 for four test sites.24
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[Figure 4]1

The time series of MODIS retrievals and in situ measurements at these four sites show contrasting2

results (Fig. 5). At some sites the match is extremely good both in terms of absolute values and3

seasonal trend (e.g. US-MMS, US-FPe). At other locations MODIS retrievals show a systematic4

overestimation (e.g. PT-Esp) or underestimation (e.g. ES-LMa) of surface measurements. These biases5

are probably due to the fine-scale spatial variability of the plant cover and to the representativeness of6

the tower footprint in the MODIS pixel, since the other sources of uncertainties (sensor calibration,7

uncertainty of AOD estimates, etc.) cannot explain such large and systematic errors. In particular at8

sites with discontinuous plant canopies like ES-LMa (Fig. 4), the height from the ground and the spatial9

location of the albedometer are critical factors, determining the representativeness of the in situ10

measurements at the resolution of the satellite pixel.11

[Figure 5]12

A good agreement between satellite and in situ measurements was found when sites were grouped13

according to PFT (Fig. 6a, type II regression, R2= 0.82). Forest PFTs (such as ENF, EBF, MF) fall in14

the lower part of the graph, while non-forest PFTs (such as CRO, GRA, wetlands (WET)) in the upper15

part. Albedo is correlated to several plant-level traits including leaf albedo, leaf area index, vertical16

angle of leaves/needles, the degree of foliage and canopy clumping, and the geometric-optical17

shadowing due to canopy structure. It is well known that the structural canopy traits typical of tall18

canopies trap more of the incoming radiation, therefore reducing the canopy albedo of forest PFTs19

(Cescatti, 1998; Davidson & Wang, 2004).20

[Figure 6]21

Satellite retrievals and surface measurements at the site level (Fig. 6b) show a coefficient of22

determination of 0.83, very similar to that observed in the comparison by PFT and reported in23

comparable studies (Wang et al. 2010). Both regressions in Fig. 6 show a slope lower than one (0.8824

and 0.74 for panel (a) and (b), respectively), primarily due to the different spatial scale of the two25
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estimates, with the satellite retrievals referring to a considerably larger area than tower measurements.1

The spatial averaging of surface albedo on the large MODIS pixels dampen the variability when2

compared with high-resolution imagery or point measurements and ultimately determines the trend3

(intercept >0 and slope <1) of the regressions in Fig. 6. Similar slope and closer correlations have been4

observed by comparing early MODIS retrievals with surface measurements using high-resolution5

remotely sensed imagery (Landsat7 ETM+) to characterize the land cover heterogeneity in the MODIS6

pixel (Liang et al., 2002). The negative bias of MODIS at the sites with larger albedo has been reported7

also by Wang et al. (2010) and has been mostly attributed to the underestimation of visible albedo.8

The mean error and mean absolute error of the MODIS retrievals vs. the in situ observations are9

reported in Fig. 7a together with the R2 of the regression computed for the single sites. The mean error10

is a measure of the retrieval accuracy and is on average negative (-0.004) implying that the magnitude11

of the MODIS surface albedo is on average slightly lower than in situ observations. It is also interesting12

to notice that the spread is considerably larger among the sites with a negative error both in terms of13

mean error and mean absolute error. The R2 observed at single sites, proportional to dot size in Fig. 7a,14

is largely independent of the mean error since it mostly depends on the seasonal variability of the15

measurements. For this reason, sites with a marked seasonality in albedo (i.e. deciduous forests, crops16

and boreal ecosystems) typically show a higher R2 than tropical or Mediterranean evergreen forests.17

The error distribution peaks in the -0.01 class and is skewed to the left, with larger errors at sites where18

MODIS underestimates surface measurements (Fig. 7b). The mean values of STscore (geostatistical19

index proportional to the representativity of in-situ measurements in the MODIS pixel) in the different20

classes of mean error shows several interesting features (Fig. 7b). The highest mean value of the score21

(3.9) is in the class at zero mean error, confirming the validity of this approach to quantify the spatial22

representativeness of experimental sites. The values of STscore is considerably lower (1-1.4) at sites23

characterized by a negative error (MODIS<in situ) and the variability of this index is rather limited24

between sites. At these sites the towers are probably located in a brighter spot than the average of the25
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pixel and typically pertain to the categories of grassland (GRA) or cropland (CRO) (Table 2). On the1

contrary sites with a positive bias (MODIS>In situ albedo), where the tower spot is located on an area2

darker than the surroundings, show intermediate value of the score (2.5) and a large variability between3

sites.4

[Figure 7]5

[Table 2]6

Giving that the MODIS albedo product is reported at 500 m resolution while the retrieval algorithm is7

based on multiangular reflectances that extend over this area, landscape heterogeneity at scales larger8

than 500 m may ultimately affect the uncertainty in the retrievals. To assess the impact of the spatial9

heterogeneity on the accuracy of MODIS retrievals we computed the mean absolute percentage error10

for sites ensembles at increasing levels of spatial variability (expressed as standard deviation of11

MODIS albedo in the 7x7 km2 area surrounding the site or as STscore). Figure 8 shows that the error12

between satellite and in situ measurements increases with the spatial variability of albedo, further13

demonstrating the crucial issue of the spatial variability of surface albedo in the point to pixel14

intercomparisons.15

Both MODIS standard deviation and STscore show sharp variations for values of the mean absolute16

percentage error up to 12%. Above this threshold both indexes are no longer correlated with the error.17

The trend of the two spatial indexes is remarkably similar though in opposition, since MODIS standard18

deviation increases with the spatial variability while STscore increases with spatial homogeneity. Despite19

the different spatial domain (7x7 and 1.5 km) the two indexes are strongly correlated (Fig. 8 inset) with20

an R2 of 0.90. These results demonstrate that a close match between surface measurements and satellite21

retrievals is achievable only at the most spatially homogenous sites, where the canopy optical22

properties are scale-invariant. These golden sites can be effectively detected with both statistical23

analysis of MODIS albedo or with higher resolution images and detailed geostatistical indexes.24
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1

[Figure 8]2

3.3. Seasonal trends3

Seasonal patterns in the relationship between site-level averages of MODIS and FLUXNET albedo are4

reported in Figure 9. In all seasons, the relationship between MODIS (y axis) and in situ (x axis) albedo5

has a slope ranging from 0.71 to 0.74 and positive intercept, meaning that MODIS over-estimates6

surface albedo of low-albedo sites, and under-estimates albedo of high-albedo sites. The lowest7

correlation (R2=0.73) is observed for winter values (from December to February) and the highest8

(R2=0.82) for fall values (from September to November). Similarly, larger differences between in situ9

and satellite based estimation of surface albedo in winter season were observed in Jin et al. (2003), who10

suggested that this was the result of the increased heterogeneity of surface reflectivity due to the11

presence of residual snow and canopy heterogeneity.12

[Figure 9]13

The inset in Fig. 9a shows the correlation matrix of the errors observed in the different seasons. All14

correlation coefficients are positive, meaning that sites with surface measurements larger than satellite15

retrievals in one season tend to have the same behaviour in the other seasons. Thus, site-specific biases16

are coherent over time, possibly indicating mismatches between the footprint of tower radiometric17

instruments and the corresponding MODIS pixel, calibration errors of the tower radiometric18

instruments, inappropriate estimation of aerosol optical depths or systematic errors in MODIS retrieval.19

[Figure 10]20

In Figure 10 the seasonal trends of satellite and in situ data for a set of PFTs are reported with their21

standard deviation, and superimposed on the range of MODIS albedo observed at the global scale for22

the same PFTs (grey bands represent the 10-90 percentile interval). An exceptionally good agreement23

between the two independent albedo estimates is observed for forest PFTs, both in terms of absolute24
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albedo values and seasonal patterns. In contrast, for non-forest PFTs (CRO and GRA) MODIS1

retrievals are systematically smaller than surface measurements, while their respective seasonal2

patterns are in agreement as observed also by Davidson & Wang (2004). The mismatch observed at the3

non-forest sites is likely due to the extreme fragmentation of these landscapes and to the very limited4

spatial footprint of surface radiometric measurements performed at these sites (i.e. over short5

vegetation albedometers are typically installed few meters above ground). Wang et al. (2010) reported6

that the average negative bias of MODIS albedo is probably due to the underestimation of visible7

surface reflectance and that this phenomenon may be more pronounced for herbaceous canopies with8

larger albedo in the visible bands.9

The large variability of CRO and GRA surface albedo (Fig. 10) can be ascribed to the spatial variability10

in LAI, to the variable amount of exposed soil and soil moisture content, to the rapid temporal dynamic11

of the canopy in response to climatic drivers like temperature and water status (Gao et al., 2005) as well12

as to management practices (e.g. planting, harvesting, grazing, crop type, etc.) (Tittebrand et al., 2009).13

Given the large spatial variability of GRA and CRO albedo, future intercomparison of satellite and in14

situ observation for these PFTs should be performed preferentially at selected sites with homogenous15

crop cover and management practices at the MODIS spatial resolution.16

ENF and EBF snow-free albedo do not show any significant seasonal trend and monthly values are17

around 0.1. EBF do not show seasonal variation also at the global scale, while larger variability is18

observed for ENF in winter months. A clear seasonality is shown by DBF+MF and CRO, with higher19

values at the peak of the growing season, in line with the results of other in situ studies (Sellers et al.,20

1997). The seasonal pattern of GRA is the opposite, with a winter maximum in albedo. The increase of21

GRA albedo from August, observed both in MODIS and FLUXNET data, is probably due to vegetation22

senescence, with the increase of exposed soil and dead biomass and the drying of stalks and seeds23

during summer months.24

25
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4. Conclusions1

Surface albedo is a key parameter in the Earth’s energy balance since it affects the amount of solar2

radiation directly absorbed at the planet surface. Its variability in time and space can be retrieved3

through the use of remote sensing products, available nowadays at high temporal and spatial resolution4

from different satellite platforms (e.g. Terra and Aqua MODIS observations are used to retrieve albedo5

every 16 days at a spatial resolution of 500 x 500 m starting March 2000).6

Careful intercomparisons with in situ measurements of surface albedo are crucial to evaluate and7

improve the quality of remote sensing products. In this context the “La Thuile” FLUXNET dataset8

offers an unprecedented opportunity to select sites according to strict conditions of landscape9

homogeneity and across a wide range of PFTs and geographical areas. When compared to the10

latitudinal distribution of surface albedo, the FLUXNET data set clearly shows a bias towards darker11

vegetated areas in the Northern hemisphere. In this respect, the biased distribution of the terrestrial12

dataset in the global albedo domain should be taken into account when using in situ FLUXNET albedo13

data in the parameterization of land surface models.14

The key issue in the intercomparison of satellite and in situ measurements is the spatial15

representativeness of the latter in the satellite pixel. The MODIS pixel can be 100-1000 times larger16

than the footprint of in situ observations, depending on the height of the albedometer above the canopy17

top. For this reason a careful classification of FLUXNET sites has been performed to select only those18

sites with the lower level of heterogeneity. Albedo measurements at the sites passing the selection are19

in excellent agreement for most forest sites, while satellite retrievals underestimate in situ20

measurements for PFTs with larger values of albedo (typically non-forest ecosystems as CRO and21

GRA).22

When seasonal patterns of MODIS albedo are compared, the match is extremely good for all forest23

PFTs. These results quantitatively document the quality achieved with satellite retrievals of surface24
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albedo over a range of forest ecosystems. On the contrary, in non-forest sites satellite retrievals1

systematically underestimate in situ measurements across the whole seasonal cycle with a minimum2

error at the peak of the growing season. However, in the interpretation of these results it should be3

considered that the footprint of the surface radiometric measurements is extremely limited in these4

ecosystems, since sensors are generally installed few meters above the ground. In addition the temporal5

and fine-scale spatial variability of the canopy reflectance can be extremely large in non-forest PFTs6

due to management practices and rapid LAI dynamics (Tittebrand et al., 2009).7

The intercomparison of surface measurements and satellite retrievals is affected by the surface8

heterogeneity at various spatial scale. The sub-pixel variability affects the difference between the signal9

in the footprint of the albedometer and the 500 m MODIS pixel, while the between pixels variability10

affects the accuracy of the inversion algorithm. At smaller scale, the combination of quantitative11

indexes based on variogram analysis of high resolution images confirms that FLUXNET sites in12

herbaceous ecosystems (CRO and GRA) are the less homogenous and should therefore be carefully13

evaluated in point to pixel intercomparisons. At a coarser scale, the variability of the MODIS albedo in14

the 7x7 Km2 area is related to the mismatch of MODIS retrievals and in situ measurements, further15

corroborating the relevance of large scale landscape homogeneity in the comparison of surface16

measurements and satellite retrievals.17

The results of this investigation clearly show the need for the future to characterize the spatial18

heterogeneity of reference sites using a combination of surface measurements, airborne and finer scale19

satellite imagery (Román et al., 2009). To overcome the limitations of the point to pixel albedo inter-20

comparisons, future field and airborne surveys should be planned to address the issue of spatial scales21

and landscape heterogeneity. Current approaches for measuring in-situ albedo are not adequate to22

describe mixed or highly heterogeneous landscapes such as mixed forests, open shrublands, savannas23

and croplands. For this purpose only spatially-distributed measurements (i.e., airborne laser scanning,24

network of tall towers) could produce observations at the required scale. For albedo in particular, multi-25
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angle airborne instruments such as AirMISR (Diner et al., 1998), AirPOLDER (Chen et al., 1997),1

NASA's Cloud Absorption Radiometer (Gatebe et al., 2003) and the Compact Airborne Spectrographic2

Imager (CASI) data (Chen et al., 1999) could be effectively used to retrieve surface-level bidirectional3

reflectance measurements at landscape scale and therefore effectively complement moderate resolution4

satellite systems like MODIS and MISR.5

6
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Figure captions1

Figure 1 – Spatial distribution of the 120 FLUXNET sites for which albedo measurements are2

available. Green dots represent sites selected for the analysis according to plant cover3

homogeneity at 1 Km2 scale (n=53, visual classification based on high resolution Google4

Earth� images, e.g. Fig 2).5

Figure 2 – Frequency distribution of synchronous MODIS retrievals and in situ measurements6

classified according to year (panel a) and month (panel b) of observation. The vegetation is7

coded according to the IGBP classification: CRO, croplands; CSH, closed shrublands; DBF,8

deciduous broad-leaf forests; EBF, evergreen broad-leaf forests; ENF, evergreen needle-leaf9

forests; GRA, grassland; MF, mixed forests; OSH, open shrublands; SAV, savannas; WET,10

permanent wetlands; WSA, woody savannas. Validation sites are separated into forest (ENF,11

EBF, DBF, MF, SAV and WSA) and non forest (OSH, CSH, CRO, GRA, WET).12

Figure 3 – Global distribution of MODIS albedo (0.05° res.) categorized for latitudinal bands (panel a)13

and Plant Functional Types (panel b). In both panels black dots represent global MODIS14

averages (grey bars show the 10-90 percentile intervals) and white dots represent MODIS15

retrievals at the 53 FLUXNET sites reported in Table 1.16

Figure 4 – Examples of high resolution Google Earth� images used to visually classify the FLUXNET17

sites according to land cover homogeneity. Images cover an area of 1km2 area centered at the18

tower coordinates.19

Figure 5 – Time series of synchronous in situ observations (open dots) and MODIS retrievals (black20

dots) at the four sites shown in Fig. 4.21

Figure 6 – MODIS retrievals versus in situ observations of clear-sky and snow-free albedo. a) Averages22

and standard deviations of retrievals (temporal and spatial variability are accounted for)23
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grouped by Plant Functional Types (PFT), b) Average ground measurements and retrievals at1

individual sites classified by PFT.2

Figure 7 – Mean error and mean absolute error of MODIS albedo retrievals at FLUXNET sites. Site3

numbers are reported in Table1; dot size is proportional to the R2 of the regression of daily4

MODIS retrievals versus in situ measurements.5

Figure 8 – Mean absolute percentage error of MODIS retrievals versus in situ measurements as a6

function of the standard deviation of MODIS retrievals in the 7x7 Km grid centered at the site.7

Sites located in a more homogeneous landscape (lower spatial variability of albedo) are8

characterized by a lower discrepancy between in situ observations and satellite retrievals.9

Figure 9 – Seasonal average values of clear-sky snow-free albedo at the 53 homogeneous sites as10

measured at the FLUXNET sites or retrieved from MODIS. Winter values (DJF) show the11

lowest correlation. The first panel includes the correlation matrix of the residuals (MODIS12

retrievals- in situ albedo) in the four seasons.13

Figure 10 – Seasonal trends of albedo for the different plant functional types as derived from in situ14

observations (white dots) and MODIS retrievals (black dots). The grey bands show the15

observed variability (10-90 percentiles) of the MODIS retrieved albedo at global scale for each16

plant functional type.17

18
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Table 1 - Site characteristics derived from the FLUXNET database. N obs indicates the number of days of
synchronous recordings of MODIS and in situ albedo. The averages of MODIS retrievals and in situ
observations are reported in the two rightmost columns.

N SITE ID COUNTRY PFT Lat. Long. N obs MODIS In situ STscore
[deg] [deg] albedo albedo

1 AU Tum Australia EBF -35.66 148.15 733 0.11 0.11 9.75
2 AU Wac Australia EBF -37.43 145.19 275 0.09 0.10 11.30
3 BR Cax Brazil EBF -1.72 -51.46 67 0.12 0.12 5.33
4 BR Sa3 Brazil EBF -3.02 -54.97 79 0.13 0.12 6.23
5 BW Ghg Botswana SAV -21.51 21.74 28 0.16 0.18 0.67
6 BW Ghm Botswana WSA -21.20 21.75 28 0.18 0.17 NA
7 BW Ma1 Botswana WSA -19.92 23.56 252 0.16 0.14 5.42
8 CA Ca1 Canada ENF 49.87 -125.33 580 0.09 0.09 5.99
9 CA Ca3 Canada ENF 49.53 -124.90 552 0.13 0.14 0.64
10 CA NS6 Canada OSH 55.92 -98.96 353 0.10 0.12 NA
11 CA SF2 Canada ENF 54.25 -105.88 363 0.11 0.11 1.72
12 CA SF3 Canada ENF 54.09 -106.01 362 0.10 0.10 3.14
13 CA WP1 Canada MF 54.95 -112.47 353 0.11 0.13 1.65
14 CZ BK1 Czech Republic ENF 49.50 18.54 148 0.09 0.10 3.18
15 DE Geb Germany CRO 51.10 10.91 328 0.17 0.18 0.90
16 DE Hai Germany DBF 51.08 10.45 451 0.13 0.13 1.97
17 DE Kli Germany CRO 50.89 13.52 256 0.16 0.19 0.62
18 DE Tha Germany ENF 50.96 13.57 477 0.10 0.07 5.99
19 DE Wet Germany ENF 50.45 11.46 375 0.07 0.05 1.55
20 ES ES2 Spain CRO 39.28 -0.32 298 0.14 0.13 0.91
21 ES LMa Spain SAV 39.94 -5.77 455 0.16 0.19 1.89
22 FR Fon France DBF 48.48 2.78 162 0.14 0.13 0.51
23 FR Hes France DBF 48.67 7.07 474 0.15 0.14 1.44
24 FR Pue France EBF 43.74 3.60 401 0.11 0.12 0.87
25 GF Guy French Guyana EBF 5.28 -52.93 216 0.12 0.10 1.92
26 HU Bug Hungary GRA 46.69 19.60 523 0.16 0.20 1.74
27 IE Dri Ireland GRA 51.99 -8.75 160 0.20 0.22 1.05
28 IT Bon Italy ENF 39.48 16.54 174 0.10 0.08 2.43
29 IT Col Italy DBF 41.85 13.59 183 0.14 0.15 2.60
30 IT SRo Italy ENF 43.73 10.28 512 0.08 0.09 3.10
31 JP Mas Japan CRO 36.05 140.03 177 0.12 0.13 1.15
32 KR Kw1 Korea MF 37.75 127.16 216 0.09 0.09 3.81
33 NL Ca1 Netherlands GRA 51.97 4.93 369 0.17 0.22 1.03
34 NL Lan Netherlands CRO 51.95 4.90 108 0.17 0.18 1.44
35 NL Loo Netherlands ENF 52.17 5.74 404 0.11 0.09 1.40
36 PT Esp Portugal EBF 38.64 -8.60 437 0.13 0.11 0.86
37 RU Che Russia MF 68.61 161.34 104 0.15 0.16 0.54
38 SE Nor Sweden ENF 60.09 17.48 234 0.10 0.09 3.84
39 UK Gri UK ENF 56.61 -3.80 15 0.10 0.09 1.48
40 US Aud USA GRA 31.59 -110.51 1244 0.18 0.21 0.62
41 US Bn1 USA ENF 63.92 -145.38 104 0.11 0.09 0.56
42 US Bo1 USA CRO 40.01 -88.29 721 0.16 0.19 NA
43 US Bo2 USA CRO 40.01 -88.29 289 0.16 0.19 NA
44 US Fmf USA ENF 35.14 -111.73 247 0.10 0.12 3.08
45 US FPe USA GRA 48.31 -105.10 775 0.15 0.16 1.05
46 US Fuf USA ENF 35.09 -111.76 231 0.10 0.13 1.72
47 US IB1 USA CRO 41.86 -88.22 349 0.15 0.16 0.76
48 US Ivo USA WET 68.49 -155.75 62 0.18 0.19 NA
49 US MMS USA DBF 39.32 -86.41 639 0.13 0.13 8.75
50 US MOz USA DBF 38.74 -92.20 563 0.12 0.11 2.17
51 US SRM USA WSA 31.82 -110.87 826 0.17 0.16 2.13
52 US WCr USA DBF 45.81 -90.08 487 0.14 0.15 1.82
53 ZA Kru South Africa SAV -25.02 31.50 447 0.15 0.15 1.34



Table 2 – PFT averages of mean albedo (ground observation and satellite retrievals) and geostatistical indexes
of landscape heterogeneity based on Landsat images. The analysis is limited to the 48 sites with available
Landsat7 images. Records are shown in descending order of STscore.

PFT N sites MODIS In-situ MAE RCV RSE RSV RST STscore
EBF 7 0.115 0.109 0.014 17% 20% -3% 48% 5.18
WSA 2 0.167 0.148 0.020 14% 52% 31% -3% 3.77
DBF 7 0.138 0.136 0.013 42% 15% 78% 10% 2.75
ENF 15 0.100 0.095 0.017 24% 23% 44% 17% 2.65
MF 3 0.115 0.126 0.016 41% 39% 41% 56% 2.00
SAV 3 0.158 0.174 0.017 9% 58% 61% -13% 1.30
GRA 5 0.172 0.203 0.033 13% 82% 63% -1% 1.10
CRO 6 0.155 0.164 0.020 11% 85% 7% 24% 0.96
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Figure 6
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Figure 9
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