
AnQL: SPARQLing Up Annotated
RDFS

Nuno Lopes Axel Polleres Umberto Straccia
Antoine Zimmermann

November 09, 2010

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Usecase: Exposing Sensor data as RDF

sensor tags are assigned to people

1 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Usecase: Exposing Sensor data as RDF

sensor tags are assigned to people

tag proximity is registered by base sta-
tions

1 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Usecase: Exposing Sensor data as RDF

base stations are deployed throughout a building

1 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Usecase: Exposing Sensor data as RDF

sensor data readings:

timestamp ip tag ssi

2010-11-09 14:57:51 10.254.2.15 4302 83

2010-11-09 14:57:51 10.254.3.1 4302 83

2010-11-09 14:57:51 10.254.2.6 4302 83

1 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Usecase: Exposing Sensor data as RDF

sensor data readings:

timestamp ip tag ssi

2010-11-09 14:57:51 10.254.2.15 4302 83

2010-11-09 14:57:51 10.254.3.1 4302 83

2010-11-09 14:57:51 10.254.2.6 4302 83

1 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Usecase: Exposing Sensor data as RDF

sensor data readings:

timestamp ip tag ssi

2010-11-09 14:57:51 10.254.2.15 4302 83

2010-11-09 14:57:51 10.254.3.1 4302 83

2010-11-09 14:57:51 10.254.2.6 4302 83

1 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

How to represent sensor data as RDF?

RDF triples

:tag4302 :locatedIn :room311 .

2 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

How to represent sensor data as RDF?

RDF triples

:tag4302 :locatedIn :room311 .

:tag4302 :locatedIn :room311 .

2 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

How to represent sensor data as RDF?

RDF triples

:tag4302 :locatedIn :room311 .

:tag4302 :locatedIn :room311 .

:tag4302 :locatedIn :room310 .

2 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

How to represent sensor data as RDF?

RDF triples

:tag4302 :locatedIn :room311 .

:tag4302 :locatedIn :room311 .

:tag4302 :locatedIn :room310 .
Not enough info!

2 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

How to represent sensor data as RDF?

RDF triples

:tag4302 :locatedIn :room311 .

:tag4302 :locatedIn :room311 .

:tag4302 :locatedIn :room310 .
Not enough info!

Domain vocabulary/ontology

:record1 a :SensorRecord;

:tag :tag4302;

:locatedIn :room311;

:timestamp "2010-11-09 14:57:51" .

2 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

How to represent sensor data as RDF?

RDF triples

:tag4302 :locatedIn :room311 .

:tag4302 :locatedIn :room311 .

:tag4302 :locatedIn :room310 .
Not enough info!

Reification

:record1 rdf:type rdf:Statement

rdf:subject :tag4302;

rdf:predicate :locatedIn ;

rdf:object :room311 ;

:timestamp "2010-11-09 14:57:51" .

2 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

How to represent sensor data as RDF?

RDF triples

:tag4302 :locatedIn :room311 .

:tag4302 :locatedIn :room311 .

:tag4302 :locatedIn :room310 .
Not enough info!

Reification

:record1 rdf:type rdf:Statement

rdf:subject :tag4302;

rdf:predicate :locatedIn ;

rdf:object :room311 ;

:timestamp "2010-11-09 14:57:51" .

No defined
semantics!

2 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Use Annotated RDF(S)!

Annotations refer to a specific domain

Temporal:

:tag4302 :locatedIn :room311 . "2010-11-09 14:57:51"

Fuzzy:

:tag4302 :locatedIn :room311 . "0.9"

Queries:

“When were two people in the same room?”

“Who is closer to room 311?”

3 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Use Annotated RDF(S)!

Annotations refer to a specific domain

Temporal:

:tag4302 :locatedIn :room311 . "2010-11-09 14:57:51"

Fuzzy:

:tag4302 :locatedIn :room311 . "0.9"

Queries:

“When were two people in the same room?”

“Who is closer to room 311?”

3 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Use Annotated RDF(S)!

Annotations refer to a specific domain

Temporal:

:tag4302 :locatedIn :room311 . "2010-11-09 14:57:51"

Fuzzy:

:tag4302 :locatedIn :room311 . "0.9"

Queries:

“When were two people in the same room?”

“Who is closer to room 311?”

3 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Use Annotated RDF(S)!

Annotations refer to a specific domain

Temporal:

:tag4302 :locatedIn :room311 . "2010-11-09 14:57:51"

Fuzzy:

:tag4302 :locatedIn :room311 . "0.9"

Queries:

“When were two people in the same room?”

“Who is closer to room 311?”

3 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Overview

Annotated RDF(S) (Straccia et al. [2010])

Based on previous work on Annotated RDF (Udrea et al.
[2010])

Encompasses other proposals for domain-specific RDF:
Temporal, Fuzzy, Trust, Provenance, . . .

Deductive system as extension of RDFS

AnQL: Annotated SPARQL

Annotation-aware SPARQL

Extension of the semantics presented in Pérez et al. [2009]

Includes features from SPARQL 1.1

subqueries, aggregates and assignment

4 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Overview

Annotated RDF(S) (Straccia et al. [2010])

Based on previous work on Annotated RDF (Udrea et al.
[2010])

Encompasses other proposals for domain-specific RDF:
Temporal, Fuzzy, Trust, Provenance, . . .

Deductive system as extension of RDFS

AnQL: Annotated SPARQL

Annotation-aware SPARQL

Extension of the semantics presented in Pérez et al. [2009]

Includes features from SPARQL 1.1

subqueries, aggregates and assignment

4 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotated RDF(S)

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotation Domain Example

Temporal domain example
:tag4302 :locatedIn :room311 . ["09:25", "11:49"]

:tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a new domain you need to specify:

the representation of the annotations

an order between the elements:

universal (>) and empty (⊥) annotations

: > = [−∞, +∞] ⊥ = []

operator (⊗) for conjunction of annotations
operator (⊕) for combining annotations

["09:25", "11:49"]

5 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotation Domain Example

Temporal domain example
:tag4302 :locatedIn :room311 . ["09:25", "11:49"]

:tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a new domain you need to specify:

the representation of the annotations: ["09:25", "11:49"]

an order between the elements:

universal (>) and empty (⊥) annotations

: > = [−∞, +∞] ⊥ = []

operator (⊗) for conjunction of annotations
operator (⊕) for combining annotations

["09:25", "11:49"]

5 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotation Domain Example

Temporal domain example
:tag4302 :locatedIn :room311 . ["09:25", "11:49"]

:tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a new domain you need to specify:

the representation of the annotations: ["09:25", "11:49"]

an order between the elements:

universal (>) and empty (⊥) annotations

: > = [−∞, +∞] ⊥ = []

operator (⊗) for conjunction of annotations
operator (⊕) for combining annotations

["09:25", "11:49"]

5 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotation Domain Example

Temporal domain example
:tag4302 :locatedIn :room311 . ["09:25", "11:49"]

:tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a new domain you need to specify:

the representation of the annotations: ["09:25", "11:49"]

an order between the elements:

universal (>) and empty (⊥) annotations

: > = [−∞, +∞] ⊥ = []

operator (⊗) for conjunction of annotations
operator (⊕) for combining annotations

["09:25", "11:49"]

5 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotation Domain Example

Temporal domain example
:tag4302 :locatedIn :room311 . ["09:25", "11:49"]

:tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a new domain you need to specify:

the representation of the annotations: ["09:25", "11:49"]

an order between the elements:

universal (>) and empty (⊥) annotations: > = [−∞, +∞] ⊥ = []

operator (⊗) for conjunction of annotations
operator (⊕) for combining annotations

["09:25", "11:49"]

5 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotation Domain Example

Temporal domain example
:tag4302 :locatedIn :room311 . ["09:25", "11:49"]

:tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a new domain you need to specify:

the representation of the annotations: ["09:25", "11:49"]

an order between the elements:

universal (>) and empty (⊥) annotations: > = [−∞, +∞] ⊥ = []

operator (⊗) for conjunction of annotations

operator (⊕) for combining annotations

["09:25", "11:49"]

5 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotation Domain Example

Temporal domain example
:tag4302 :locatedIn :room311 . ["09:25", "11:49"]

:tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a new domain you need to specify:

the representation of the annotations: ["09:25", "11:49"]

an order between the elements:

universal (>) and empty (⊥) annotations: > = [−∞, +∞] ⊥ = []

operator (⊗) for conjunction of annotations: ∩

operator (⊕) for combining annotations

["09:25","11:49"] ⊗ ["10:35", "12:57"] = ["10:35", "11:49"]

5 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotation Domain Example

Temporal domain example
:tag4302 :locatedIn :room311 . ["09:25", "11:49"]

:tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a new domain you need to specify:

the representation of the annotations: ["09:25", "11:49"]

an order between the elements:

universal (>) and empty (⊥) annotations: > = [−∞, +∞] ⊥ = []

operator (⊗) for conjunction of annotations: ∩
operator (⊕) for combining annotations

["09:25", "11:49"]

5 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotation Domain Example

Temporal domain example
:tag4302 :locatedIn :room311 . ["09:25", "11:49"]

:tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a new domain you need to specify:

the representation of the annotations: ["09:25", "11:49"]

an order between the elements:

universal (>) and empty (⊥) annotations: > = [−∞, +∞] ⊥ = []

operator (⊗) for conjunction of annotations: ∩
operator (⊕) for combining annotations: ∪

["09:25","11:49"] ⊕ ["10:35", "12:57"] = ["09:25", "12:57"]

5 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotation Domain Example

Temporal domain example
:tag4302 :locatedIn :room311 . ["09:25", "11:49"]

:tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a new domain you need to specify:

the representation of the annotations: ["09:25", "11:49"]

an order between the elements:

universal (>) and empty (⊥) annotations: > = [−∞, +∞] ⊥ = []

operator (⊗) for conjunction of annotations: ∩
operator (⊕) for combining annotations: ∪

["09:25","11:49"] ⊕ ["14:35", "15:57"] = ["09:25","11:49"],

["14:35", "15:57"]

5 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotation Domain Example

Temporal domain example
:tag4302 :locatedIn :room311 . {["09:25", "11:49"]}

:tag4302 :locatedIn :room311 . {["10:35", "12:57"]}

To define a new domain you need to specify:

the representation of the annotations: {["09:25", "11:49"]}

an order between the elements:

universal (>) and empty (⊥) annotations: > = {[−∞, +∞]} ⊥ = {[]}

operator (⊗) for conjunction of annotations: ∩
operator (⊕) for combining annotations: ∪

["09:25","11:49"] ⊕ ["14:35", "15:57"] = {["09:25","11:49"],
["14:35", "15:57"]}

5 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotation Domain

Consider a non-empty set L: annotation values

An annotation domain is an idempotent, commutative semi-ring

D = 〈L,⊕,⊗,⊥,>〉
where ⊕ is >-annihilating (Buneman and Kostylev [2010]).

Any idempotent semi-ring defines a partial order � over L as:

λ1 � λ2 iff λ1 ⊕ λ2 = λ2

For λ, λi ∈ L
1 ⊕ and ⊗ are commutative and associative;
2 ⊕ is idempotent;
3 ⊥⊕ λ = λ, >⊕ λ = >, >⊗ λ = λ and ⊥⊗ λ = ⊥;
4 ⊗ is distributive over ⊕, i.e.
λ1 ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3);

6 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotation Domain

Consider a non-empty set L: annotation values

An annotation domain is an idempotent, commutative semi-ring

D = 〈L,⊕,⊗,⊥,>〉
where ⊕ is >-annihilating (Buneman and Kostylev [2010]).

Any idempotent semi-ring defines a partial order � over L as:

λ1 � λ2 iff λ1 ⊕ λ2 = λ2

For λ, λi ∈ L
1 ⊕ and ⊗ are commutative and associative;
2 ⊕ is idempotent;
3 ⊥⊕ λ = λ, >⊕ λ = >, >⊗ λ = λ and ⊥⊗ λ = ⊥;
4 ⊗ is distributive over ⊕, i.e.
λ1 ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3);

6 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotation Domain

Consider a non-empty set L: annotation values

An annotation domain is an idempotent, commutative semi-ring

D = 〈L,⊕,⊗,⊥,>〉
where ⊕ is >-annihilating (Buneman and Kostylev [2010]).

Any idempotent semi-ring defines a partial order � over L as:

λ1 � λ2 iff λ1 ⊕ λ2 = λ2

For λ, λi ∈ L
1 ⊕ and ⊗ are commutative and associative;
2 ⊕ is idempotent;
3 ⊥⊕ λ = λ, >⊕ λ = >, >⊗ λ = λ and ⊥⊗ λ = ⊥;
4 ⊗ is distributive over ⊕, i.e.
λ1 ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3);

6 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotation Domain

Consider a non-empty set L: annotation values

An annotation domain is an idempotent, commutative semi-ring

D = 〈L,⊕,⊗,⊥,>〉
where ⊕ is >-annihilating (Buneman and Kostylev [2010]).

Any idempotent semi-ring defines a partial order � over L as:

λ1 � λ2 iff λ1 ⊕ λ2 = λ2

For λ, λi ∈ L
1 ⊕ and ⊗ are commutative and associative;
2 ⊕ is idempotent;
3 ⊥⊕ λ = λ, >⊕ λ = >, >⊗ λ = λ and ⊥⊗ λ = ⊥;
4 ⊗ is distributive over ⊕, i.e.
λ1 ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3);

6 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotated RDF(S)

Consider the alphabets U (URI references), B (blank nodes or variables)

and L (Literals).

Annotated triple and graph

An “extended” RDF triple is τ = (s, p, o) ∈ UBL×U×UBL.

An annotated triple is τ : λ, τ a triple, λ ∈ L an annotation value.
An annotated graph G is a finite set of annotated triples.

ρdf vocabulary

(p, sp, q) property p is a subproperty of property q
(c , sc, d) class c is a subclass of class d

(a, type, b) a is of type b
(p, dom, c) the domain of property p is c

(p, range, c) the range of property p is c

7 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotated RDF(S)

Consider the alphabets U (URI references), B (blank nodes or variables)

and L (Literals).

Annotated triple and graph

An “extended” RDF triple is τ = (s, p, o) ∈ UBL×U×UBL.
An annotated triple is τ : λ, τ a triple, λ ∈ L an annotation value.

An annotated graph G is a finite set of annotated triples.

ρdf vocabulary

(p, sp, q) property p is a subproperty of property q
(c , sc, d) class c is a subclass of class d

(a, type, b) a is of type b
(p, dom, c) the domain of property p is c

(p, range, c) the range of property p is c

7 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotated RDF(S)

Consider the alphabets U (URI references), B (blank nodes or variables)

and L (Literals).

Annotated triple and graph

An “extended” RDF triple is τ = (s, p, o) ∈ UBL×U×UBL.
An annotated triple is τ : λ, τ a triple, λ ∈ L an annotation value.
An annotated graph G is a finite set of annotated triples.

ρdf vocabulary

(p, sp, q) property p is a subproperty of property q
(c , sc, d) class c is a subclass of class d

(a, type, b) a is of type b
(p, dom, c) the domain of property p is c

(p, range, c) the range of property p is c

7 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotated RDF(S)

Consider the alphabets U (URI references), B (blank nodes or variables)

and L (Literals).

Annotated triple and graph

An “extended” RDF triple is τ = (s, p, o) ∈ UBL×U×UBL.
An annotated triple is τ : λ, τ a triple, λ ∈ L an annotation value.
An annotated graph G is a finite set of annotated triples.

ρdf vocabulary

(p, sp, q) property p is a subproperty of property q
(c , sc, d) class c is a subclass of class d

(a, type, b) a is of type b
(p, dom, c) the domain of property p is c

(p, range, c) the range of property p is c

7 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotated RDF(S) Semantics

Interpretation

An interpretation I assigns to a triple τ an element λ ∈ L

Models

An interpretation I is a model of G if it assigns to the triples of G
a value that is greater or equal (i.e., �) to the annotation and
satisfies the schema axioms constraints (sp, sc, type, dom, range).

Graph entailment

G entails H under ρdf (G |= H) iff every model under ρdf of G is
also a model under ρdf of H.

8 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotated RDF(S) Semantics

Interpretation

An interpretation I assigns to a triple τ an element λ ∈ L

Models

An interpretation I is a model of G if it assigns to the triples of G
a value that is greater or equal (i.e., �) to the annotation and
satisfies the schema axioms constraints (sp, sc, type, dom, range).

Graph entailment

G entails H under ρdf (G |= H) iff every model under ρdf of G is
also a model under ρdf of H.

8 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotated RDF(S) Semantics

Interpretation

An interpretation I assigns to a triple τ an element λ ∈ L

Models

An interpretation I is a model of G if it assigns to the triples of G
a value that is greater or equal (i.e., �) to the annotation and
satisfies the schema axioms constraints (sp, sc, type, dom, range).

Graph entailment

G entails H under ρdf (G |= H) iff every model under ρdf of G is
also a model under ρdf of H.

8 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotated RDF(S) Inference example

Inference rules are independent of the annotation domain

RDFS “sp” rule:

?Prop1 sp ?Prop2 .

?x ?Prop1 ?y .

⇒ ?x ?Prop2 ?y .

:locatedIn sp :basedNear .

:tag4302 :locatedIn :room311 .

⇒ :tag4302 :basedNear :room311 .

Extra rule to group annotations triples (⊕):

:tag4302 :locatedIn :room311 . ["14:25", "14:57"]

:tag4302 :locatedIn :room311 . ["14:43", "15:20"]

9 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotated RDF(S) Inference example

Inference rules are independent of the annotation domain

RDFS “sp” rule:

?Prop1 sp ?Prop2 .

?x ?Prop1 ?y .

⇒ ?x ?Prop2 ?y .

:locatedIn sp :basedNear .

:tag4302 :locatedIn :room311 .

⇒ :tag4302 :basedNear :room311 .

Extra rule to group annotations triples (⊕):

:tag4302 :locatedIn :room311 . ["14:25", "14:57"]

:tag4302 :locatedIn :room311 . ["14:43", "15:20"]

9 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotated RDF(S) Inference example

Inference rules are independent of the annotation domain

Annotated RDFS “sp” rule:

?Prop1 sp ?Prop2 . ?v1
?x ?Prop1 ?y . ?v2

⇒ ?x ?Prop2 ?y . ?v1 ⊗ ?v2

:locatedIn sp :basedNear . [−∞, +∞]

:tag4302 :locatedIn :room311 . ["14:25", "14:57"]

⇒ :tag4302 :basedNear :room311 . ["14:25", "14:57"]

Extra rule to group annotations triples (⊕):

:tag4302 :locatedIn :room311 . ["14:25", "14:57"]

:tag4302 :locatedIn :room311 . ["14:43", "15:20"]

9 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotated RDF(S) Inference example

Inference rules are independent of the annotation domain

Annotated RDFS “sp” rule:

?Prop1 sp ?Prop2 . ?v1
?x ?Prop1 ?y . ?v2

⇒ ?x ?Prop2 ?y . ?v1 ⊗ ?v2

:locatedIn sp :basedNear . [−∞, +∞]

:tag4302 :locatedIn :room311 . ["14:25", "14:57"]

⇒ :tag4302 :basedNear :room311 . ["14:25", "14:57"]

Extra rule to group annotations triples (⊕):

:tag4302 :locatedIn :room311 . ["14:25", "14:57"]

:tag4302 :locatedIn :room311 . ["14:43", "15:20"]

9 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotated RDF(S) Inference example

Inference rules are independent of the annotation domain

Annotated RDFS “sp” rule:

?Prop1 sp ?Prop2 . ?v1
?x ?Prop1 ?y . ?v2

⇒ ?x ?Prop2 ?y . ?v1 ⊗ ?v2

:locatedIn sp :basedNear . [−∞, +∞]

:tag4302 :locatedIn :room311 . ["14:25", "14:57"]

⇒ :tag4302 :basedNear :room311 . ["14:25", "14:57"]

Extra rule to group annotations triples (⊕):

:tag4302 :locatedIn :room311 . ["14:25", "14:57"]

:tag4302 :locatedIn :room311 . ["14:43", "15:20"]

⇒ :tag4302 :locatedIn :room311 . ["14:25", "15:20"]

9 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Annotated RDF(S) Inference example

Inference rules are independent of the annotation domain

Annotated RDFS “sp” rule:

?Prop1 sp ?Prop2 . ?v1
?x ?Prop1 ?y . ?v2

⇒ ?x ?Prop2 ?y . ?v1 ⊗ ?v2

:locatedIn sp :basedNear . [−∞, +∞]

:tag4302 :locatedIn :room311 . ["14:25", "14:57"]

⇒ :tag4302 :basedNear :room311 . ["14:25", "14:57"]

Extra rule to group annotations triples (⊕):

:tag4302 :locatedIn :room311 . ["14:25", "14:57"]

:tag4302 :locatedIn :room311 . ["14:43", "15:20"]

⇒ :tag4302 :locatedIn :room311 . ["14:25", "15:20"]

9 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Integration with RDF

Transparent integration of annotated and classical RDF

:nuno foaf:name "Nuno Lopes" .

:tag4302 :assignedTo :nuno .

:tag4302 :locatedIn :room311 . ["14:25", "14:57"]

Possible approaches:

use > as annotation

triple is valid at a time interval common throughout the graph

requires blank nodes in annotations

triple is valid until “now” (Gutiérrez et al. [2005])

represents current time

10 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Integration with RDF

Transparent integration of annotated and classical RDF

:nuno foaf:name "Nuno Lopes" . [−∞, +∞]
:tag4302 :assignedTo :nuno . [−∞, +∞]
:tag4302 :locatedIn :room311 . ["14:25", "14:57"]

Possible approaches:

use > as annotation

triple is valid at a time interval common throughout the graph

requires blank nodes in annotations

triple is valid until “now” (Gutiérrez et al. [2005])

represents current time

10 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Integration with RDF

Transparent integration of annotated and classical RDF

:nuno foaf:name "Nuno Lopes" . [:a, :b]

:tag4302 :assignedTo :nuno . [:a, :b]

:tag4302 :locatedIn :room311 . ["14:25", "14:57"]

Possible approaches:

use > as annotation

triple is valid at a time interval common throughout the graph

requires blank nodes in annotations

triple is valid until “now” (Gutiérrez et al. [2005])

represents current time

10 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Integration with RDF

Transparent integration of annotated and classical RDF

:nuno foaf:name "Nuno Lopes" . [−∞, now]

:tag4302 :assignedTo :nuno . [−∞, now]

:tag4302 :locatedIn :room311 . ["14:25", "14:57"]

Possible approaches:

use > as annotation

triple is valid at a time interval common throughout the graph

requires blank nodes in annotations

triple is valid until “now” (Gutiérrez et al. [2005])

represents current time

10 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Integration with RDF

Transparent integration of annotated and classical RDF

:nuno foaf:name "Nuno Lopes" . [−∞, +∞]
:tag4302 :assignedTo :nuno . [−∞, +∞]
:tag4302 :locatedIn :room311 . ["14:25", "14:57"]

Possible approaches:

use > as annotation “compatible with classical RDF”

triple is valid at a time interval common throughout the graph

requires blank nodes in annotations

triple is valid until “now” (Gutiérrez et al. [2005])

represents current time

10 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

AnQL: Annotated SPARQL

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

AnQL: Annotated SPARQL

Consider the alphabets U, B, L as before

, and V as the alphabet
for Annotation variables.

SPARQL

τ = (s, p, o) where s, o ∈ UBL and p ∈ UB is a triple pattern.

τ : λ is an annotated triple pattern if τ is a triple pattern and
λ ∈ L (annotation term)

Basic Annotated Patterns (BAP) are sets of annotated triple
patterns

triple pattern example
?tag :assignedTo :nuno .

11 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

AnQL: Annotated SPARQL

Consider the alphabets U, B, L as before

, and V as the alphabet
for Annotation variables.

Annotated SPARQL

τ = (s, p, o) where s, o ∈ UBL and p ∈ UB is a triple pattern.

τ : λ is an annotated triple pattern if τ is a triple pattern and
λ ∈ L (annotation term)

Basic Annotated Patterns (BAP) are sets of annotated triple
patterns

annotated triple pattern example

?tag :assignedTo :nuno . [−∞, +∞]

11 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

AnQL: Annotated SPARQL

Consider the alphabets U, B, L as before, and V as the alphabet
for Annotation variables.

Annotated SPARQL

τ = (s, p, o) where s, o ∈ UBL and p ∈ UB is a triple pattern.

τ : λ is an annotated triple pattern if τ is a triple pattern and
λ ∈ L (annotation term) or λ ∈ V (annotation variable)

Basic Annotated Patterns (BAP) are sets of annotated triple
patterns

annotated triple pattern example

?tag :assignedTo :nuno .

?tag :locatedIn ?room . ?l

11 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

AnQL: Annotated SPARQL

Consider the alphabets U, B, L as before, and V as the alphabet
for Annotation variables.

Annotated SPARQL

τ = (s, p, o) where s, o ∈ UBL and p ∈ UB is a triple pattern.

τ : λ is an annotated triple pattern if τ is a triple pattern and
λ ∈ L (annotation term) or λ ∈ V (annotation variable)

Basic Annotated Patterns (BAP) are sets of annotated triple
patterns

BAP example

{ ?tag :assignedTo :nuno . [−∞, +∞]

?tag :locatedIn ?room . ?l }

11 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

AnQL definitions

An annotated graph pattern (AGP) is:

1 any BAP
2 P, P ′ are annotated graph patterns, R a filter expression:

(P AND P ′)
(P OPTIONAL P ′)
(P UNION P ′)
(P FILTER R)

Filter expressions

any SPARQL filter (=,∨,∧, isBOUND, ...)

Domain � for comparing annotations

Domain specific built-in functions

12 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

AnQL definitions

An annotated graph pattern (AGP) is:

1 any BAP
2 P, P ′ are annotated graph patterns, R a filter expression:

(P AND P ′)
(P OPTIONAL P ′)
(P UNION P ′)
(P FILTER R)

Filter expressions

any SPARQL filter (=,∨,∧, isBOUND, ...)

Domain � for comparing annotations

Domain specific built-in functions

12 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Compatible substitutions

SPARQL
SELECT *

WHERE { ?tag :assignedTo :nuno .

?tag :locatedIn ?room . }

Substitutions
θ1 = {?tag → :tag4302}
θ2 = {?tag → :tag4304}
µ1 = {?tag → :tag4302, ?room→ :room311}
µ2 = {?tag → :tag4302, ?room→ :room312}

Union of compatible substitutions

θ1 ∪ µ1 = {?tag → :tag4302, ?room→ :room311}
θ1 ∪ µ2 = {?tag → :tag4302, ?room→ :room312}

13 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Compatible substitutions

SPARQL
SELECT *

WHERE { ?tag :assignedTo :nuno .

?tag :locatedIn ?room . }

Substitutions
θ1 = {?tag → :tag4302}
θ2 = {?tag → :tag4304}
µ1 = {?tag → :tag4302, ?room→ :room311}
µ2 = {?tag → :tag4302, ?room→ :room312}

Union of compatible substitutions

θ1 ∪ µ1 = {?tag → :tag4302, ?room→ :room311}
θ1 ∪ µ2 = {?tag → :tag4302, ?room→ :room312}

13 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Compatible substitutions

AnQL
SELECT *

WHERE { ?tag :assignedTo :nuno . ?l

?tag :locatedIn ?room . ?l }

Substitutions
θ1 = {?tag → :tag4302, ?l → [”13:00”, ”15:00”]}
θ2 = {?tag → :tag4304, ?l → [”12:00”, ”13:00”]}
µ1 = {?tag → :tag4302, ?room→ :room311, ?l → [”14:00”, ”16:00”]}
µ2 = {?tag → :tag4302, ?room→ :room312, ?l → [”16:00”, ”18:00”]}

Union of compatible substitutions

θ1 ∪ µ1 = {?tag → :tag4302, ?room→ :room311, ?l → [”14:00”, ”15:00”]}

13 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

AnQL query evaluation

for a BAP P a substitution is a mapping θ : var(P)→ term(G).

θ(P) represents the triples obtained by replacing the variables in P
according to θ.

G |= θ(P) denotes θ(P) is entailed by G .

[[P]]G = {θ | dom(θ) = var(P) and G |= θ(P)}

Extension of the semantics presented in Pérez et al. [2009]

compatible substitutions (extension)

Two substitutions θ1, θ2 are compatible if the value for all shared
annotation variables v is not “disjoint”: θ1(v)⊗ θ2(v) 6= ⊥

The union of compatible substitutions θ1, θ2, the value of a shared
annotation variable v is: θ1(v)⊗ θ2(v)

14 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

AnQL query evaluation

for a BAP P a substitution is a mapping θ : var(P)→ term(G).

θ(P) represents the triples obtained by replacing the variables in P
according to θ.

G |= θ(P) denotes θ(P) is entailed by G .

[[P]]G = {θ | dom(θ) = var(P) and G |= θ(P)}

Extension of the semantics presented in Pérez et al. [2009]

compatible substitutions (extension)

Two substitutions θ1, θ2 are compatible if the value for all shared
annotation variables v is not “disjoint”: θ1(v)⊗ θ2(v) 6= ⊥

The union of compatible substitutions θ1, θ2, the value of a shared
annotation variable v is: θ1(v)⊗ θ2(v)

14 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

OPTIONALs

“When was :nuno located in room 311 optionally with another person.”

SELECT ?l ?person

WHERE { ?tag1 :assignedTo :nuno .

?tag1 :locatedIn :room311 . ?l

OPTIONAL { ?tag2 :assignedTo ?person .

?tag2 :locatedIn :room311 . ?l } }

Sample input:

:tag4302 :assignedTo :nuno .
:tag4302 :locatedIn :room311 . [”13:48”, ”14:34”]
:tag4304 :assignedTo :axel
:tag4304 :locatedIn :room311 . [”14:26”, ”15:17”]
:tag4301 :assignedTo :antoine
:tag4301 :locatedIn :room311 . [”13:31”, ”13:53”]

Answers:
θ1 = {?l → [”13:48”, ”14:34”]}
θ2 = {?l → [”14:26”, ”14:34”], ?person→ :axel}
θ3 = {?l → [”13:48”, ”13:53”], ?person→ :antoine}

OPTIONAL provide more information maybe restricting annotation values

15 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

OPTIONALs

“When was :nuno located in room 311 optionally with another person.”

SELECT ?l ?person

WHERE { ?tag1 :assignedTo :nuno .

?tag1 :locatedIn :room311 . ?l

OPTIONAL { ?tag2 :assignedTo ?person .

?tag2 :locatedIn :room311 . ?l } }

Sample input:

:tag4302 :assignedTo :nuno .
:tag4302 :locatedIn :room311 . [”13:48”, ”14:34”]
:tag4304 :assignedTo :axel
:tag4304 :locatedIn :room311 . [”14:26”, ”15:17”]
:tag4301 :assignedTo :antoine
:tag4301 :locatedIn :room311 . [”13:31”, ”13:53”]

Answers:
θ1 = {?l → [”13:48”, ”14:34”]}

θ2 = {?l → [”14:26”, ”14:34”], ?person→ :axel}
θ3 = {?l → [”13:48”, ”13:53”], ?person→ :antoine}

OPTIONAL provide more information maybe restricting annotation values

15 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

OPTIONALs

“When was :nuno located in room 311 optionally with another person.”

SELECT ?l ?person

WHERE { ?tag1 :assignedTo :nuno .

?tag1 :locatedIn :room311 . ?l

OPTIONAL { ?tag2 :assignedTo ?person .

?tag2 :locatedIn :room311 . ?l } }

Sample input:

:tag4302 :assignedTo :nuno .
:tag4302 :locatedIn :room311 . [”13:48”, ”14:34”]
:tag4304 :assignedTo :axel
:tag4304 :locatedIn :room311 . [”14:26”, ”15:17”]
:tag4301 :assignedTo :antoine
:tag4301 :locatedIn :room311 . [”13:31”, ”13:53”]

Answers:
θ1 = {?l → [”13:48”, ”14:34”]}
θ2 = {?l → [”14:26”, ”14:34”], ?person→ :axel}

θ3 = {?l → [”13:48”, ”13:53”], ?person→ :antoine}

OPTIONAL provide more information maybe restricting annotation values

15 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

OPTIONALs

“When was :nuno located in room 311 optionally with another person.”

SELECT ?l ?person

WHERE { ?tag1 :assignedTo :nuno .

?tag1 :locatedIn :room311 . ?l

OPTIONAL { ?tag2 :assignedTo ?person .

?tag2 :locatedIn :room311 . ?l } }

Sample input:

:tag4302 :assignedTo :nuno .
:tag4302 :locatedIn :room311 . [”13:48”, ”14:34”]
:tag4304 :assignedTo :axel
:tag4304 :locatedIn :room311 . [”14:26”, ”15:17”]
:tag4301 :assignedTo :antoine
:tag4301 :locatedIn :room311 . [”13:31”, ”13:53”]

Answers:
θ1 = {?l → [”13:48”, ”14:34”]}
θ2 = {?l → [”14:26”, ”14:34”], ?person→ :axel}
θ3 = {?l → [”13:48”, ”13:53”], ?person→ :antoine}

OPTIONAL provide more information maybe restricting annotation values

15 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

OPTIONALs

“When was :nuno located in room 311 optionally with another person.”

SELECT ?l ?person

WHERE { ?tag1 :assignedTo :nuno .

?tag1 :locatedIn :room311 . ?l

OPTIONAL { ?tag2 :assignedTo ?person .

?tag2 :locatedIn :room311 . ?l } }

Sample input:

:tag4302 :assignedTo :nuno .
:tag4302 :locatedIn :room311 . [”13:48”, ”14:34”]
:tag4304 :assignedTo :axel
:tag4304 :locatedIn :room311 . [”14:26”, ”15:17”]
:tag4301 :assignedTo :antoine
:tag4301 :locatedIn :room311 . [”13:31”, ”13:53”]

Answers:
θ1 = {?l → [”13:48”, ”14:34”]}
θ2 = {?l → [”14:26”, ”14:34”], ?person→ :axel}
θ3 = {?l → [”13:48”, ”13:53”], ?person→ :antoine}

OPTIONAL provide more information maybe restricting annotation values

15 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Further extensions

Features under discussion in SPARQL 1.1

“During how long was a tag located in a room?”

Variable assignment & domain built-in functions
SELECT ?tag ?room ?dur

WHERE { ?tag :locatedIn ?room . ?l

ASSIGN length(?l) AS ?dur }

“What was the average length a tag was located in a room?”

Aggregators
SELECT ?tag ?avgL

WHERE { ?tag :locatedIn ?room . ?l

GROUPBY(?tag) AVG(length(?l)) AS ?avgL }

16 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Further extensions

Features under discussion in SPARQL 1.1

“During how long was a tag located in a room?”

Variable assignment & domain built-in functions
SELECT ?tag ?room ?dur

WHERE { ?tag :locatedIn ?room . ?l

ASSIGN length(?l) AS ?dur }

“What was the average length a tag was located in a room?”

Aggregators
SELECT ?tag ?avgL

WHERE { ?tag :locatedIn ?room . ?l

GROUPBY(?tag) AVG(length(?l)) AS ?avgL }

16 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Further extensions

Features under discussion in SPARQL 1.1

“During how long was a tag located in a room?”

Variable assignment & domain built-in functions
SELECT ?tag ?room ?dur

WHERE { ?tag :locatedIn ?room . ?l

ASSIGN length(?l) AS ?dur }

“What was the average length a tag was located in a room?”

Aggregators
SELECT ?tag ?avgL

WHERE { ?tag :locatedIn ?room . ?l

GROUPBY(?tag) AVG(length(?l)) AS ?avgL }

16 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Uniform Evaluation of Queries

Uniform Evaluation of annotated and classical triple patterns

SELECT ?l ?person

WHERE { ?tag1 :assignedTo :nuno .

?tag1 :locatedIn :room311 . ?l

OPTIONAL { ?tag2 :assignedTo ?person .

?tag2 :locatedIn :room311 . ?l } }

Possible approaches:

1 adding the same annotation variable for each non-annotated
triple

2 adding a different annotation variable for each non-annotated
triple

3 adding the > element from the domain

17 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Uniform Evaluation of Queries

Uniform Evaluation of annotated and classical triple patterns

SELECT ?l ?person

WHERE { ?tag1 :assignedTo :nuno . ?g1

?tag1 :locatedIn :room311 . ?l

OPTIONAL { ?tag2 :assignedTo ?person . ?g1

?tag2 :locatedIn :room311 . ?l } }

Possible approaches:

1 adding the same annotation variable for each non-annotated
triple

2 adding a different annotation variable for each non-annotated
triple

3 adding the > element from the domain

17 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Uniform Evaluation of Queries

Uniform Evaluation of annotated and classical triple patterns

SELECT ?l ?person

WHERE { ?tag1 :assignedTo :nuno . ?g1

?tag1 :locatedIn :room311 . ?l

OPTIONAL { ?tag2 :assignedTo ?person . ?g2

?tag2 :locatedIn :room311 . ?l } }

Possible approaches:

1 adding the same annotation variable for each non-annotated
triple

2 adding a different annotation variable for each non-annotated
triple

3 adding the > element from the domain

17 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Uniform Evaluation of Queries

Uniform Evaluation of annotated and classical triple patterns

SELECT ?l ?person

WHERE { ?tag1 :assignedTo :nuno . [−∞, +∞]
?tag1 :locatedIn :room311 . ?l

OPTIONAL { ?tag2 :assignedTo ?person . [−∞, +∞]
?tag2 :locatedIn :room311 . ?l } }

Possible approaches:

1 adding the same annotation variable for each non-annotated
triple

2 adding a different annotation variable for each non-annotated
triple

3 adding the > element from the domain

17 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Implementation

Prototype implementation of Annotated RDF(S) and AnQL

Based on SWI-Prolog’s semweb library

Modular system: can use different domains and rulesets

More info and downloads available at:
http://anql.deri.org

18 / 19

http://anql.deri.org

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Conclusions

Presented

General framework for annotating RDF triples.

Deductive system as extension of RDFS

SPARQL extension for Annotated RDF(S)

Includes the most salient SPARQL 1.1 features

Future work

Refine combination of domains

Uniform evaluation of queries

Define interchangeable format for representing annotations

Thank you! Questions?

19 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Conclusions

Presented

General framework for annotating RDF triples.

Deductive system as extension of RDFS

SPARQL extension for Annotated RDF(S)

Includes the most salient SPARQL 1.1 features

Future work

Refine combination of domains

Uniform evaluation of queries

Define interchangeable format for representing annotations

Thank you! Questions?

19 / 19

Overview Annotated RDF(S) Annotated SPARQL Implementation Conclusions

Conclusions

Presented

General framework for annotating RDF triples.

Deductive system as extension of RDFS

SPARQL extension for Annotated RDF(S)

Includes the most salient SPARQL 1.1 features

Future work

Refine combination of domains

Uniform evaluation of queries

Define interchangeable format for representing annotations

Thank you! Questions?

19 / 19

AnQL evaluation References

Extra Slides

AnQL evaluation References

AnQL query evaluation

Extension of the semantics presented in Pérez et al. [2009]

for a BAP P a substitution is a mapping θ : var(P)→ term(G).

θ(P) represents the triples obtained by replacing the variables in P
according to θ. dom(θ) are the variables for which θ is defined.

G |= θ(P) denotes θ(P) is entailed by G .

two substitutions θ1 and θ2 are ⊗-compatible iff:

1 The mappings agree on all non-annotated shared variables:
θ1(x) = θ2(x), x non-annot var ∈ dom(θ1) ∩ dom(θ2);

2 All the shared annotation variables must not be “disjoint”:
θ1(λ)⊗ θ2(λ) 6= ⊥, λ annot var ∈ dom(θ1) ∩ dom(θ2).

θ1, θ2 ⊗-compatible, θ1 ⊗ θ2 = θ1 ∪ θ2, except any annotation
variable λ ∈ dom(θ1) ∩ dom(θ2), (θ1 ⊗ θ2)(λ) = θ1(λ)⊗ θ2(λ).

20 / 19

AnQL evaluation References

AnQL query evaluation

Extension of the semantics presented in Pérez et al. [2009]

for a BAP P a substitution is a mapping θ : var(P)→ term(G).

θ(P) represents the triples obtained by replacing the variables in P
according to θ. dom(θ) are the variables for which θ is defined.

G |= θ(P) denotes θ(P) is entailed by G .

two substitutions θ1 and θ2 are ⊗-compatible iff:

1 The mappings agree on all non-annotated shared variables:
θ1(x) = θ2(x), x non-annot var ∈ dom(θ1) ∩ dom(θ2);

2 All the shared annotation variables must not be “disjoint”:
θ1(λ)⊗ θ2(λ) 6= ⊥, λ annot var ∈ dom(θ1) ∩ dom(θ2).

θ1, θ2 ⊗-compatible, θ1 ⊗ θ2 = θ1 ∪ θ2, except any annotation
variable λ ∈ dom(θ1) ∩ dom(θ2), (θ1 ⊗ θ2)(λ) = θ1(λ)⊗ θ2(λ).

20 / 19

AnQL evaluation References

AnQL query evaluation

Extension of the semantics presented in Pérez et al. [2009]

for a BAP P a substitution is a mapping θ : var(P)→ term(G).

θ(P) represents the triples obtained by replacing the variables in P
according to θ. dom(θ) are the variables for which θ is defined.

G |= θ(P) denotes θ(P) is entailed by G .

two substitutions θ1 and θ2 are ⊗-compatible iff:

1 The mappings agree on all non-annotated shared variables:
θ1(x) = θ2(x), x non-annot var ∈ dom(θ1) ∩ dom(θ2);

2 All the shared annotation variables must not be “disjoint”:
θ1(λ)⊗ θ2(λ) 6= ⊥, λ annot var ∈ dom(θ1) ∩ dom(θ2).

θ1, θ2 ⊗-compatible, θ1 ⊗ θ2 = θ1 ∪ θ2, except any annotation
variable λ ∈ dom(θ1) ∩ dom(θ2), (θ1 ⊗ θ2)(λ) = θ1(λ)⊗ θ2(λ).

20 / 19

AnQL evaluation References

AnQL query evaluation

Extension of the semantics presented in Pérez et al. [2009]

for a BAP P a substitution is a mapping θ : var(P)→ term(G).

θ(P) represents the triples obtained by replacing the variables in P
according to θ. dom(θ) are the variables for which θ is defined.

G |= θ(P) denotes θ(P) is entailed by G .

two substitutions θ1 and θ2 are ⊗-compatible iff:

1 The mappings agree on all non-annotated shared variables:
θ1(x) = θ2(x), x non-annot var ∈ dom(θ1) ∩ dom(θ2);

2 All the shared annotation variables must not be “disjoint”:
θ1(λ)⊗ θ2(λ) 6= ⊥, λ annot var ∈ dom(θ1) ∩ dom(θ2).

θ1, θ2 ⊗-compatible, θ1 ⊗ θ2 = θ1 ∪ θ2, except any annotation
variable λ ∈ dom(θ1) ∩ dom(θ2), (θ1 ⊗ θ2)(λ) = θ1(λ)⊗ θ2(λ).

20 / 19

AnQL evaluation References

AnQL query evaluation

Extension of the semantics presented in Pérez et al. [2009]

for a BAP P a substitution is a mapping θ : var(P)→ term(G).

θ(P) represents the triples obtained by replacing the variables in P
according to θ. dom(θ) are the variables for which θ is defined.

G |= θ(P) denotes θ(P) is entailed by G .

two substitutions θ1 and θ2 are ⊗-compatible iff:

1 The mappings agree on all non-annotated shared variables:
θ1(x) = θ2(x), x non-annot var ∈ dom(θ1) ∩ dom(θ2);

2 All the shared annotation variables must not be “disjoint”:
θ1(λ)⊗ θ2(λ) 6= ⊥, λ annot var ∈ dom(θ1) ∩ dom(θ2).

θ1, θ2 ⊗-compatible, θ1 ⊗ θ2 = θ1 ∪ θ2, except any annotation
variable λ ∈ dom(θ1) ∩ dom(θ2), (θ1 ⊗ θ2)(λ) = θ1(λ)⊗ θ2(λ).

20 / 19

AnQL evaluation References

AnQL query evaluation

Extension of the semantics presented in Pérez et al. [2009]

for a BAP P a substitution is a mapping θ : var(P)→ term(G).

θ(P) represents the triples obtained by replacing the variables in P
according to θ. dom(θ) are the variables for which θ is defined.

G |= θ(P) denotes θ(P) is entailed by G .

two substitutions θ1 and θ2 are ⊗-compatible iff:

1 The mappings agree on all non-annotated shared variables:
θ1(x) = θ2(x), x non-annot var ∈ dom(θ1) ∩ dom(θ2);

2 All the shared annotation variables must not be “disjoint”:
θ1(λ)⊗ θ2(λ) 6= ⊥, λ annot var ∈ dom(θ1) ∩ dom(θ2).

θ1, θ2 ⊗-compatible, θ1 ⊗ θ2 = θ1 ∪ θ2, except any annotation
variable λ ∈ dom(θ1) ∩ dom(θ2), (θ1 ⊗ θ2)(λ) = θ1(λ)⊗ θ2(λ).

20 / 19

AnQL evaluation References

AnQL query evaluation (cont.)

Let P be a BAP, Pi AGPs, G an annotated graph and R a filter expression:

[[P]]G = {θ | dom(θ) = var(P) and G |= θ(P)}

[[P1 AND P2]]G = {θ1 ⊗ θ2 | θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G , θ1 and θ2 ⊗-compatible}
[[P1 UNION P2]]G = [[P1]]G ∪ [[P2]]G

[[P1 FILTER R]]G = {θ | θ ∈ [[P1]]G and Rθ is true}

[[P1 OPTIONAL P2[R]]]G = {θ | and θ meets one of the following conditions:

1 θ = θ1 ⊗ θ2, θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G are ⊗-compatible, and Rθ is true

2 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible, R(θ1 ⊗ θ2) is true,

and all annotation variables λ ∈ dom(θ1) ∩ dom(θ2) θ2(λ) ≺ θ1(λ)

3 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible R(θ1 ⊗ θ2) is false

}

Answers of a BAP P are the substitutions entailed by G

21 / 19

AnQL evaluation References

AnQL query evaluation (cont.)

Let P be a BAP, Pi AGPs, G an annotated graph and R a filter expression:

[[P]]G = {θ | dom(θ) = var(P) and G |= θ(P)}
[[P1 AND P2]]G = {θ1 ⊗ θ2 | θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G , θ1 and θ2 ⊗-compatible}

[[P1 UNION P2]]G = [[P1]]G ∪ [[P2]]G

[[P1 FILTER R]]G = {θ | θ ∈ [[P1]]G and Rθ is true}

[[P1 OPTIONAL P2[R]]]G = {θ | and θ meets one of the following conditions:

1 θ = θ1 ⊗ θ2, θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G are ⊗-compatible, and Rθ is true

2 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible, R(θ1 ⊗ θ2) is true,

and all annotation variables λ ∈ dom(θ1) ∩ dom(θ2) θ2(λ) ≺ θ1(λ)

3 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible R(θ1 ⊗ θ2) is false

}

Answers of two AGPs are the substitutions that are ⊗-compatible

21 / 19

AnQL evaluation References

AnQL query evaluation (cont.)

Let P be a BAP, Pi AGPs, G an annotated graph and R a filter expression:

[[P]]G = {θ | dom(θ) = var(P) and G |= θ(P)}
[[P1 AND P2]]G = {θ1 ⊗ θ2 | θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G , θ1 and θ2 ⊗-compatible}
[[P1 UNION P2]]G = [[P1]]G ∪ [[P2]]G

[[P1 FILTER R]]G = {θ | θ ∈ [[P1]]G and Rθ is true}

[[P1 OPTIONAL P2[R]]]G = {θ | and θ meets one of the following conditions:

1 θ = θ1 ⊗ θ2, θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G are ⊗-compatible, and Rθ is true

2 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible, R(θ1 ⊗ θ2) is true,

and all annotation variables λ ∈ dom(θ1) ∩ dom(θ2) θ2(λ) ≺ θ1(λ)

3 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible R(θ1 ⊗ θ2) is false

}

Answers for the UNION of two AGPs is the union of the substitutions

21 / 19

AnQL evaluation References

AnQL query evaluation (cont.)

Let P be a BAP, Pi AGPs, G an annotated graph and R a filter expression:

[[P]]G = {θ | dom(θ) = var(P) and G |= θ(P)}
[[P1 AND P2]]G = {θ1 ⊗ θ2 | θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G , θ1 and θ2 ⊗-compatible}
[[P1 UNION P2]]G = [[P1]]G ∪ [[P2]]G

[[P1 FILTER R]]G = {θ | θ ∈ [[P1]]G and Rθ is true}

[[P1 OPTIONAL P2[R]]]G = {θ | and θ meets one of the following conditions:

1 θ = θ1 ⊗ θ2, θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G are ⊗-compatible, and Rθ is true

2 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible, R(θ1 ⊗ θ2) is true,

and all annotation variables λ ∈ dom(θ1) ∩ dom(θ2) θ2(λ) ≺ θ1(λ)

3 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible R(θ1 ⊗ θ2) is false

}

Rθ is true iff: . . .
(9) R = (x � y) with x , y ∈ dom(θ) ∪ L and θ(x) � θ(y);
(10) R = p(~z) with p(~z)θ = true iff p(θ(~z)) = true, p built-in predicate.

21 / 19

AnQL evaluation References

AnQL query evaluation (cont.)

Let P be a BAP, Pi AGPs, G an annotated graph and R a filter expression:

[[P]]G = {θ | dom(θ) = var(P) and G |= θ(P)}
[[P1 AND P2]]G = {θ1 ⊗ θ2 | θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G , θ1 and θ2 ⊗-compatible}
[[P1 UNION P2]]G = [[P1]]G ∪ [[P2]]G

[[P1 FILTER R]]G = {θ | θ ∈ [[P1]]G and Rθ is true}

[[P1 OPTIONAL P2[R]]]G = {θ | and θ meets one of the following conditions:

1 θ = θ1 ⊗ θ2, θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G are ⊗-compatible, and Rθ is true

2 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible, R(θ1 ⊗ θ2) is true,

and all annotation variables λ ∈ dom(θ1) ∩ dom(θ2) θ2(λ) ≺ θ1(λ)

3 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible R(θ1 ⊗ θ2) is false

}

Answers for an OPTIONAL where the P2 may contain a FILTER expression are:

21 / 19

AnQL evaluation References

AnQL query evaluation (cont.)

Let P be a BAP, Pi AGPs, G an annotated graph and R a filter expression:

[[P]]G = {θ | dom(θ) = var(P) and G |= θ(P)}
[[P1 AND P2]]G = {θ1 ⊗ θ2 | θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G , θ1 and θ2 ⊗-compatible}
[[P1 UNION P2]]G = [[P1]]G ∪ [[P2]]G

[[P1 FILTER R]]G = {θ | θ ∈ [[P1]]G and Rθ is true}

[[P1 OPTIONAL P2[R]]]G = {θ | and θ meets one of the following conditions:

1 θ = θ1 ⊗ θ2, θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G are ⊗-compatible, and Rθ is true

2 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible, R(θ1 ⊗ θ2) is true,

and all annotation variables λ ∈ dom(θ1) ∩ dom(θ2) θ2(λ) ≺ θ1(λ)

3 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible R(θ1 ⊗ θ2) is false

}

Keep compatible substitutions that make the FILTER R true

21 / 19

AnQL evaluation References

AnQL query evaluation (cont.)

Let P be a BAP, Pi AGPs, G an annotated graph and R a filter expression:

[[P]]G = {θ | dom(θ) = var(P) and G |= θ(P)}
[[P1 AND P2]]G = {θ1 ⊗ θ2 | θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G , θ1 and θ2 ⊗-compatible}
[[P1 UNION P2]]G = [[P1]]G ∪ [[P2]]G

[[P1 FILTER R]]G = {θ | θ ∈ [[P1]]G and Rθ is true}

[[P1 OPTIONAL P2[R]]]G = {θ | and θ meets one of the following conditions:

1 θ = θ1 ⊗ θ2, θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G are ⊗-compatible, and Rθ is true

2 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible, R(θ1 ⊗ θ2) is true,

and all annotation variables λ ∈ dom(θ1) ∩ dom(θ2) θ2(λ) ≺ θ1(λ)

3 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible R(θ1 ⊗ θ2) is false

}

Keep substitutions θ1 if, for all θ2 such that θ1 and θ2 are ⊗-compatible and for all the
shared annotation variables between those substitutions, θ1 has a “better” annotation

21 / 19

AnQL evaluation References

AnQL query evaluation (cont.)

Let P be a BAP, Pi AGPs, G an annotated graph and R a filter expression:

[[P]]G = {θ | dom(θ) = var(P) and G |= θ(P)}
[[P1 AND P2]]G = {θ1 ⊗ θ2 | θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G , θ1 and θ2 ⊗-compatible}
[[P1 UNION P2]]G = [[P1]]G ∪ [[P2]]G

[[P1 FILTER R]]G = {θ | θ ∈ [[P1]]G and Rθ is true}

[[P1 OPTIONAL P2[R]]]G = {θ | and θ meets one of the following conditions:

1 θ = θ1 ⊗ θ2, θ1 ∈ [[P1]]G , θ2 ∈ [[P2]]G are ⊗-compatible, and Rθ is true

2 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible, R(θ1 ⊗ θ2) is true,

and all annotation variables λ ∈ dom(θ1) ∩ dom(θ2) θ2(λ) ≺ θ1(λ)

3 θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G , θ1, θ2 ⊗-compatible R(θ1 ⊗ θ2) is false

}

Keep substitutions θ1 if, for all θ2 such that θ1 and θ2 are ⊗-compatible, the FILTER
expression is false

21 / 19

AnQL evaluation References

Bibliography I

Peter Buneman and Egor Kostylev. Annotation algebras for rdfs.
In The Second International Workshop on the role of Semantic
Web in Provenance Management (SWPM-10). CEUR Workshop
Proceedings, 2010.

Claudio Gutiérrez, Carlos A. Hurtado, and Alejandro A. Vaisman.
Temporal RDF. In Proc. of 2nd European Semantic Web
Conference (ESWC’2005), pages 93–107, 2005.

Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. Semantics
and complexity of SPARQL. ACM Transactions on Database
Systems, 34(3), 2009.

Umberto Straccia, Nuno Lopes, Gergely Lukacsy, and Axel
Polleres. A General Framework for Representing and Reasoning
with Annotated Semantic Web Data. In Proc. of 24th AAAI
Conference on Artificial Intelligence (AAAI’2010), 2010.

22 / 19

AnQL evaluation References

Bibliography II

Octavian Udrea, Diego Reforgiato Recupero, and V. S.
Subrahmanian. Annotated RDF. ACM Trans. Comput. Logic, 11
(2):1–41, 2010.

23 / 19

	Overview
	Usecase

	Annotated RDF(S)
	Annotated RDF
	Annotation Domains

	Annotated SPARQL
	Implementation
	Conclusions
	Appendix
	AnQL evaluation

