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Foreword 

The Federal Information Processing Standards Publication Series of the National Institute of Standards and 
Technology is the offcial series of publications relating to standards and guidelines developed under 15 
U.S.C. 278g-3, and issued by the Secretary of Commerce under 40 U.S.C. 11331. 

Comments concerning this Federal Information Processing Standard publication are welcomed and should 
be submitted using the contact information in the “Inquiries and comments” clause of the announcement 
section. 

James A. St. Pierre, Acting Director 
Information Technology Laboratory 
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Abstract 
Digital signatures are used to detect unauthorized modifcations to data and to authenticate the identity 
of the signatory. In addition, the recipient of signed data can use a digital signature as evidence in 
demonstrating to a third party that the signature was, in fact, generated by the claimed signatory. This is 
known as non-repudiation since the signatory cannot easily repudiate the signature at a later time. 

This standard specifes ML-DSA, a set of algorithms that can be used to generate and verify digital 
signatures. ML-DSA is believed to be secure even against adversaries in possession of a large-scale 
quantum computer. 

Keywords: cryptography; digital signatures; Federal Information Processing Standards; lattice; post-
quantum; public-key cryptography 
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Federal Information Processing Standards Publication 204 

Published: August 24, 2023 

Announcing the 
Module-Lattice-Based Digital Signature Standard 

Federal Information Processing Standards Publications (FIPS PUBS) are developed by the National 
Institute of Standards and Technology (NIST) under 15 U.S.C. 278g-3, and issued by the Secretary of 
Commerce under 40 U.S.C. 11331. 

1. Name of Standard. Module-Lattice-Based Digital Signature Standard (FIPS 204).

2. Category of Standard: Computer Security Standard. Subcategory: Cryptography.

3. Explanation. This standard specifes a lattice-based digital signature algorithm, ML-DSA, for appli-
cations that require a digital signature rather than a written signature. (Additional digital signature
schemes are specifed and approved in other NIST Special Publications and FIPS publications, e.g.,
FIPS 186-5 [1].) A digital signature is represented in a computer as a string of bits and computed using
a set of rules and parameters that allow the identity of the signatory and the integrity of the data to be
verifed. Digital signatures may be generated on both stored and transmitted data.

Signature generation uses a private key to generate a digital signature. Signature verifcation uses
a public key that corresponds to but is not the same as the private key. Each signatory possesses a
key-pair composed of a private key and a corresponding public key. Public keys may be known by
the public, but private keys must be kept secret. Anyone can verify the signature by employing the
signatory’s public key. Only the user who possesses the private key can perform the generation of a
signature that can be verifed by the corresponding public key.

The digital signature is provided to the intended verifer along with the signed data. The verifying
entity verifes the signature by using the claimed signatory’s public key. Similar procedures may be
used to generate and verify signatures for both stored and transmitted data.

This standard specifes several parameter sets for ML-DSA that are approved for use. Additional
parameter sets may be specifed and approved in future NIST Special Publications.

4. Approving Authority. Secretary of Commerce.

5. Maintenance Agency. Department of Commerce, National Institute of Standards and Technology,
Information Technology Laboratory (ITL).

6. Applicability. This standard is applicable to all federal departments and agencies for the protection
of sensitive unclassifed information that is not subject to section 2315 of Title 10, United States
Code, or section 3502 (2) of Title 44, United States Code. Either this standard or Federal Information
Processing Standard (FIPS) 205 or NIST Special Publication 800-208 shall be used in designing and
implementing public-key-based signature systems that federal departments and agencies operate or
that are operated for them under contract. In the future, additional digital signature schemes may be
specifed and approved in FIPS publications or in NIST Special Publications.

The adoption and use of this standard are available to private and commercial organizations.

i 



FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

7. Applications. A digital signature algorithm allows an entity to authenticate the integrity of signed 
data and the identity of the signatory. The recipient of a signed message can use a digital signature 
as evidence in demonstrating to a third party that the signature was, in fact, generated by the claimed 
signatory. This is known as non-repudiation since the signatory cannot easily repudiate the signature 
at a later time. A digital signature algorithm is intended for use in electronic mail, electronic funds 
transfer, electronic data interchange, software distribution, data storage, and other applications that 
require data integrity assurance and data origin authentication. 

8. Implementations. A digital signature algorithm may be implemented in software, frmware, hardware, 
or any combination thereof. NIST will develop a validation program to test implementations for 
conformance to the algorithm in this standard. For every computational procedure that is specifed in 
this standard, a conforming implementation may replace the given set of steps with any mathematically 
equivalent set of steps. In other words, different procedures that produce the correct output for every 
input are permitted. Information about validation programs is available at https://csrc.nist.gov/projects 
/cmvp. Examples for digital signature algorithms are available at https://csrc.nist.gov/projects/cryptog 
raphic-standards-and-guidelines/example-values. 

Agencies are advised that digital signature key pairs shall not be used for other purposes. 

9. Other Approved Security Functions. Digital signature implementations that comply with this 
standard shall employ cryptographic algorithms that have been approved for protecting Federal 
Government-sensitive information. Approved cryptographic algorithms and techniques include those 
that are either: 

a. Specifed in a Federal Information Processing Standards (FIPS) publication, 

b. Adopted in a FIPS or NIST recommendation, or 

c. Specifed in the list of approved security functions for FIPS 140-3. 

10. Export Control. Certain cryptographic devices and technical data regarding them are subject to federal 
export controls. Exports of cryptographic modules that implement this standard and technical data 
regarding them must comply with these federal regulations and be licensed by the Bureau of Industry 
and Security of the U.S. Department of Commerce. Information about export regulations is available at 
https://www.bis.doc.gov. 

11. Patents. The algorithm in this standard may be covered by U.S. or foreign patents. 

12. Implementation Schedule. This standard becomes effective immediately upon fnal publication. 

13. Specifcations. Federal Information Processing Standards (FIPS) 204, Module-Lattice-Based Digital 
Signature Standard (affxed). 

14. Qualifcations. The security of a digital signature system is dependent on maintaining the secrecy of 
the signatory’s private keys. Signatories shall, therefore, guard against the disclosure of their private 
keys. While it is the intent of this standard to specify general security requirements for generating 
digital signatures, conformance to this standard does not ensure that a particular implementation is 
secure. It is the responsibility of an implementer to ensure that any module that implements a digital 
signature capability is designed and built in a secure manner. 

Similarly, the use of a product containing an implementation that conforms to this standard does not 
guarantee the security of the overall system in which the product is used. The responsible authority in 
each agency or department shall ensure that an overall implementation provides an acceptable level of 
security. 

ii 
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Since a standard of this nature must be fexible enough to adapt to advancements and innovations in 
science and technology, this standard will be reviewed every fve years in order to assess its adequacy. 

15. Waiver Procedure. The Federal Information Security Management Act (FISMA) does not allow for 
waivers to Federal Information Processing Standards (FIPS) that are made mandatory by the Secretary 
of Commerce. 

16. Where to Obtain Copies of the Standard. This publication is available by accessing https://csrc.nist. 
gov/publications. Other computer security publications are available at the same website. 

17. How to Cite this Publication. NIST has assigned NIST FIPS 204 ipd as the publication identifer for 
this FIPS, per the NIST Technical Series Publication Identifer Syntax. NIST recommends that it be 
cited as follows: 

National Institute of Standards and Technology (2023) Module-Lattice-Based Digital 
Signature Standard. (Department of Commerce, Washington, D.C.), Federal Information 
Processing Standards Publication (FIPS) NIST FIPS 204 ipd. https://doi.org/10.6028/NIST 
.FIPS.204.ipd 

18. Inquiries and Comments. Inquiries and comments about this FIPS may be submitted to fps-204-
comments@nist.gov. 

iii 
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Call for Patent Claims 

This public review includes a call for information on essential patent claims (claims whose use would be 
required for compliance with the guidance or requirements in this Information Technology Laboratory 
(ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication 
or by reference to another publication. This call also includes disclosure, where known, of the existence 
of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant 
unexpired U.S. or foreign patents. 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in written 
or electronic form, either: 

a) assurance in the form of a general disclaimer to the effect that such party does not hold and does not 
currently intend holding any essential patent claim(s); or 

b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring 
to utilize the license for the purpose of complying with the guidance or requirements in this ITL 
draft publication either: 

(i) under reasonable terms and conditions that are demonstrably free of any unfair discrimination; 
or 

(ii) without compensation and under reasonable terms and conditions that are demonstrably free 
of any unfair discrimination. 

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its 
behalf) will include in any documents transferring ownership of patents subject to the assurance, provisions 
suffcient to ensure that the commitments in the assurance are binding on the transferee, and that the 
transferee will similarly include appropriate provisions in the event of future transfers with the goal of 
binding each successor-in-interest. 

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of 
whether such provisions are included in the relevant transfer documents. 

Such statements should be addressed to: fps-204-comments@nist.gov 
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1. Introduction 

1.1 Purpose and Scope 
This standard defnes a digital signature scheme, which includes a method for digital signature generation 
that can be used for the protection of binary data (commonly called a message), and a method for the 
verifcation and validation of those digital signatures. (NIST SP 800-175B [2], Guideline for Using 
Cryptographic Standards in the Federal Government: Cryptographic Mechanisms, includes a general 
discussion of digital signatures.) 

This standard specifes the mathematical steps that need to be performed for key generation, signature 
generation, and signature verifcation. In order for digital signatures to be valid, additional assurances are 
required, such as assurance of identity and of private key possession. NIST SP 800-89, Recommendation 
for Obtaining Assurances for Digital Signature Applications [3], specifes the required assurances and 
methods for obtaining these assurances. 

The digital signature scheme approved in this standard is ML-DSA (Module Lattice Digital Signature 
Algorithm). It is based on the Module Learning With Errors problem. ML-DSA is believed to be secure 
even against adversaries in possession of a large-scale quantum computer. In particular, ML-DSA is 
believed to be strongly-unforgeable, which implies that the scheme can be used to detect unauthorized 
modifcations to data, and to authenticate the identity of the signatory (one bound to the possession of the 
private-key). In addition, a signature generated by this scheme can be used as evidence in demonstrating 
to a third party that the signature was, in fact, generated by the claimed signatory. The latter property is 
known as non-repudiation, since the signatory cannot easily repudiate the signature at a later time. 

This standard gives algorithms for ML-DSA key generation (Section 5), signature (Section 6), and 
verifcation, (Section 7) and for supporting algorithms used by them (Section 8). ML-DSA is standardized 
with three possible parameter sets, each corresponding to a different security strength. Section 4 describes 
the global parameters used by these algorithms and enumerates the parameter sets for ML-DSA that are 
approved by this standard. ML-DSA can be used in place of other digital signature schemes specifed in 
NIST FIPS and Special Publications (e.g., FIPS 186-5 Digital Signature Standard (DSS) [1]). 

1.2 Context 
Over the past several years, there has been steady progress toward building quantum computers. The 
security of many commonly used public-key cryptosystems will be at risk if large-scale quantum computers 
are ever realized. In particular, this would include key-establishment schemes and digital signatures that 
are based on integer factorization and discrete logarithms (both over fnite felds and elliptic curves). As a 
result, in 2016, the National Institute of Standards and Technology (NIST) initiated a public process to 
select quantum-resistant public-key cryptographic algorithms for standardization. A total of 82 candidate 
algorithms were submitted to NIST for consideration for standardization. 

After three rounds of evaluation and analysis, NIST selected the frst four algorithms to standardize as a 
result of the Post-Quantum Cryptography (PQC) Standardization process. The algorithm in this standard, 
ML-DSA, is derived from one of the selected schemes: CRYSTALS-DILITHIUM [4, 5] and is intended to 
protect sensitive U.S. Government information well into the foreseeable future, including after the advent 
of large-scale fault-tolerant quantum computers. 
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1.3 Differences Between the ML-DSA Standard and CRYSTALS-
DILITHIUM 

ML-DSA is derived from Version 3.1 of CRYSTALS-DILITHIUM [5]. Version 3.1 differs slightly 
from the most recent version appearing on the NIST website (Version 3 CRYSTALS-DILITHIUM [4].) 
Sections 1.3.1, and 1.3.2 document, respectively, the differences between Versions 3 and 3.1, and the 
differences between Version 3.1 and the ML-DSA standard as published in this document. 

1.3.1 Differences Between Version 3.1 and the Round 3 Version of CRYSTALS-
DILITHIUM 

The lengths of the variables ρ ′ (private random seed) and µ (message representative) in the signing 
algorithm were increased from 384 to 512 bits. The increase in the length of µ corrects a security faw that 
appeared in the third-round submission, where a collision attack against SHAKE256 with a 384-bit output 
would make it so that parameters targeting NIST security strength category 5 could only meet category 4. 

Additionally, the length of the variable tr (the hash of the public key) was reduced from 384 to 256 bits. In 
key generation, the variable ς was relabeled as ρ ′ and increased in size from 256 bits to 512 bits. 

1.3.2 Differences Between the ML-DSA Standard and Version 3.1 of CRYSTALS-
DILITHIUM 

In order to ensure the properties noted in [6], ML-DSA increases the length of tr to 512 bits, and increases 
the length of c̃ to 384 and 512 bits, respectively, for the parameter sets ML-DSA-65 and ML-DSA-87. 

In Version 3.1 of the CRYSTALS-DILITHIUM submission, the default version of the signing algorithm 
is deterministic with ρ ′ being generated pseudorandomly from the signer’s private key and the message, 
and an optional version of the signing algorithm has ρ ′ sampled instead as a 512-bit random string. In 
ML-DSA, ρ ′ is generated by a “hedged” procedure, where ρ ′ is pseudorandomly derived from the signer’s 
private key, the message, and a 256-bit string, rnd, which by default should be generated by an Approved 
RBG. The ML-DSAstandard also allows for an optional deterministic version, where rnd is instead a 
256-bit constant string. 
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2. Glossary of Terms, Acronyms, and Symbols 

2.1 Terms and Defnitions 
approved FIPS-approved and/or NIST-recommended. An algorithm or technique that is 

either 1) specifed in a FIPS or NIST recommendation, 2) adopted in a FIPS 
or NIST recommendation, or 3) specifed in a list of NIST-approved security 
functions. 

assurance of 
possession 

Confdence that an entity possesses a private key and any associated keying 
material. 

bit string An ordered sequence of zeros and ones. 

byte An integer from the set {0, 1, 2, . . . , 255}. 

byte string A sequence of bytes. 

certifcate A set of data that uniquely identifes a public key (which has a corresponding 
private key) and an owner that is authorized to use the key pair. The certifcate 
contains the owner’s public key and possibly other information and is digitally 
signed by a Certifcation Authority (i.e., a trusted party), thereby binding the 
public key to the owner. 

certifcation authority 
(CA) 

The entity in a public key infrastructure (PKI) that is responsible for issuing 
certifcates and exacting compliance with a PKI policy. 

claimed signatory From the verifer’s perspective, the claimed signatory is the entity that purport-
edly generated a digital signature. 

destroy An action applied to a key or a piece of secret data. After a key or a piece of 
secret data is destroyed, no information about its value can be recovered. 

digital signature The result of a cryptographic transformation of data that, when properly im-
plemented, provides a mechanism for verifying origin authenticity and data 
integrity, and enforcing signatory non-repudiation. 

entity An individual (person), organization, device, or process. Used interchangeably 
with “party.” 

extendable-output 
function (XOF) 

A function on bit strings in which the output can be extended to any desired 
length. Approved XOFs (such as those specifed in FIPS 202 [7]) are designed 
to satisfy the following properties as long as the specifed output length is 
suffciently long to prevent trivial attacks: 

1. (One-way) It is computationally infeasible to fnd any input that maps to 
any new pre-specifed output. 

2. (Collision-resistant) It is computationally infeasible to fnd any two 
distinct inputs that map to the same output. 

hash function A function on bit strings in which the length of the output is fxed. Approved 
hash functions (such as those specifed in FIPS 180 [8] and FIPS 202 [7]) are 
designed to satisfy the following properties: 
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1. (One-way) It is computationally infeasible to fnd any input that maps to 
any new pre-specifed output. 

2. (Collision-resistant) It is computationally infeasible to fnd any two 
distinct inputs that map to the same output. 

hash value See “message digest.” 

key A parameter used in conjunction with a cryptographic algorithm that deter-
mines its operation. Examples of cryptographic algorithms applicable to this 
standard include: 

1. The computation of a digital signature from data and 

2. The verifcation of a digital signature. 

key pair A public key and its corresponding private key. 

message The data that is signed. Also known as “signed data” during the signature 
verifcation and validation process. 

message digest The result of applying a hash function to a message. Also known as a “hash 
value.” 

non-repudiation A service that is used to provide assurance of the integrity and origin of data in 
such a way that the integrity and origin can be verifed and validated by a third 
party as having originated from a specifc entity in possession of the private 
key (i.e., the signatory). 

owner A key pair owner is the entity authorized to use the private key of a key pair. 

party An individual (person), organization, device, or process. Used interchangeably 
with “entity.” 

public key 
infrastructure (PKI) 

A framework that is established to issue, maintain, and revoke public key 
certifcates. 

private key A cryptographic key that is used with an asymmetric (public key) cryptographic 
algorithm. The private key is uniquely associated with the owner and is not 
made public. The private key is used to compute a digital signature that may 
be verifed using the corresponding public key. 

pseudorandom A process or data produced by a process is said to be pseudorandom when the 
outcome is deterministic yet also effectively random as long as the internal 
action of the process is hidden from observation. For cryptographic purposes, 
“effectively random” means “computationally indistinguishable from random 
within the limits of the intended security strength.” 

public key A cryptographic key that is used with an asymmetric (public-key) cryptographic 
algorithm and is associated with a private key. The public key is associated 
with an owner and may be made public. In the case of digital signatures, the 
public key is used to verify a digital signature that was generated using the 
corresponding private key. 

security category A number associated with the security strength of a post-quantum crypto-
graphic algorithm as specifed by NIST (see Appendix A, Table 3). 
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417 

security strength A number associated with the amount of work (i.e., the number of operations) 
that is required to break a cryptographic algorithm or system. 

seed A bit string used as input to a pseudorandom process. 

shall Used to indicate a requirement of this standard. 

should Used to indicate a strong recommendation but not a requirement of this stan-
dard. Ignoring the recommendation could lead to undesirable results. 

signatory The entity that generates a digital signature on data, using a private key. 

signature generation The process of using a digital signature algorithm and a private key to generate 
a digital signature on data. 

signature validation The (mathematical) verifcation of the digital signature along with obtaining 
the appropriate assurances (e.g., public-key validity, private-key possession, 
etc.). 

signature verifcation The process of using a digital signature algorithm and a public key to verify a 
digital signature on data. 

signed data The data or message upon which a digital signature has been computed. Also 
see “message.” 

trusted third party 
(TTP) 

An entity (other than the key pair owner and the verifer) that is trusted by the 
owner, the verifer, or both. Sometimes shortened to “trusted party.” 

verifer The entity that verifes the authenticity of a digital signature, using the public 
key of the signatory. 

2.2 Acronyms 
AES Advanced Encryption Standard 

FIPS Federal Information Processing Standard 

ML-DSA Module-Lattice-Based Digital Signature Algorithm 

MLWE Module Learning With Errors 

NIST National Institute of Standards and Technology 

NISTIR NIST Interagency or Internal Report 

NTT Number Theoretic Transform 

PQC Post-Quantum Cryptography 

RBG Random Bit Generator 

SHA Secure Hash Algorithm 

SHAKE Secure Hash Algorithm KECCAK 

SP Special Publication 

XOF eXtendable-Output Function 
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2.3 Mathematical Symbols 
The following symbols and mathematical expressions are used in this standard. 

B The set {0,1, . . . ,255}. 

N The set of natural numbers {1,2,3, . . .}. 

Z The ring of integers. 

[a,b] For two integers a ≤ b, [a,b] denotes the set of integers {a,a + 1, . . . ,b}. 

Zm The ring of integers modulo m, also denoted by Z/mZ. 

R The ring of single-variable polynomials over Z modulo X + 1, also denoted by 
Z[X 256]/(X + 1). 

256 

Rm The ring of single-variable polynomials over Z 256 
m modulo X + 1, also denoted by 

Zm[X 256]/(X + 1). 

q The prime number q = 223 − 213 + 1 = 8380417. 

Bτ The set of all polynomials p = ∑255 i 
i=0 piX in Rq that are such that exactly τ of the 

coeffcients of pi are from the set {−1,1}, and all other coeffcients are zero. (See 
subsection 8.3.) 

Π Used to denote a direct product of two or more rings, where addition and multiplica-
tion are performed componentwise. 

Tq The ring Π255 
j=0Zq. 

⊤ If A is a matrix, then A⊤ denotes the transpose of A. 

log The base-2 logarithm. For example, log256 = 8. 

bitlen a For a positive integer a, the minimum number of binary digits required to represent 
a. For example, bitlen 32 = 6 and bitlen 31 = 5. 

⌊x⌋ The largest integer less than or equal to the real number x, called the foor of x. 

⌈x⌉ The least integer greater than or equal to the real number x, called the ceiling of x. 

mod If α is a positive integer and m ∈ Z or m ∈ Zα , then m mod α denotes the unique 
element m ′ ∈ Z in the range 0 ≤ m ′ < α such that m and m ′ are congruent modulo α . 

mod± If α is a positive integer and m ∈ Z or m ∈ Z ±
α , then m mod α denotes the unique 

element m ′ ∈ Z in the range −α/2 < m ′  ≤ α/2 such that m and m ′ are congruent 
modulo α . 

a! The factorial quantity 1 · 2 · 3 · . . . · a. � � a 
b The quantity a!/(b!(a− b)!). 

brv(r) Bit reversal. If r = r0 + 2r1 + 4r2 + . . . + 128r7 is a byte, with ri ∈ {0,1}, then 
brv(r) = r7 + 2r6 + 4r5 + . . . + 128r0. 
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r
(
t
o

← If S is a set, then s ← S denotes that s is sampled uniformly at random from S. If 
D is a probability distribution on S, then s ← D denotes that s is sampled from S 
according to D. If R is an algorithm with input z, then s ← R(z) denotes that s is 
the recorded output of a single execution of R(z). This notation is used for both 
probabilistic and deterministic algorithms. 

x ∈ S ← y Type casting. An element x in a set S is constructed from an element y of a different 
set T . The set T , and the mapping from T to S, are not explicitly specifed, but they 
should be obvious from the context in which this statement appears. 

wJiK For a bit string w, wJiK denotes the ith byte of w, 

w[8i]+ 2 · w[8i+ 1]+ 4 · w[8i + 2]+ · · · + 128 · w[8i+ 7] 

where w[ j  is the jth ] bit of w. That is, when encoding a byte into a bit string, 
“little-endian” order is used. 

∥·∥
∞ The infnity norm. For an element � w ∈ Z�, ∥w∥∞ = |w|, the absolute value of w. 

For an element w ∈ Zq,∥w∥
∞ = �w mod±q � . For an element w of R or Rq, ∥w∥

∞ = 
max0≤i<256 ∥wi∥∞ . For a length-m vector w with entries from R or Rq, ∥w∥

∞ = 
max0≤i<m ∥w[i]∥∞ . 

[[a < b]] A Boolean predicate. A comparison operator inside double square brackets [[a < b]] 
denotes that the expression should be evaluated as a Boolean. Booleans can also be 
interpreted as elements of Z2 with 1 denoting true and 0 denoting false. 

⟨⟨ f (x)⟩⟩ A temporary variable that stores the output of a computation f (x), so that this output 
can be used many times, without needing to recompute it. This is equivalent to 
defning a temporary variable y ← f (x). Naming the variable ⟨⟨ f (x)⟩⟩ makes the 
pseudocode less cluttered. 

a||b Concatenation of two bit or byte strings, a and b. 

a ◦ b Multiplication (of a and b) in the ring Tq. 

a · b or ab Multiplication in any of the rings Z,Zd ,R,Rd . 

a + b Addition of a and b. 

a/b Division of integers. When this notation is used, a and b are always integers. If b 
cannot be assumed to divide a, then either ⌊a/b⌋ or ⌈a/b⌉ is used. 

A × B Cartesian product of two sets A,B. 

⊥ Blank symbol. (This symbol indicates failure or lack of an output from an algorithm.) 

2.4 Notation 
Elements of the rings Z, Zq, Z2, R, Rq, are denoted by italicized lowercase letters (e.g., w). Elements of the 
ing Tq are length-256 arrays of elements of Zq, and they are denoted by italicized letters with a hat symbol 
e.g., ŵ). Addition and multiplication of elements of Tq are performed entry-wise. (Thus, the ith entry of 
he product of two elements û and v̂ of Tq is û[i] · v̂[i] ∈ Zq.) As noted in subsection 2.3, the multiplication 
peration in Tq is denoted by the symbol ◦. 
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When a product a · b or a sum a + b is written and either a or b is a congruence class modulo m (i.e., if 
either is an element of Zm or Rm), then the product is also understood to be a congruence class modulo m. 
Likewise when an element of R or Z may be used as the input of a function specifed to act on an element 
of Rm or Zm, respectively. In both cases, the element itself or its coeffcients are mapped from Z to Zm by 
taking the unique congruence class containing the integer. 

The coeffcients of an element w of R or Rm are denoted by wi so that w = w0 + w1X + . . . + w255X255. 
If w is in R (respectively, Rm) and t is in Z (respectively, Zd), then w(t) denotes the polynomial w = 
w0 + w1X + . . . + w255X255 evaluated at X = t. 

Vectors with elements in R or Rm are denoted by bold lowercase letters, such as, v. Matrices with elements 
in R or Rm are denoted by bold uppercase letters, such as, A. 

If S is a ring and v is a length-L vector over S, then the entries in the vector v are expressed as 

v[0],v[1], . . . ,v[L − 1]. 

The entries of a K × L matrix A over S are denoted as A[i, j], where 0 ≤ i < K and 0 ≤ j < L. The set of 
all length-L vectors over S is denoted by SL . The set of all K × L matrices over S is denoted by SK×L . A 
length-L vector can also be treated as an L × 1 matrix. 

2.5 NTT Representation 
The Number Theoretic Transform (NTT) is a specifc isomorphism between the rings Rq and Tq. Let 
ζ = 1753 ∈ Zq, which is a 512th root of unity. If w ∈ Rq, then 

NTT(w) = (w(ζ0),w(−ζ0), . . .w(ζ127),w(−ζ127)) ∈ Tq, (2.1) 

where ζi = ζ brv(128+i). See section 8.5 for a discussion of the implementation of NTT and NTT−1. 

The motivation for using NTT is that multiplication is considerably faster in the ring Tq. Since NTT is an 
isomorphism, for any a,b ∈ Rq, 

NTT(ab) = NTT(a) ◦ NTT(b). (2.2) 

If A is a matrix with entries from Rq, then NTT(A) denotes the matrix computed via the entry-wise 
application of NTT to A. The symbol ◦ is also used to denote matrix multiplication of matrices with entries 
in Tq. Thus, NTT(AB) = NTT(A) ◦ NTT(B). 
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3. Overview of the ML-DSA Signature Scheme 
ML-DSA is a digital signature scheme based on CRYSTALS-DILITHIUM [5]. It consists of three 
main algorithms: ML-DSA.KeyGen (Algorithm 1), ML-DSA.Sign (Algorithm 2), and ML-DSA.Verify 
(Algorithm 3). The ML-DSA scheme uses the “Fiat-Shamir with Aborts” construction [9, 10] and bears 
the most resemblance to the schemes proposed in [11, 12]. 

3.1 Security Properties 
ML-DSA is designed to be strongly existentially unforgeable under chosen message attack (i.e. it is 
expected that even if an adversary can get the honest party to sign arbitrary messages, the adversary cannot 
create any additional valid signatures based on the signer’s public key, including on messages for which 
the signer has already provided a signature). 

ML-DSA is also designed to satisfy additional security properties beyond unforgeability, which are 
described in [6]. 

3.2 Computational Assumptions 
Security for lattice-based digital signature schemes is typically related to two central problems: the 
Learning With Errors (LWE) problem and the Short Integer Solution (SIS) problem. The LWE problem 
[13] is to recover a vector s ∈ Zn

q given a set of random noisy linear equations satisfed by s. The SIS 
problem is to fnd, for a given linear system over Zq of the form At = 0, a solution t ∈ Zn such that ∥q t∥

∞ is
small. For appropriate choices of parameters, these problems are intractable for the best known techniques 
(including Gaussian elimination). 

When the module Zn
q in LWE and SIS is replaced by a module over a ring larger than Zq (such as Rq), 

the resulting problems are called MLWE (Module Learning With Errors [14]) and MSIS (Module Short 
Integer Solution). The security of ML-DSA is based on the MLWE problem over Rq and a nonstandard 
variant of MSIS called SelfTargetMSIS [15]. 

3.3 The ML-DSA Construction 
ML-DSA is a Schnorr-like signature with several optimizations. The Schnorr signature scheme applies the 
Fiat-Shamir heuristic to an interactive protocol between a verifer who knows g (the generator of a group in 
which discrete logs are believed to be diffcult) and the value y x= g , and a prover who knows g and x. The 
interactive protocol, where the prover demonstrates knowledge of x to the verifer, consists of three steps: 

1. Commitment: The prover generates a random positive integer r less than the order of g and commits 
to its value by sending gr to the verifer 

2. Challenge: The verifer sends a random positive integer c less than the order of g to the prover. 

3. Response: The prover returns s = r − cx, and the verifer checks whether gs · yc = gr . 

This protocol is made noninteractive and turned into a signature scheme by replacing the verifer’s random 
choice of c in step 2 with a deterministic process that pseudorandomly derives c from a hash of the 
commitment, gr, concatenated with the message to be signed. For this signature scheme, y is the public 
key and x is the private key. 

9 



FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD 

546 

547 

548 

549 

550 

551 

552 

553 

554 

555 

556 

557 

558 

559 

560 

561 

562 

563 

564 

565 

566 

567 

568 

569 

570 

571 

572 

573 

574 

575 

576 

577 

578 

579 

580 

581 

582 

583 

The basic idea of ML-DSA and similar lattice signature schemes is to build a signature scheme from an 
analogous interactive protocol, where a prover who knows matrices A  ZK×L , S  ZL×n K∈ , n 

1 ∈ and S ∈ Z ×
q q 2 q 

with short coeffcients, demonstrates knowledge of these matrices to a verifer who knows A and T ∈ 
ZK×n

q = AS1 + S2. Such an interactive protocol would proceed as follows: 

1. Commitment: The prover generates y ∈ ZL 
q with short coeffcients and commits to its value by 

sending Ay to the verifer. 

2. Challenge: The verifer sends a vector c ∈ Zn
q with short coeffcients to the prover. 

3. Response: The prover returns z = y + S1c, and the verifer checks that z has small coeffcients and 
that Az − Tc ≈ Ay. 

As written the above protocol has a security faw: The response z will be biased in a direction related to 
the private value S1. However, this faw can be corrected when converting the interactive protocol into 
a signature scheme: As with Schnorr signatures, the signer derives the challenge by a pseudorandom 
process from a hash of the commitment concatenated with the message. However, to correct the bias, the 
signer applies rejection sampling to z: if coeffcients of z fall outside a specifed range, the signing process 
is aborted, and the signer starts over from a new value of y. In the resulting “Fiat-Shamir with Aborts” 
signature, the public key is (A,T) and the private key is (S1,S2) 

In the ML-DSA standard, a number of tweaks and modifcations are added to this basic framework for 
security or effciency reasons: 

• To reduce key and signature size and to use fast NTT-based polynomial multiplication, ML-DSA 
uses module-structured matrices. That is to say, relative to the basic scheme described above, it 
replaces dimension-n× n blocks of matrices and dimension-n blocks of vectors with polynomials in 
the ring Rq. Thus, instead of A ∈ ZK×L , T ∈q  ZK×n , S1 ∈ ZL×n , S2 ∈ ZK×n , y ∈q q q  ZL c ∈ Zn

q , q , ML-DSA 
has A ∈ Rk×ℓ , t ∈ Rk k  ∈ ℓ ∈ ∈ ℓ ∈q q, s1  Rq, s2  Rq, y  Rq, c  Rq.

• To further reduce the size of the public key, the matrix A is pseudorandomly derived from a 256-bit 
public seed, ρ which is included in the ML-DSA public key in place of A. 

• For a still further reduction in public key size, the ML-DSA public key substitutes for t a compressed 
value t0, which drops the d low order bits of each coeffcient. 

• To obtain beyond unforgeability (BUFF) properties noted in [6], ML-DSA does not sign the message 
M directly, but rather signs a message representative µ obtained by hashing the concatenation of a 
hash tr of the public key and M. 

• To reduce signature size, rather than including the commitment w = Ay in the signature, the ML-
DSA signature uses a rounded version w1 as a commitment, and includes only the hash, c̃, of w1 
concatenated with µ . 

To ensure that w1 can be reconstructed by the verifer from z and the compressed value t0, the 
signature must also include a hint h ∈ Rk 

2 computed by the signer using the signer’s private key. 

In this document, we use the abbreviations ML-DSA-44, ML-DSA-65, and ML-DSA-87 to refer to 
ML-DSA with the parameter choices given in Table 1. (In these abbreviations, the numerical suffx refers 
to the dimension of the matrix A. For example, in ML-DSA-65, the matrix A is a 6 × 5 matrix over Rq.) 
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3.4 Use of Digital Signatures 
Secure key management is an essential requirement for the use of digital signatures. This is context-
dependent and involves more than the key generation, signing, and signature verifcation algorithms in this 
document. Guidance for key management is provided in the NIST SP 800-57 series [16, 17, 18]. 

Digital signatures are most useful when bound to an identity. Binding a public key to an identity requires 
proof of possession of the private key. In the PKI context, issuing certifcates involves assurances of 
identity and proof of possession. When a public-key certifcate is not available, users of digital signatures 
should determine whether a public key needs to be bound to an identity. Methods for obtaining assurances 
of identity and proof of possession are provided in [3]. 

3.5 Additional Requirements 
This section describes several required assurances when implementing ML-DSA. These are in addition to 
the considerations in Section 3.4. 

3.5.1 Randomness Generation 

Algorithm 1, implementing key generation for ML-DSA, uses an RBG to generate the 256-bit random 
value ξ . The seed ξ shall be freshly generated using an approved RBG, as prescribed in NIST SP 800-90A, 
SP 800-90B, and SP 800-90C [19, 20, 21]. Moreover, the RBG used shall have a security strength of at 
least 192 bits for ML-DSA-65 and 256 bits for ML-DSA-87. For ML-DSA-44, the RBG should have a 
security strength of at least 192 bits and shall have a security strength of at least 128 bits. (If an approved 
RBG with at least 128 bits of security but less than 192 bits of security is used, then the claimed security 
strength of ML-DSA-44 is reduced from category 2 to category 1.) 

Additionally, in the default “hedged” variant of Algorithm 2, implementing signing for ML-DSA, the 
value rnd is generated using an RBG. While this value should ideally be generated by an approved RBG, 
other methods for generating fresh randomness may be used. The primary purpose of rnd is to facilitate 
countermeasures to side-channel attacks and fault attacks on deterministic signatures, such as [22, 23, 24].
For this purpose, even a weak RBG may be preferable to the fully deterministic variant of Algorithm 2. 

1 

1In addition, when signing is deterministic, there is leakage through timing side-channels of information about the 
message (but not the private key). In cases where the signer does not want to reveal the message being signed, 
hedged signatures should be used; see section 3.2 in [5]. 

3.5.2 Public-Key Validity and Signature Length Checks 

Algorithm 3, implementing verifcation for ML-DSA, specifes the length of the signature σ and the public 
key pk in terms of the parameters described in Table 1. If an implementation of ML-DSA can accept 
inputs for σ or pk of any other length, it shall return false whenever the lengths of either of these inputs 
differs from its specifed length. Checking the length of pk serves as a partial public-key validity check, 
and failing to do so may interfere with the security properties that ML-DSA is designed to have, like strong 
unforgeability. ML-DSA is not designed to require any additional public-key validity checks. 

3.5.3 Intermediate Values 

Data used internally by the key generation and signing algorithms in intermediate computation steps could 
be used by an adversary to gain information about the private key, and thereby compromise security. For 
some applications, including the verifcation of signatures that are used as bearer tokens (i.e., authentication 
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secrets) or the verifcation of signatures on plaintext messages that are intended to be confdential, data 
used internally by verifcation algorithms is similarly sensitive. (Intermediate values of the verifcation 
algorithm may reveal information about its inputs, i.e., the message, signature, and public key, and in some 
applications security or privacy requires one or more of these inputs to be confdential.) Implementations 
of ML-DSA shall, therefore, ensure that any potentially sensitive intermediate data is destroyed as soon as 
it is no longer needed. 

In certain situations, such as deterministic signing (described above), and the verifcation of confdential 
messages and signatures (described above), additional care must be taken to protect implementations 
against side-channel attacks or fault attacks. A cryptographic device may leak critical information through 
side-channels that allows internal data or keying material to be extracted without breaking the cryptographic 
primitives. 
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4. Parameter Sets 

Table 1. ML-DSA Parameter sets 

Parameters Values assigned by each parameter set 
(see sections 5 and 6 of this document) ML-DSA-44 ML-DSA-65 ML-DSA-87 

q - modulus [see §5] 8380417 8380417 8380417 
d - # of dropped bits from t [see §5] 13 13 13 

τ - # of ±1’s in polynomial c [see §6] 39 49 60 
λ - collision strength of c̃ [see §6] 128 192 256 

217 219 219γ1 - coeffcient range of y [see §6] 
γ2 - low-order rounding range [see §6] (q− 1)/88 (q − 1)/32 (q − 1)/32 

(k, ℓ) - dimensions of A [see §5] (4,4) (6,5) (8,7) 
η - private key range [see §5] 2 4 2 

β = τ · η [see §6] 78 196 120 
ω - max # of 1’s in the hint h [see §6] 80 55 75��256Challenge entropy log 

τ + τ [see §6] 192 225 257 
Repetitions (see explanation below) 4.25 5.1 3.85 

Claimed security strength Category 2 Category 3 Category 5 

Three ML-DSA parameter sets are included in Table 1. Each parameter set assigns values for all of the 
parameters used in the ML-DSA algorithms for key generation, signing, and verifcation. For informational 
purposes, some parameters used in the analysis of these algorithms are also included in the table. In 
particular, “repetitions” refers to the expected number of repetitions of the main loop in the signing 
algorithm, from eq. 5 in [4]. The names of the parameter sets are of the form “ML-DSA-kℓ,” where (k, ℓ) 
are the dimensions of the matrix A. 

These parameter sets were designed to meet certain security strength categories defned by NIST in its 
original Call for Proposals [25]. These security strength categories are explained further in Appendix A. 

Using this approach, security strength is not described by a single number, such as “128 bits of security.” 
Instead, each ML-DSA parameter set is claimed to be at least as secure as a generic block cipher with a 
prescribed key size or a generic hash function with a prescribed output length. More precisely, it is claimed 
that the computational resources needed to break ML-DSA are greater than or equal to the computational 
resources needed to break the block cipher or hash function when these computational resources are 
estimated using any realistic model of computation. Different models of computation can be more or less 
realistic and, accordingly, lead to more or less accurate estimates of security strength. Some commonly 
studied models are discussed in [26]. 

Concretely, the parameter set ML-DSA-44 is claimed to be in security strength category 2, ML-DSA-65 is 
claimed to be in category 3, and ML-DSA-87 is claimed to be in category 5 [5]. For additional discussion 
of the security strength of MLWE-based cryptosystems, see [27]. 

The sizes of keys and signatures corresponding to each parameter set are given in Table 2. Note that certain 
optimizations are possible, when storing ML-DSA public and private keys. If additional space is available, 
one can pre-compute and store Â, to speed up signing and verifying. Alternatively, if one wants to reduce 
the space needed for the private key, one can only store the 32-byte seed ξ , which is suffcient to generate 
the other parts of the private key. For additional details, see Section 3.1 in [5]. 
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ML-DSA-44 
ML-DSA-65 
ML-DSA-87 

Private Key 
2528 
4000 
4864 

Public Key 
1312 
1952 
2592 

Signature Size 
2420 
3293 
4595 

Table 2. Sizes (in bytes) of keys and signatures of ML-DSA. 
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5. Key Generation 

The key generation algorithm ML-DSA.KeyGen takes no input and outputs a public key and a private key, 
which are both encoded as byte strings. 

The algorithm begins by using an approved RBG to generate a 256-bit random seed ξ , which is expanded 
as needed using an XOF (namely, SHAKE-256) to produce other random values. In particular: 

• A public random seed ρ . Using this seed, a polynomial matrix, A  Rk  ∈ ×ℓ
q is pseudorandomly 

sampled  from Rk×ℓ 
q .

• A private random seed ρ ′ . Using this seed, the polynomial vectors s1 ∈ Rℓ and s2 ∈q  Rk 
q are

pseudorandomly sampled from the subset of polynomial vectors whose coeffcients are short, (i.e. 
in the range [−η ,η ]). 

• A private random seed K for use during signing. 

The core cryptographic operation computes the public value, 

t = As1 + s2. 

The vector t together with the matrix A may be thought of as an expanded form of the public key. The 
vector t is compressed in the actual public key by dropping the d least signifcant bits from each coeffcient, 
thus producing the polynomial vector t1. This compression is an optimization for performance, not security. 
The low order bits of t can be reconstructed from a small number of signatures and, therefore, need not be 
regarded as secret. 

The ML-DSA public key pk is a byte encoding of the public random seed ρ and the compressed polynomial 
vector t1. 

The ML-DSA private key sk is a byte encoding of the public random seed ρ ; a 256-bit private random seed 
K for use during signing; a 512-bit hash of the public key, tr, for use during signing; the secret polynomial 
vectors s1 and s2; and a polynomial vector t0 encoding the d least signifcant bits of each coeffcient of the 
uncompressed public-key polynomial t. 

2

2More precisely, since only the NTT form of A, Â ∈ T k×ℓ 
q = NTT(A) is needed in subsequent calculations, the code 

actually computes Â as a pseudorandom sample over T k×ℓ
q , and the sampling of A = NTT−1(Â ) is only implicit (it 

could be computed but is not). 
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Algorithm 1 ML-DSA.KeyGen() 

Generates a public-private key pair. 

Output: Public key, pk ∈ B32+32k(bitlen (q−1)−d), 
and private key, sk  B32+32+64+32·((ℓ+k bitlen ∈ )· (2η)+dk). 

1: ξ 256 ←{0,1} ▷ Choose random seed 
′ 2: (ρ,ρ ,K 256 512 ) ∈ {0,1} ×{0,1} ×{0 256 ,1} ← H(ξ ,1024) ▷ Expand seed 

3: Â ← ExpandA(ρ) ▷ A is generated and stored in NTT representation as Â 
4: (s ′

1,s2) ← ExpandS(ρ  ) 
5: t ← NTT−1(Â ◦ NTT(s1)) + s2 ▷ Compute t = As1 + s2 
6: (t1, t0) ← Power2Round(t,d) ▷ Compress t 
7: pk ← pkEncode(ρ, t1) 
8: tr ← H(BytesToBits(pk),512) 
9: sk ← skEncode(ρ,K, tr,s1,s2, t0) ▷ K and tr are for use in signing 

10: return (pk,sk) 
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6. Signing 
ML-DSA.Sign (Algorithm 2) takes as input a private key sk, encoded as a byte string, and a message, 
M, encoded as a bit string, and it outputs a signature encoded as a byte string. There are two versions 
of the algorithm: “hedged” and “deterministic.” The default “hedged” version of ML-DSA.Sign uses 
fresh randomness. In addition, for platforms where a random number generator is unavailable, an optional 
deterministic variant is specifed. However, the lack of randomness in the deterministic variant makes 
the risk of side-channel attacks more diffcult to mitigate. Therefore, this variant should not be used on 
platforms where side-channel attacks are a concern and where they cannot be otherwise mitigated. (See 
the discussion in Section 3 for more details.) 

Note that implementing the hedged variant only (without the deterministic variant) is suffcient to guarantee 
interoperability. The same verifcation algorithm will work to verify signatures produced by either 
variant, so implementing the deterministic variant in addition to the hedged variant does not enhance 
interoperability. 

In both variants, the signer frst extracts the following from the private key: the public random seed ρ; 
the 256-bit private random seed K; the 512-bit hash of the public key, tr; the secret polynomial vectors 
s1 and s2; and the polynomial vector t0 encoding the d least signifcant bits of each coeffcient of the 
uncompressed public key polynomial t. ρ is then expanded to the same matrix A as in key generation. 

Before the message, M, is signed, it is concatenated with the public-key hash tr and hashed down to a 
512-bit message representative, µ , using the hash function H (see section 8.3). 

The signer produces an additional 512-bit seed ρ ′, for private randomness during each signing operation. 
ρ ′ is computed as ρ ′ ← H(K||rnd||µ,512). In the default “hedged” variant, rnd is the output of an RBG, 
while in the deterministic variant rnd is a 256-bit string consisting entirely of zeroes. This is the only 
difference between the deterministic and hedged variant of ML-DSA.Sign. 

The main part of the signing algorithm consists of a rejection sampling loop, where each iteration of the 
loop either produces a valid signature or an invalid signature whose release would leak information about 
the private key. The loop is repeated until a valid signature is produced, which can then be encoded as a 
byte string and output. The rejection sampling loop follows the Fiat-Shamir with aborts paradigm [9] and 
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(aside from the rejection step) is similar in structure to Schnorr signatures [28] (e.g., EdDSA [29]). The 
signer frst produces a “commitment” w1. Then the signer pseudorandomly derives a “challenge” c from 
w1 and the message representative µ . Finally, the signer computes a response z. 

In more detail, the main computations involved in the rejection sampling loop are as follows: 

• Using the   ExpandMask function (Algorithm 28), the seed ρ ′ and a counter κ , a polynomial vector 
y ∈ Rℓ 

q is pseudorandomly sampled from the subset of polynomial vectors whose coeffcients are
moderately short (i.e. in the range [−γ1 + 1,γ1]). 

• From y, the signer computes the commitment w1 by computing w = Ay and then rounding to a 
nearby multiple of 2γ2, using HighBits (Algorithm 31). 

• w1 and µ are concatenated and hashed to produce the commitment hash c̃. This uses the function 
w1Encode (Algorithm 22). Let c̃1 denote the frst 256 bits of c̃. The bit string c̃1 is used to 
pseudorandomly sample a polynomial c ∈ Rq that has coeffcients in {−1,0,1} and Hamming 
weight τ . The sampling is done with the function SampleInBall (Algorithm 23). 

• The signer computes the response z = y+ cs1 and performs various validity checks. If any of the 
checks fail, the signer will continue the rejection sampling loop. 

• If the checks pass, the signer can compute a hint polynomial, h, which will allow the verifer to 
reconstruct w1 using the compressed public key (along with the other components of the signature). 
This uses the function MakeHint (Algorithm 33). The signer will then output the fnal signature, 
which is a byte encoding of the commitment hash c̃, the response z, and the hint h. 

In addition, there is an alternative way of implementing the validity checks on z, and the computation of h, 
which is described in section 5.1 of [5]. This method may also be used in implementations of ML-DSA. 

In Algorithm 2, variables are sometimes used to store products to avoid recomputing them later in the 
signing algorithm. These precomputed products are denoted in the pseudocode by a pair of double angle 
brackets enclosing the variables being multiplied (e.g., ⟨⟨cs1⟩⟩). 

3 

3The length of c̃1 is determined by the targeted security strength against signature forgery attacks, and the required 
length is only 256 bits for 256 bits of classical security. The length of c̃ is determined by the desired security with 
respect to the “message-bound signatures” property described in [6]. Here, a length of 2λ bits is required for λ bits 
of classical security. 
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Algorithm 2 ML-DSA.Sign(sk, M) 

Generates a signature for a message M. 

Input: Private key, sk  B32+32 ( k∈ +64+32· (ℓ+ )·bitlen (2η)+dk) and the message M ∈ {0,1}∗ . 
Output: Signature, σ 32 32 1 bitlen γ 1 ω∈ B +ℓ· ·( + ( 1− ))+ +k . 

1: (ρ,K, tr,s1,s2, t0) ← skDecode(sk) 
2: ŝ1 ← NTT(s1) 
3: ŝ2 ← NTT(s2) 
4: t̂0 ← NTT(t0) 
5: Â ← ExpandA(ρ) ▷ A is generated and stored in NTT representation as Â 
6: µ ← H(tr||M,512) ▷ Compute message representative µ 

rnd 0 1 256 256 7: ←{ , } ▷ For the optional deterministic variant, substitute rnd ←{0}
8: ρ ′ ← H(K||rnd||µ,512) ▷ Compute private random seed 
9: κ ← 0 ▷ Initialize counter κ 

10: (z,h) ←⊥ 
11: while (z,h) = ⊥ do ▷ Rejection sampling loop 

′ 12: y ← ExpandMask(ρ ,κ) 
13: w ← NTT−1(Â ◦ NTT(y)) 
14: w1 ← HighBits(w) ▷ Signer’s commitment 
15: c̃ ∈ {0,1 2λ } ← H(µ||w1Encode(w1),2λ ) ▷ Commitment hash 
16: (c̃1, c̃2) 256 2λ 256 ∈ {0,1} ×{0,1} − ← c̃ ▷ First 256 bits of commitment hash 
17: c ← SampleInBall(c̃1) ▷ Verifer’s challenge 
18: ĉ ← NTT(c) 
19: ⟨⟨cs1⟩⟩ ← NTT−1(ĉ◦ ŝ1) 
20: ⟨⟨cs2⟩⟩ ← NTT−1(ĉ◦ ŝ2) 
21: z ← y + ⟨⟨cs1⟩⟩ ▷ Signer’s response 
22: r0 ← LowBits(w − ⟨⟨cs2⟩⟩) 
23: if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β then (z,h) ←⊥ ▷ Validity checks 
24: else 
25: ⟨⟨ct0⟩⟩ ← NTT−1(ĉ◦ t̂0) 
26: h ← MakeHint(−⟨⟨ct0⟩⟩,w− ⟨⟨cs2⟩⟩ + ⟨⟨ct0⟩⟩) ▷ Signer’s hint 
27: if ||⟨⟨ct0⟩⟩||∞ ≥ γ2 or the number of 1’s in h is greater than ω , then (z,h) ←⊥ 
28: end if 
29: end if 
30: κ ← κ + ℓ ▷ Increment counter 
31: end while 
32: σ ← sigEncode(c̃,z mod±q,h) 
33: return σ 
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7. Verifcation 

The algorithm ML-DSA.Verify (Algorithm 3) takes as input a public key pk encoded as a byte string, a 
message M encoded as a bit string, and a signature σ encoded as a byte string. ML-DSA.Verify requires 
no randomness. It produces as output a Boolean value (i.e., a value that is true if the signature is valid 
with respect to the message and public key, and false if the signature is invalid). Algorithm 3 specifes the 
length of the signature σ and the public key pk in terms of the parameters described in section 1. If an 
implementation of ML-DSA.Verify can accept inputs for σ or pk of any other length, it shall return false 
whenever the length of either of these inputs differs from its specifed length. 

The verifer frst extracts the public random seed ρ and the compressed polynomial vector t1 from the 
public key pk; and extracts the signer’s commitment hash c̃, response z, and hint h from the signature σ . 
The verifer may fnd that the hint was not properly byte encoded, denoted by the symbol “⊥,” in which 
case the verifcation algorithm will immediately return false, indicating that the signature is invalid. 

Assuming that the signature is successfully extracted from its byte encoding, the verifer pseudorandomly 
derives A from ρ , as is done in key generation and signing, and creates a message representative µ , by 
hashing the concatenation of tr (the hash of the public key pk) and the message M. 

The verifer then attempts to reconstruct the signer’s commitment (the polynomial vector w1) from 
the public key pk and the signature σ . In ML-DSA.Sign, w1 is computed by rounding w = Ay. In 
ML-DSA , the reconstructed value of w is called w ′ .Verify 1 1, since it may have been computed in a different 
way, in the case where the signature is invalid. This w ′ 1 is computed through the following process: 

• Derive the challenge polynomial c from the signer’s commitment hash c̃, as done in ML-DSA.Sign. 

• Use the signer’s response z to compute 

w′ d − ·Approx = Az  ct1  2 . 

Note that assuming the signature was computed correctly, as in ML-DSA.Sign, it follows that 

w = Ay = Az − ct + cs d ≈ ′ 
2  wApprox = Az − ct1 · 2 , 

because c and s2 have small coeffcients, and t1 · 2d ≈ t . 

• Use the signer’s hint h to obtain w ′ 1 from w ′ Approx. 

Finally, the verifer checks that the signer’s response z and the signer’s hint h are valid, and that the 
reconstructed w ′ 1 is consistent with the signer’s commitment hash c̃. More precisely, the verifer checks 
that all of the coeffcients of z are suffciently small (i.e., in the range [−(γ1 − β ),γ1 − β ]); that h contains 
no more than ω nonzero coeffcients; and that c̃ matches the hash c̃′ of the message representative µ 
concatenated with w ′ 1 (represented as a bit string). If all of these checks succeed, then ML-DSA.Verify 
returns true. Otherwise it returns false. 
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Algorithm 3 ML-DSA.Verify(pk, M, σ ) 

Verifes a signature σ for a message M. 

Input: Public key, pk ∈ B32+32k(bitlen (q−1)−d) and message M  ∈ {0,1}∗. 
Input: Signature, σ  B32+ℓ·32·(1+bitlen (γ1−1))+ω k ∈ + . 
Output: Boolean 

1: (ρ, t1) ← pkDecode(pk) 
2: (c̃,z,h) ← sigDecode(σ) ▷ Signer’s commitment hash c̃, response z and hint h 
3: if h = ⊥ then return false ▷ Hint was not properly encoded 
4: end if 
5: Â ← ExpandA(ρ) ▷ A is generated and stored in NTT representation as Â 
6: tr ← H(BytesToBits(pk),512) 
7: µ ← H(tr||M,512) ▷ Compute message representative µ 
8: (c̃ 256 2λ 256 

1, c̃2) ∈ {0,1} ×{0,1} − ← c̃ 
9: c ← SampleInBall(c̃1) ▷ Compute verifer’s challenge from c̃ 

10: w ′ ← A ˆ ◦NTT(z d  d NTT−1(  ) − NTT(c) ◦ NTT( ▷ w ′Approx t1 · 2 )) = Approx Az− ct1 · 2
11: w ′ ← UseHint(1 h,w ′ ) ▷ Approx Reconstruction of signer’s commitment
12: c̃′ ← H  (µ||w1Encode(w ′ ),1 2λ ) ▷ Hash it; this should match c̃ 
13: return [[ ||z||∞ < γ1 − β ]] and  [[c̃ = c̃′]] and [[number of 1’s in h is ≤ ω]] 
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7.1 Prehash ML-DSA 
For some cryptographic modules that generate ML-DSA signatures, hashing the message in ML-DSA.Sign 
(step 6 of Algorithm 2) may have unacceptable performance when the message M is large. For example, the 
platform may require hardware support for hashing to achieve acceptable performance, but lack hardware 
support for SHAKE256 specifcally. For some use cases, this may be addressed by signing a digest of the 
message rather than signing the message directly. 

In order to maintain the same level of security strength, the digest that is signed needs to be generated using 
an approved hash function or extendable-output function (XOF) (e.g., from FIPS 180 [8] or FIPS 202 [7]) 
that provides at least λ bits of classical security strength against both collision and second preimage 
attacks [7, Table 4]. Note that verifcation of a signature created in this way will require the verify function 
to generate a digest from the message in the same way to be used as input for the verifcation function. 

4 

4Obtaining at least λ bits of classical security strength against collision attacks requires that the digest to be signed 
be at least 2λ bits in length. 
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8. Auxiliary Functions 
This section provides pseudocode for subroutines utilized by ML-DSA, including functions for data-type 
conversions, arithmetic, and sampling. 

8.1 Conversion Between Data Types 
All keys and signatures in ML-DSA are communicated as byte strings. The goal in this subsection is to 
construct procedures for translating between byte strings and the various other algebraic objects defned in 
subsection 2.3. 

Algorithms 4–7 are simple intermediate procedures for converting between bit strings, byte strings, and 
integers. 

Algorithm 4 IntegerToBits(x,α) 

Computes the base-2 representation of x mod 2α (using in little-endian order). 

Input: A nonnegative integer x and a positive integer α . 
Output: A bit string y of length α . 

1: for i from 0 to α − 1 do 
2: y[i] ← x mod 2 
3: x ← ⌊x/2⌋ 
4: end for 
5: return y 

Algorithm 5 BitsToInteger(y) 
Computes the integer value expressed by a bit string (using little-endian order). 

Input: A bit string y of length α . 
Output: A nonnegative integer x. 

1: x ← 0 
2: for i from 1 to α do 
3: x ← 2x + y[α − i] 
4: end for 
5: return x 
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Algorithm 6 BitsToBytes(y) 
Converts a string of bits of length c into a string of bytes of length ⌈c/8⌉. 
Input: A bit string y of length c. 
Output: A byte string z. 

1: z ← 0⌈c/8⌉ 

2: for i from 0 to c − 1 do 
i mod 8 3: z [⌊i/8⌋] ← z [⌊i/8⌋]+ y[i] · 2

4: end for 
5: return z 

Algorithm 7 BytesToBits(z) 
Converts a byte string into a bit string. 

Input: A byte string z of length d. 
Output: A bit string y. 

1: for i from 0 to d − 1 do 
2: for j from 0 to 7 do 
3: y[8i+ j] ← z[i] mod 2 
4: z[i] ← ⌊z[i]/2⌋ 
5: end for 
6: end for 
7: return y 
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Algorithms 8–9 translate byte strings into coeffcients of polynomials in Rq. CoeffFromThreeBytes 
uses a three-byte string to either generate an element of {0,1, . . . ,q − 1} or return the blank symbol ⊥. 
CoefFromHalfByte uses an element of {0,1, . . . ,15} to either generate an element of {−η ,−η +1, . . . ,η}
or return ⊥. These two procedures will be used in the uniform sampling algorithms, RejNTTPoly and 
RejBoundedPoly, discussed in subsection 8.3. 

Algorithm 8 CoefFromThreeBytes(b0,b1,b2) 

Generates an element of {0,1,2, . . . ,q − 1} ∪ {⊥}. 
Input: Bytes b0,b1,b2. 
Output: An integer modulo q or ⊥. 

1: if b2 > 127 then 
2: b2 ← b2 − 128 ▷ Set the top bit of b2 to zero 
3: end if 
4: z ← 216 · b 8 

2 + 2 · b1 + b0 
5: if z < q then return z 
6: else return ⊥ 
7: end if 
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Algorithm 9 CoefFromHalfByte(b) 

Generates an element of {−η ,−η + 1, . . . ,η} ∪ {⊥}. 
Input: Integer b ∈ {0,1, . . . ,15}. 
Output: An integer between −η and η , or ⊥. 

1: if η = 2 and b < 15 then return 2− (b mod 5) 
2: else 
3: if η = 4 and b < 9 then return 4 − b 
4: else return ⊥ 
5: end if 
6: end if 

Algorithms 10–13 effciently translate an element w ∈ R into a byte string and vice versa under the 
assumption that the coeffcients of w are in a restricted range. SimpleBitPack assumes that wi ∈ [0,b] 
for some positive integer b and packs w into a byte string of length 32 · bitlen b. BitPack allows for the 
more general restriction wi ∈ [−a,b]. The BitPack algorithm works by merely subtracting w from the 
polynomial ∑255 i 

i=0 bX and then applying SimpleBitPack. 

Algorithm 10 SimpleBitPack(w,b) 

Encodes a polynomial w into a byte string. 

Input: b ∈ N and w ∈ R such that the coeffcients of w are all in [0,b]. 
Output: A byte string of length 32 · bitlen b. 

1: z ← () ▷ set z to the empty string 
2: for i from 0 to 255 do 
3: z ← z||IntegerToBits(wi,bitlen b) 
4: end for 
5: return BitsToBytes(z) 

Algorithm 11 BitPack(w,a,b) 
Encodes a polynomial w into a byte string. 

Input: a,b ∈ N and w ∈ R such that the coeffcients of w are all in [−a,b]. 
Output: A byte string of length 32 · bitlen (a + b). 

1: z ← () ▷ set z to the empty string 
2: for i from 0 to 255 do 
3: z ← z||IntegerToBits(b − wi,bitlen (a + b)) 
4: end for 
5: return BitsToBytes(z) 

SimpleBitUnpack and BitUnpack are used to decode the byte strings produced by the above functions. 
Note that for some choices of a and b, there exist malformed byte strings that will cause SimpleBitUnpack 
and BitUnpack to output polynomials whose coeffcients do not lie in the ranges [0,b] and [−a,b], 
respectively. This can be a concern, when running SimpleBitUnpack and BitUnpack on inputs that may 
come from an untrusted source. 
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Algorithm 12 SimpleBitUnpack(v,b) 

Reverses the procedure SimpleBitPack. 

Input: b ∈ N and a byte string v of length 32 · bitlen b. 
Output: A polynomial w ∈ R, with coeffcients in c [0,2 − 1], where c = bitlen b. 
When b + 1 is a power of 2, the coeffcients are in [0,b]. 

1: c ← bitlen b 
2: z ← BytesToBits(v) 
3: for i from 0 to 255 do 
4: wi ← BitsToInteger((z[ic],z[ic + 1], . . .z[ic + c − 1]),c) 
5: end for 
6: return w 

Algorithm 13 BitUnpack(v,a,b) 
Reverses the procedure BitPack. 

Input: a,b ∈ N and a byte string v of length 32 · bitlen (a + b). 
Output: A polynomial w ∈ R, with coeffcients in [b− 2c + 1,b], where c = bitlen (a + b). 
When a + b + 1 is a power of 2, the coeffcients are in [−a,b]. 

1: c ← bitlen (a + b) 
2: z ← BytesToBits(v) 
3: for i from 0 to 255 do 
4: wi ← b − BitsToInteger((z[ic],z[ic + 1], . . .z[ic + c − 1]),c) 
5: end for 
6: return w 
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Algorithms 14–15 carry out byte-string-to-polynomial conversions for polynomials with sparse binary 
coeffcients. In particular, the signing and verifcation algorithms (sections 6 and 7) make use of a “hint,” 
which is a vector of polynomials h ∈ Rk 

2 such that the total number of coeffcients in h[0],h[1], . . . ,h[k − 1] 
that are equal to 1 is no more than ω . This constraint enables encoding and decoding procedures that are 
more effcient (although more complex) than BitPack and BitUnpack. 

HintBitPack (h) outputs a byte string y of length ω + k. The last k bytes of y contain information about 
how many nonzero coeffcients are present in each of the polynomials h[0],h[1], . . . ,h[k − 1], and the frst 
ω bytes of y contain information about exactly where those nonzero terms occur. HintBitUnpack reverses 
the procedure performed by HintBitPack and recovers the vector h. 
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Algorithm 14 HintBitPack(h) 
Encodes a polynomial vector h with binary coeffcients into a byte string. 

Input: A polynomial vector h ∈ Rk  2 such that at most ω of the coeffcients in h are equal to 1. 
Output: A byte string y of length ω + k. 

1: y ∈ Bω+k ← 0ω+k 

2: Index ← 0 
3: for i from 0 to k − 1 do 
4: for j from 0 to 255 do 
5: if h[i] j = 0 then 
6: y[Index] ← j ▷ Store the locations of the nonzero coeffcients in h[i] 
7: Index ← Index + 1 
8: end if 
9: end for 

10: y[ω + i] ← Index ▷ Store the value of Index after processing h[i] 
11: end for 
12: return y 

Algorithm 15 HintBitUnpack(y) 
Reverses the procedure HintBitPack. 

Input: A byte string y of length ω + k. 
Output: A polynomial vector h ∈ Rk 

2 or ⊥. 
h  Rk k 1: ∈ ← 2 0

2: Index ← 0 
3: for i from 0 to k − 1 do 
4: if y[ω + i] < Index or y[ω + i] > ω then return ⊥ 
5: end if 
6: while Index < y[ω + i] do 
7: h[i]y[Index] ← 1 
8: Index ← Index + 1 
9: end while 

10: end for 
11: while Index < ω do 
12: if y[Index]  = 0 then return ⊥ 
13: end if 
14: Index ← Index + 1 
15: end while 
16: return h 

̸

̸
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8.2 Encodings of ML-DSA Keys and Signatures 
Algorithms 16–21 translate keys and signatures for ML-DSA into byte strings. These procedures take 
certain sequences of algebraic objects, encode them (consecutively) into byte strings, and perform the 
respective decoding procedures. 
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First, pkEncode and pkDecode translate ML-DSA public keys into byte strings, and vice versa. Note that, 
when verifying a signature, pkDecode might be run on an input that comes from an untrusted source. Thus, 
care is required when using SimpleBitUnpack. As used here, SimpleBitUnpack always returns values in 
the correct range. 

Algorithm 16 pkEncode(ρ, t1) 

Encodes a public key for ML-DSA into a byte string. 

Input:ρ ∈ {0,1 256 } , t1 ∈ Rk with coeffcients in [0, 2bitlen (q−1)−d − 1]). 
Output: Public key pk ∈ B32+32k(bitlen (q−1)−d). 

1: pk ← BitsToBytes(ρ) 
2: for i from 0 to k − 1 do 

pk  pk   t i 2bitlen (q−1)−d 3: ← || SimpleBitPack ( 1[ ], − 1) 
4: end for 
5: return pk 

Algorithm 17 pkDecode(pk) 
Reverses the procedure pkEncode. 

Input: Public key pk ∈ B32+32k(bitlen (q−1)−d). 
Output: ρ ∈ {0,1 256 } , t1 ∈ Rk with coeffcients in [0, 2bitlen (q−1)−d − 1]).� �k 

1: (y 0 ∈ B32 ,z , . . . ,zk−1) × B32(bitlen (q−1)−d) ← pk 
2: ρ ← BytesToBits(y) 
3: for i from 0 to k − 1 do 
4: t bitlen (q−1)−d 

1[i] ← SimpleBitUnpack(zi,2 − 1)) ▷ This is always in the correct range 
5: end for 
6: return (ρ, t1) 
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Next, skEncode and skDecode translate ML-DSA secret keys into byte strings, and vice versa. Note that 
there exist malformed inputs that can cause skDecode to return values that are not in the correct range. 
Hence skDecode should only be run on input that comes from trusted sources. 

Algorithm 18 skEncode(ρ,K, tr,s1,s2, t0) 

Encodes a secret key for ML-DSA into a byte string. 

Input: ρ 0 1 256  K 0 1 256  tr 0 1 512, s  Rℓ ∈ { , } , ∈ { , } , ∈ { , } 1 ∈ with coeffcients in [−η ,η ], 
s2 ∈ Rk with coeffcients in [−η η 1, ], t k d 1 d

0 ∈ R with coeffcients in [−2 − + 1,2 − ]. 
Output: Private key, sk ∈ B32+32+64+32·((k+ℓ)·bitlen (2η)+dk). 

1: sk ← BitsToBytes(ρ) || BitsToBytes(K) || BitsToBytes(tr) 
2: for i from 0 to ℓ − 1 do 
3: sk ← sk || BitPack (s1[i],η ,η) 
4: end for 
5: for i from 0 to k − 1 do 
6: sk ← sk || BitPack (s2[i],η ,η) 
7: end for 
8: for i from 0 to k − 1 do 
9: sk ← sk || BitPack (t0[i d 1 d 1],2 − − 1,2 − ) 

10: end for 
11: return sk 
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Algorithm 19 skDecode(sk) 

Reverses the procedure skEncode. 

Input: Private key, sk ∈ B32+32+64+32·((ℓ+k)·bitlen (2η)+dk). 
Output: ρ ∈ {0,1 256 } , K ∈ {0,1 256 512} , tr ∈ {0,1} , 
s1 ∈ Rℓ , s2 ∈ Rk , t0 ∈ Rk with coeffcients in [−2d−1 + 1,2d−1]. � �ℓ 

1: ( f ,g,h,y0, . . . ,yℓ−1,z0, . . . ,zk−1,w0, . . . ,wk−1)  B32 × B32 × B64 B32·bitlen (2η∈ × ) × � �k � �kB32·bitlen (2η) B32d× ← sk 
2: ρ ← BytesToBits( f ) 
3: K ← BytesToBits(g) 
4: tr ← BytesToBits(h) 
5: for i from 0 to ℓ − 1 do 
6: s1[i] ← BitUnpack(yi,η ,η) ▷ This may lie outside [−η ,η ], if input is malformed 
7: end for 
8: for i from 0 to k − 1 do 
9: s2[i] ← BitUnpack(zi,η ,η) ▷ This may lie outside [−η ,η ], if input is malformed 

10: end for 
11: for i from 0 to k − 1 do 
12: t0[i] d← BitUnpack(wi,2 −1 − 1,2d−1) ▷ This is always in the correct range 
13: end for 
14: return (ρ,K, tr,s1,s2, t0) 
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Next, sigEncode and sigDecode translate ML-DSA signatures into byte strings, and vice versa. Note that, 
when verifying a signature, sigDecode might be run on input that comes from an untrusted source. Thus 
care is required when using BitUnpack. As used here, BitUnpack always returns values in the correct 
range. 

Algorithm 20 sigEncode(c̃,z,h) 
Encodes a signature into a byte string. 

Input: c̃  ∈ {0,1 2λ} , z ∈ Rℓ with coeffcients in γ γ k [− 1 + 1, 1], h ∈ R2. 
Output: Signature, σ  Bλ 32·(1+bitlen γ∈ /4+ℓ· ( 1−1))+ω+k . 

1: σ ← BitsToBytes(c̃) 
2: for i from 0 to ℓ − 1 do 
3: σ ← σ || BitPack (z[i],γ1 − 1,γ1) 
4: end for 
5: σ ← σ || HintBitPack (h) 
6: return σ 

Algorithm 21 sigDecode(σ) 

Reverses the procedure sigEncode. 

Input: Signature, σ  Bλ /4+ℓ·32·(1+bitlen (γ ω k ∈ 1−1))+ + . 
Output: c̃ 2∈ {0 1 λ } , z  k , ∈ Rℓ

q with coeffcients in [−γ1 + 1,γ1], h ∈ R2 or ⊥.

w λ 4 32 11: ( ,x , . . . ,x ,y) ∈ B / × Bℓ· ·( +bitlen (γ1−1)) 
0 ℓ−1 × Bω+k ← σ 

2: c̃ ← BytesToBits(w) 
3: for i from 0 to ℓ − 1 do 
4: z[i] ← BitUnpack(xi,γ1 − 1,γ1) ▷ This is always in the correct range, as γ1 is a power of 2 
5: end for 
6: h ← HintBitUnpack(y) 
7: return (c̃,z,h) 

Lastly, w1Encode (Algorithm 22) is a specifc subroutine that is used in ML-DSA.Sign (Algorithm 2). 
Algorithm 22 encodes a polynomial vector w1 into a string of bits, so that it can be processed by the hash 
function, H. 

Algorithm 22 w1Encode(w1) 

Encodes a polynomial vector w1 into a bit string. 

Input: w  Rk 
1 ∈ with coeffcients in [0,(q − 1)/(2γ2) − 1]. 

Output: A bit string representation, w̃ 32k bitlen q 1∈ {0,1} · (( − )/(2γ2)−1)
1 . 

1: w̃1 ← () 
2: for i from 0 to k − 1 do 
3: w̃1 ← w̃1 || BytesToBits (SimpleBitPack (w1[i],(q − 1)/(2γ2) − 1)) 
4: end for 
5: return w̃1 
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8.3 Hashing and Pseudorandom Sampling 
The ML-DSA scheme makes use of two extendable-output functions (XOFs) that will be denoted by H 
and H128, each of which accepts a bit string v and a positive integer d and returns a length-d bit string. The 
functions H and H128 shall be computed from the procedures in FIPS 202 [7] as follows: 

H(v,d) ← SHAKE256(v,d), (8.1) 
H128(v,d) ← SHAKE128(v,d). (8.2) 

The algorithm SHAKE256 is such that if c < d are positive integers and ρ ∈ {0,1}∗, then H(ρ,c) is exactly 
equal to the frst c bits of H(ρ,d). The same is true of SHAKE128. For convenience, the expression 
H(ρ)[k] may be used to denote the bit H(ρ,k + 1)[k] for any nonnegative integer k. Similarly, H(ρ)J jK 
denotes the byte expressed by the bit string 

H(ρ,8( j + 1))[8 j],H(ρ,8( j + 1))[8 j + 1], . . . ,H(ρ,8( j + 1))[8 j + 7] (8.3) 

(in little endian-order). The expressions H128(ρ)[k] and H128(ρ)J jK are similarly defned. 

The notation H(ρ)[k] is used in loops where an unknown number of bits of the form H(ρ)[k] will be needed 
to compute a pseudorandom value (for the same ρ and consecutive, increasing values of k). It is expected 
that implementations will avoid recomputation by keeping track of the internal state of the SHAKE256 
computation throughout the loop, and will only completely destroy that information once the the loop ends. 
Similar implementation considerations apply when the XOF is H128 and when the output is parsed in bytes. 

When H is used with a fxed length output, this standard sometimes refers to H as a hash function. Note 
that, while H used with a fxed output length is a hash function, it is not an approved hash function for 
general use. This standard only approves the use of H as a hash function where it is explicitly specifed as 
part of the algorithms herein, or as part of a mathematically equivalent set of steps being performed in 
place of the steps of these algorithms. In other contexts, the fact that H(ρ,c) is a prefx of H(ρ,d) for any 
d > c, may interfere with desired security properties, but it is believed that when H is used as described in 
this standard, it is overwhelmingly unlikely that H will be used with the same input string but a different 
output length. 

In addition, this subsection specifes various algorithms for generating algebraic objects pseudorandomly 
from a seed ρ . The length of the bit string ρ varies depending on the algorithm. 

The frst procedure to be defned is SampleInBall in Algorithm 23. Let Bτ denote the set of all polynomials 
c ∈ Rq such that 

• Each coeffcient of c is either −1, 0, or 1, and 

• Exactly τ of the coeffcients of c are nonzero. 

SampleInBall generates an element of Bτ pseudorandomly using the XOF of a seed ρ . The procedure is 
based on the Fisher-Yates shuffe. The frst 8 bytes of H(ρ) are used to choose the signs of the nonzero 
entries of c,  and subsequent bytes of H(ρ) are used to choose the positions of those nonzero entries. 5

5The parameter τ is always less than or equal to 64, and thus 8 bytes are suffcient to choose the signs for all τ 
nonzero entries of c. 
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Algorithm 23 SampleInBall(ρ) 

Samples a polynomial c ∈ Rq with coeffcients from {−1,0,1} and Hamming weight τ . 

Input: A seed ρ ∈ {0,1 256 }
Output: A polynomial c in Rq. 

1: c ← 0 
2: k ← 8 
3: for i from 256 − τ to 255 do 
4: while H(ρ)JkK > i do 
5: k ← k + 1 
6: end while 
7: j ← H(ρ)JkK ▷ j is a pseudorandom byte that is ≤ i 
8: ci ← c j 

9: c τ← (−1 H) (ρ)[i+ −256] 
j 

10: k ← k + 1 
11: end for 
12: return c 
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Algorithms 24–28 are the pseudorandom procedures RejNTTPoly, RejBoundedPoly, ExpandA, ExpandS, 
d ExpandMask. Each generates elements of Rq or Tq under different input and output conditions. 
jNTTPoly and ExpandA make use of the more effcient XOF H128, whereas the other three procedures 
e the XOF H. 

e procedure ExpandMask (Algorithm 28) generates a polynomial vector s in Rk 
q that disguises the secret 

y in the Sign procedure (Algorithm 2). In addition to the seed ρ , ExpandMask also accepts an integer 
put µ that is incorporated into the pseudorandom procedure that generates s. 

lgorithm 24 RejNTTPoly(ρ) 
mples a polynomial ∈ Tq. 

put: A seed ρ ∈ {0,1 272} . 
utput: An element â ∈ Tq. 
: j ← 0 
: c ← 0 
: while j < 256 do 
: â[ j] ← CoefFromThreeBytes(H128(ρ)JcK,H128(ρ)Jc + 1K,H128(ρ)Jc + 2K) 
: c ← c + 3 
: if â[ j] =⊥ then 
: j ← j + 1 
: end if 
: end while 
: return â 

an
Re
us

Th
ke
in

A
Sa

In
O

1
2
3
4
5
6
7
8
9

10

̸

30 



FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD 

Algorithm 25 RejBoundedPoly(ρ) 
Samples an element a ∈ Rq with coeffcients in [−η ,η ] computed via rejection sampling from ρ . 

Input: A seed ρ ∈ {0,1 528} . 
Output: A polynomial a ∈ Rq. 

1: j ← 0 
2: c ← 0 
3: while j < 256 do 
4: z ← H(ρ)JcK 
5: z0 ← CoefFromHalfByte(z mod 16,η) 
6: z1 ← CoefFromHalfByte(⌊z/16⌋,η) 
7: if z0 =⊥ then 
8: a j ← z0 
9: j ← j + 1 

10: end if 
11: if z1 =⊥ and j < 256 then 
12: a j ← z1 
13: j ← j + 1 
14: end if 
15: c ← c + 1 
16: end while 
17: return a 

Algorithm 26 ExpandA(ρ) 

Samples a k × ℓ matrix Â of elements of Tq. 

Input: ρ ∈ {0,1 256} . 
Output: Matrix Â. 

1: for r from 0 to k − 1 do 
2: for s from 0 to ℓ − 1 do 
3: Â[r,s] ← RejNTTPoly(ρ||IntegerToBits(s,8)||IntegerToBits(r,8)) 
4: end for 
5: end for 
6: return Â 

̸

̸
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Algorithm 27 ExpandS(ρ) 

Samples vectors s1 ∈ Rℓ and s2 ∈ Rk, each with coeffcients in the interval [−q q η ,η ].

Input: ρ 512 ∈ {0,1}
Output: Vectors s1,s2 of polynomials in Rq. 

1: for r from 0 to ℓ − 1 do 
2: s1[r] ← RejBoundedPoly(ρ||IntegerToBits(r,16)) 
3: end for 
4: for r from 0 to k − 1 do 
5: s2[r] ← RejBoundedPoly(ρ||IntegerToBits(r + ℓ,16)) 
6: end for 
7: return (s1,s2) 

Algorithm 28 ExpandMask(ρ, µ) 

Samples a vector s ∈ Rℓ 
q such that each polynomial s j has coeffcients between −γ1 + 1 and γ1.

Input: A bit string ρ ∈ {0,1 512 } and a nonnegative integer µ . 
Output: Vector s ∈ Rℓ 

q. 
1: c ← 1 + bitlen (γ1 − 1) ▷ γ1 is always a power of 2 
2: for r from 0 to ℓ − 1 do 
3: n ← IntegerToBits(µ + r,16) 
4: v ← (H(ρ||n)J32rcK,H(ρ||n)J32rc + 1K, . . . ,H(ρ||n)J32rc + 32c − 1K) 
5: s[r] ← BitUnpack(v,γ1 − 1,γ1) 
6: end for 
7: return s 
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8.4 High Order / Low Order Bits and Hints 
This specifcation uses the auxiliary functions Power2Round, Decompose, HighBits, LowBits, MakeHint, 
and UseHint. This document explicitly defnes these functions where r ∈ Zq, r1,r0 ∈ Z and h is a boolean 
(or equivalently an element of Z2). However, the specifcation also uses these functions where r,z ∈ Rk

q, 
r1,r0 ∈ Rk and h ∈ Rk 

2. In this case, the functions are applied coeffcientwise. 

That is: 

• For r k ∈ R and d ∈ Z, defne (r1,r0) ∈ (Rk 2 
q ) = Power2Round(r,d), so that:

((r1[i]) j,(r0[i]) j) = Power2Round((r[i]) j,d). 

• For r ∈ Rk 
q defne (r1,r  k∈ (R 2 

0) ) = Decompose(r), so that:

((r1[i]) j,(r0[i]) j) = Decompose((r[i]) j). 

• For r ∈ Rk 
q defne r1 = HighBits (r), so that: 

(r1[i]) j = HighBits((r[i]) j). 

• For r k ∈ Rq defne r0 = LowBits(r), so that: 

(r0[i]) j = LowBits((r[i]) j). 

• For z,r ∈ Rk k 
q defne h ∈ R2 = MakeHint(z,r), so that:

(h[i]) j = MakeHint((z[i]) j),(r[i]) j)). 

• For h ∈ Rk and r ∈ Rk
q , defne r ∈ Rk 

1 = 2 UseHint(h,r), so that:

r1[i] j = UseHint((h[i]) j),(r[i]) j)). 

These algorithms are used to support the key compression optimization of ML-DSA. The basic idea is 
to drop the d low-order bits of each coeffcient of the polynomial vector t from the public key using the 
function Power2Round. However, in order to make this optimization work, additional information, called 
a “hint”, needs to be provided in the signature to allow the verifer to reconstruct enough of the information 
in the dropped public key bits to verify the signature. Hints are created during signing and used during 
verifcation by the functions MakeHint and UseHint, respectively. In the verifcation of a valid signature, 
the hint allows the verifer to recover w k 

1 ∈ R , which represents w k ∈ Rq rounded to a nearby multiple 
of α = 2γ2. The signer obtains w1 directly using the function HighBits, and the part rounded off, r0, is 
obtained by LowBits. r0 is used by the signer in the rejection sampling procedure. 

Power2Round decomposes an input r ∈ Zq into integers that represent the high- and low-order bits of 
r mod q in the straightforward bitwise way, r mod q = r1 · 2d + r0, where r0 = (r mod q mod±2d ) and 
r d 

1 = (r mod q − r0)/2 . 

However, for the purpose of computations related to hints, this method of decomposing r has the undesirable 
property that when r is close to q − 1 or 0, a small rounding error in r can cause r1 to change by more than 
1 (even accounting for wrap-around). This is because unlike for other unequal pairs of values of r1 · 2d and 
r′ · 2d , the distance between d d ⌊q ⌋1 /2 · 2 and 0 may be very small. 
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To avoid this problem, this specifcation defnes Decompose, which is similar to Power2Round except: 

• r is generally decomposed as r mod q = r1 · α + r0, where α = 2γ2 is a divisor of q − 1. 

• If the straightforward rounding procedure would return (r1 = (q− 1)/α,r0 ∈ [−(α/2)+ 1,α/2]), 
Decompose instead returns (r1 = 0,r0 − 1). 

The functions HighBits and LowBits– which only return r1 and r0, respectively – and MakeHint and 
UseHint use Decompose. For additional discussion of the mathematical properties of these functions that 
are relevant to the correctness and security of ML-DSA, see Section 2.4 in [5]. 

Algorithm 29 Power2Round(r) 

Decomposes r into d (r1,r0) such that r ≡ r12 + r0 mod q. 

Input: r ∈ Zq. 
Output: Integers (r1,r0). 

1: r+ ← r mod q 
r  r+ d2: 0 ← mod±2� � 

3: return (r+ − r0)/2d ,r0 

Algorithm 30 Decompose(r) 

Decomposes r into (r1,r0) such that r ≡ r1(2γ2)+ r0 mod q. 

Input: r ∈ Zq 
Output: Integers (r1,r0). 

1: r+ ← r mod q 
2: r0 ← r+ mod±(2γ2) 
3: if r+ − r0 = q − 1 then 
4: r1 ← 0 
5: r0 ← r0 − 1 
6: else r  

1 ← (r+− r0)/(2γ2) 
7: end if 
8: return (r1,r0) 

Algorithm 31 HighBits(r) 
Returns r1 from the output of Decompose (r) 

Input: r ∈ Zq 
Output: Integer r1. 

1: (r1,r0) ← Decompose(r) 
2: return r1 
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Algorithm 32 LowBits(r) 
Returns r0 from the output of Decompose (r) 

Input: r ∈ Zq 
Output: Integer r0. 

1: (r1,r0) ← Decompose(r) 
2: return r0 

Algorithm 33 MakeHint(z,r) 

Compute hint bit indicating whether adding z to r alters the high bits of r. 

Input: z,r ∈ Zq 
Output: Boolean 

1: r1 ← HighBits(r) 
2: v1 ← HighBits(r + z) 
3: return [[r1 = v1]] 

Algorithm 34 UseHint(h,r) 
Returns the high bits of r adjusted according to hint h 

Input:boolean h, r ∈ Zq 

Output:r  Z with 0 ≤ r q −1  
1 ∈ 1 ≤ 2 γ2

1: m ← (q− 1)/(2γ2) 
2: (r1,r0) ← Decompose(r) 
3: if h = 1 and r0 > 0 return (r1 + 1) mod m 
4: if h = 1 and r0 ≤ 0 return (r1 − 1) mod m 
5: return r1 

̸
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8.5 NTT and NTT−1 

The following algorithms implement the NTT and its inverse (NTT−1). Using the NTT is important for 
effciency. There are other important optimizations that are not included in this standard. In particular, 
mod and mod± are expensive operations whose use can be minimized by using Montgomery reduction 

(see Appendix B). 

The  algorithm takes a polynomial w  R as input and returns ŵ  T . −1 NTT ∈ q ∈ q NTT takes ŵ ∈ Tq as input 
and returns w such that ŵ = NTT(w). 

This document always distinguishes between elements of Rq and elements of Tq. However, the natural data 
structure for both of these sets is as an integer array of size 256. This would allow for the NTT and NTT−1 

algorithms to perform computation in place on an integer array passed by reference. That optimization is 
not included in this document. 

Recall that ζ = 1753 ∈ Zq, which is a 512th root of unity modulo q. On input w ∈ Rq, the algorithm 
outputs 

NTT(w) = (w(ζ0),w(−ζ0), . . .w(ζ127),w(−ζ127)) ∈ Tq, (8.4) 

where ζi = ζ brv(128+i) mod q. The values ζ brv(k) mod q for k = 1, . . . ,255 used in line 10 of Algorithm 
35 and line 10 of Algorithm 36 are typically pre-computed. That optimization is not included in this 
document. 

Algorithm 35 NTT(w) 
Computes the Number-Theoretic Transform. 

Input: polynomial w(X) = ∑255 w jX j ∈j=0  Rq. 
Output: ŵ = (ŵ[0], . . . , ŵ[255]) ∈ Tq. 

1: for j from 0 to 255 do 
2: ŵ[ j] ← w j 
3: end for 
4: k ← 0 
5: len ← 128 
6: while len ≥ 1 do 
7: start ← 0 
8: while start < 256 do 
9: k ← k + 1 

10: zeta ← ζ brv(k) mod q 
11: for j from start to start + len − 1 do 
12: t ← zeta · ŵ[ j + len] 
13: ŵ[ j + len] ← ŵ[ j] − t 
14: ŵ[ j] ← ŵ[ j]+ t 
15: end for 
16: start ← start + 2 · len 
17: end while 
18: len ← ⌊len/2⌋ 
19: end while 
20: return ŵ 
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Algorithm 36 NTT−1(ŵ) 

Computes the inverse of the Number-Theoretic Transform. 

Input: ŵ = (ŵ[0], . . . , ŵ[255]) ∈ Tq. 
Output: polynomial w(X) = ∑255 j ∈j=0 w jX  Rq. 

1: for j from 0 to 255 do 
2: w j ← ŵ[ j] 
3: end for 
4: k ← 256 
5: len ← 1 
6: while len < 256 do 
7: start ← 0 
8: while start < 256 do 
9: k ← k − 1 

10: zeta ←−ζ brv(k) mod q 
11: for j from start to start + len − 1 do 
12: t ← w j 
13: w j ← t + w j+len 
14: w j+len ← t − w j+len 
15: w j+len ← zeta · w j+len 
16: end for 
17: start ← start + 2 · len 
18: end while 
19: len ← 2 · len 
20: end while 
21: f ← 8347681 1 ▷ f = 256− mod q 
22: for j from 0 to 255 do 
23: w j ← f · w j 
24: end for 
25: return w 

37 



915

920

925

930

935

940

945

950

911 

912 

913 

914 

916 

917 

918 

919 

921 

922 

923 

924 

926 

927 

928 

929 

931 

932 

933 

934 

936 

937 

938 

939 

941 

942 

943 

944 

946 

947 

948 

949 

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD 

References 

[1] National Institute of Standards and Technology. Digital signature standard (DSS). (U.S. Department 
of Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 186-5, 
February 2023. https://doi.org/10.6028/NIST.FIPS.186-5. 

[2] Elaine Barker. Guideline for using cryptographic standards in the federal government: Cryptographic 
mechanisms. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special 
Publication (SP) 800-175B, Rev. 1, March 2020. https://doi.org/10.6028/NIST.SP.800-175Br1. 

[3] Elaine B. Barker. Recommendation for obtaining assurances for digital signature applications. 
National Institute of Standards and Technology, Gaithersburg, MD. NIST Special Publication (SP) 
800-89, November 2006. https://doi.org/10.6028/NIST.SP.800-89. 

[4] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor 
Seiler, and Damien Stehlé. CRYSTALS-Dilithium: Algorithm specifcations and supporting doc-
umentation. Submission to the NIST’s post-quantum cryptography standardization process, 2020. 
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions. 

[5] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor 
Seiler, and Damien Stehlé. CRYSTALS-Dilithium: Algorithm specifcations and supporting docu-
mentation (Version 3.1), 2021. https://pq-crystals.org/dilithium/data/dilithium-specifcation-round3 
-20210208.pdf. 

[6] C. Cremers, S. Düzlü, R. Fiedler, C. Janson, and M. Fischlin. BUFFing signature schemes beyond 
unforgeability and the case of post-quantum signatures. In 2021 IEEE Symposium on Security and 
Privacy (SP), pages 1696–1714, Los Alamitos, CA, USA, may 2021. IEEE Computer Society. 

[7] National Institute of Standards and Technology. SHA-3 standard: Permutation-based hash and 
extendable-output functions. (U.S. Department of Commerce, Washington, DC), Federal Information 
Processing Standards Publication (FIPS) 202, August 2015. https://doi.org/10.6028/NIST.FIPS.202. 

[8] National Institute of Standards and Technology. Secure hash standard (SHS). (U.S. Department of 
Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 180-4, 
August 2015. https://doi.org/10.6028/NIST.FIPS.180-4. 

[9] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. 
In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, pages 598–616, Berlin, 
Heidelberg, 2009. Springer Berlin Heidelberg. 

[10] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, volume 7237 of Lecture 
Notes in Computer Science, pages 738–755. Springer, 2012. 

[11] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based cryptography: 
A signature scheme for embedded systems. In CHES, volume 7428, pages 530–547. Springer, 2012. 

[12] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based on 
learning with errors. In Josh Benaloh, editor, Topics in Cryptology – CT-RSA 2014, pages 28–47, 
Cham, 2014. Springer International Publishing. 

[13] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings 
of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’05, page 84–93, 
New York, NY, USA, 2005. Association for Computing Machinery. 

38 

https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/10.6028/NIST.SP.800-175Br1
https://doi.org/10.6028/NIST.SP.800-89
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.180-4


955

960

965

970

975

980

985

990

951 

952 

953 

954 

956 

957 

958 

959 

961 

962 

963 

964 

966 

967 

968 

969 

971 

972 

973 

974 

976 

977 

978 

979 

981 

982 

983 

984 

986 

987 

988 

989 

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD 

[14] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices. 
Designs, Codes and Cryptography, 75(3):565–599, 2015. 

[15] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of Fiat-Shamir 
signatures in the quantum random-oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors, 
Advances in Cryptology – EUROCRYPT 2018, pages 552–586, Cham, 2018. Springer International 
Publishing. 

[16] Elaine B. Barker. Recommendation for key management:part 1 - general. National Institute of 
Standards and Technology, Gaithersburg, MD. NIST Special Publication (SP) 800-57 Part 1 Revision 
5, May 2020. https://doi.org/10.6028/NIST.SP.800-57pt1r5. 

[17] Elaine B. Barker and William C. Barker. Recommendation for key management: Part 2 - best 
practices for key management organizations. National Institute of Standards and Technology, 
Gaithersburg, MD. NIST Special Publication (SP) 800-57 Part 2 Revision 1, May 2019. https: 
//doi.org/10.6028/NIST.SP.800-57pt2r1. 

[18] Elaine B. Barker and Quynh Dang. Recommendation for key management: Part 3 - application-
specifc key management guidance. National Institute of Standards and Technology, Gaithersburg, 
MD. NIST Special Publication (SP) 800-57 Part 3 Revision 1, May 2019. http://dx.doi.org/10.6028 
/NIST.SP.800-57pt3r1. 

[19] Elaine B. Barker and John M. Kelsey. Recommendation for random number generation using 
deterministic random bit generators. (National Institute of Standards and Technology, Gaithersburg, 
MD), NIST Special Publication (SP) 800-90A, Rev. 1, June 2015. https://doi.org/10.6028/NIST.SP. 
800-90Ar1. 

[20] Meltem Sönmez Turan, Elaine B. Barker, John M. Kelsey, Kerry A. McKay, Mary L. Baish, and 
Mike Boyle. Recommendation for the entropy sources used for random bit generation. (National 
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-90B, 
January 2018. https://doi.org/10.6028/NIST.SP.800-90B. 

[21] Elaine B. Barker, John M. Kelsey, Kerry McKay, Allen Roginsky, and Meltem Sönmez Turan. 
Recommendation for random bit generator (RBG) constructions. (National Institute of Standards 
and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-90C (Third Public Draft), 
September 2022. https://csrc.nist.gov/publications/detail/sp/800-90c/draft. 

[22] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on deterministic lattice signatures. 
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 21–43, 2018. 

[23] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter, and Paul Rösler. 
Attacking deterministic signature schemes using fault attacks. In 2018 IEEE European Symposium 
on Security and Privacy (EuroS&P), pages 338–352. IEEE, 2018. 

[24] Niels Samwel, Lejla Batina, Guido Bertoni, Joan Daemen, and Ruggero Susella. Breaking ed25519 
in wolfssl. In Topics in Cryptology–CT-RSA 2018: The Cryptographers’ Track at the RSA Conference 
2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings, pages 1–20. Springer, 2018. 

[25] National Institute of Standards and Technology. Submission requirements and evaluation criteria for 
the post-quantum cryptography standardization process, 2016. https://csrc.nist.gov/CSRC/media/Pro 
jects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf. 

39 

https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt2r1
https://doi.org/10.6028/NIST.SP.800-57pt2r1
https://doi.org/10.6028/NIST.SP.800-57pt2r1
http://dx.doi.org/10.6028/NIST.SP.800-57pt3r1
http://dx.doi.org/10.6028/NIST.SP.800-57pt3r1
http://dx.doi.org/10.6028/NIST.SP.800-57pt3r1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90B
https://csrc.nist.gov/publications/detail/sp/800-90c/draft
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf


FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD 

991 

992 

993 

994 

995 

996 

997 

998 

999 

1000 

1001 

1002 

1003 

1004 

1005 

1006 

1007 

1008 

1009 

1010 

1011 

1012 

1013 

[26] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John Kelsey, Jacob Lichtinger, 
Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, and Daniel 
Smith-Tone. Status report on the third round of the NIST post-quantum cryptography standardization 
process. Technical Report NIST Interagency or Internal Report (IR) 8413, National Institute of 
Standards and Technology, Gaithersburg, MD, July 2022. https://doi.org/10.6028/NIST.IR.8413-upd 
1. 

[27] Robert Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. 
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Kyber algorithm specifca-
tions and supporting documentation. 3rd Round submission to the NIST’s post-quantum cryptography 
standardization process, 2020. https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-sub 
missions. 

[28] C. P. Schnorr. Effcient identifcation and signatures for smart cards. In Gilles Brassard, editor, 
Advances in Cryptology — CRYPTO’ 89 Proceedings, pages 239–252, New York, NY, 1990. Springer 
New York. 

[29] Simon Josefsson and Ilari Liusvaara. Edwards-Curve Digital Signature Algorithm (EdDSA). RFC 
8032, January 2017. 

[30] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia. Implementing Grover 
oracles for quantum key search on AES and LowMC. In Anne Canteaut and Yuval Ishai, editors, 
Advances in Cryptology – EUROCRYPT 2020, pages 280–310, Cham, 2020. Springer International 
Publishing. 

[31] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the 
Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, page 212–219, New 
York, NY, USA, 1996. Association for Computing Machinery. 

40 

https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions


FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD 

1014 

1015 

1016 

1017 

1018 

1019 

1020 

1021 

1022 

1023 

1024 

1025 

1026 

1027 

1028 

1029 

1030 

1031 

1032 

1033 

1034 

1035 

1036 

1037 

1038 

1039 

1040 

1041 

1042 

1043 

1044 

1045 

1046 

1047 

1048 

1049 

1050 

1051 

Appendix A — Security Strength Categories 

NIST understands that there are signifcant uncertainties in estimating the security strengths of post-
quantum cryptosystems. These uncertainties come from two sources: frst, the possibility that new 
cryptanalytic attacks are discovered, based on classical or quantum computation; and second, our limited 
ability to predict the performance characteristics of future quantum computers, such as their cost, speed, 
and memory size. 

In order to address these uncertainties, NIST proposed the following approach in its original Call for 
Proposals [25]. Instead of defning the strength of an algorithm using precise estimates of the number 
of “bits of security,” NIST defned a collection of broad security strength categories. Each category is 
defned by a comparatively easy-to-analyze reference primitive whose security serves as a foor for a wide 
variety of metrics that NIST deems potentially relevant to practical security. A given cryptosystem may 
be instantiated using different parameter sets in order to ft into different categories. The goals of this 
classifcation are: 

• To facilitate meaningful performance comparisons between various post-quantum algorithms by 
ensuring – insofar as possible – that the parameter sets being compared provide comparable security 

• To allow NIST to make prudent future decisions regarding when to transition to longer keys 

• To help submitters make consistent and sensible choices regarding what symmetric primitives to use 
in padding mechanisms or other components of their schemes that require symmetric cryptography 

• To better understand the security/performance trade-offs involved in a given design approach 

In accordance with the second and third goals above, NIST based its classifcation on the range of security 
strengths offered by the existing NIST standards in symmetric cryptography, which NIST expects to offer 
signifcant resistance to quantum cryptanalysis. In particular, NIST defned a separate category for each of 
the following security requirements (listed in order of increasing strength): 

1. Any attack that breaks the relevant security defnition must require computational resources com-
parable to or greater than those required for key search on a block cipher with a 128-bit key (e.g., 
AES-128). 

2. Any attack that breaks the relevant security defnition must require computational resources compa-
rable to or greater than those required for collision search on a 256-bit hash function (e.g., SHA-256/ 
SHA3-256). 

3. Any attack that breaks the relevant security defnition must require computational resources com-
parable to or greater than those required for key search on a block cipher with a 192-bit key (e.g., 
AES-192). 

4. Any attack that breaks the relevant security defnition must require computational resources compa-
rable to or greater than those required for collision search on a 384-bit hash function (e.g., SHA-384/ 
SHA3-384). 

5. Any attack that breaks the relevant security defnition must require computational resources com-
parable to or greater than those required for key search on a block cipher with a 256-bit key (e.g., 
AES-256). 
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Table 3. NIST Security Strength Categories 

Security Category Corresponding Attack Type Example 

1 Key search on block cipher with 128-bit key AES-128 

2 Collision search on 256-bit hash function SHA3-256 

3 Key search on block cipher with 192-bit key AES-192 

4 Collision search on 384-bit hash function SHA3-384 

5 Key search on block cipher with 256-bit key AES-256 
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When considering the fve categories, computational resources may be measured using a variety of 
different metrics (e.g., number of classical elementary operations, quantum circuit size). In order for a 
cryptosystem to satisfy one of the above security requirements, any attack must require computational 
resources comparable to or greater than the stated threshold with respect to all metrics that NIST deems to 
be potentially relevant to practical security. 

NIST intends to consider a variety of possible metrics that refect different predictions about the future 
development of quantum and classical computing technology and the cost of different computing resources 
(such as the cost of accessing extremely large amounts of memory). NIST will also consider input from 
the cryptographic community regarding this question. 

In an example metric provided to submitters, NIST suggested an approach where quantum attacks are 
restricted to a fxed running time or circuit depth. Call this parameter MAXDEPTH. This restriction is mo-
tivated by the diffculty of running extremely long serial computations. Plausible values for MAXDEPTH 
range from 240 logical gates (the approximate number of gates that presently envisioned quantum comput-
ing architectures are expected to serially perform in a year) through 264 logical gates (the approximate 
number of gates that current classical computing architectures can perform serially in a decade), to no 
more than 296 logical gates (the approximate number of gates that atomic scale qubits with speed-of-light 
propagation times could perform in a millennium). The most basic version of this cost metric ignores 
costs associated with physically moving bits or qubits so that they are physically close enough to per-
form gate operations. This simplifcation may result in an underestimate of the cost of implementing 
memory-intensive computations on real hardware. 

The complexity of quantum attacks can then be measured in terms of circuit size. These numbers can be 
compared to the resources required to break AES and SHA-3. During the post-quantum standardization 
process, NIST gave the following estimates for the classical and quantum gate counts

6 

6See the discussion in [26, Appendix B]. 

for the optimal 
key recovery and collision attacks on AES and SHA-3, respectively, where circuit depth is limited to 
MAXDEPTH.

7 

7Quantum circuit sizes are based on the work in [30]. 

8 

8NIST believes that the above estimates are accurate for the majority of values of MAXDEPTH that are relevant to its 
security analysis, but the above estimates may understate the security of SHA for very small values of MAXDEPTH 
and may understate the quantum security of AES for very large values of MAXDEPTH. 
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Table 4. Estimated gate counts for the optimal key recovery and collision attacks on AES 
and SHA-3 

Algorithm Estimated number of gates 

AES-128 2157/MAXDEPTH quantum gates or 2143 classical gates 

SHA3-256 2146 classical gates 

AES-192 2221/MAXDEPTH quantum gates or 2207 classical gates 

SHA3-384 2210 classical gates 

AES-256 2285/MAXDEPTH quantum gates or 2272 classical gates 

SHA3-512 2274 classical gates 

1077 

1078 

1079 

1080 

1081 

1082 

1083 

1084 

1085 

1086 

1087 

1088 

It is worth noting that the security categories based on these reference primitives provide substantially 
more quantum security than a naïve analysis might suggest. For example, categories 1, 3, and 5 are defned 
in terms of block ciphers, which can be broken using Grover’s algorithm [31] with a quadratic quantum 
speedup. However, Grover’s algorithm requires a long-running serial computation, which is diffcult to 
implement in practice. In a realistic attack, one has to run many smaller instances of the algorithm in 
parallel, which makes the quantum speedup less dramatic. 

Finally, for attacks that use a combination of classical and quantum computation, one may use a cost metric 
that rates logical quantum gates as being several orders of magnitude more expensive than classical gates. 
Presently envisioned quantum computing architectures typically indicate that the cost per quantum gate 
could be billions or trillions of times the cost per classical gate. However, especially when considering 
algorithms that claim a high security strength (e.g., equivalent to AES-256 or SHA-384), it is likely prudent 
to consider the possibility that this disparity will narrow signifcantly or even be eliminated. 
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Appendix B — Montgomery Reduction 

This document uses modular multiplication. This is an expensive operation that is, in practice, often 
avoided. One way of achieving this is through the use of Montgomery multiplication. If a is an integer 
modulo q, then its Montgomery form with multiplier 232 is r  a  232 ≡ · mod q. 

Suppose two integers a and b modulo q are in Montgomery form. Their product modulo q is c = a 2−32· b · , 
also in Montgomery form. If a and b have absolute value less than q, one can compute c by frst performing 
the integer multiplication a · b and then “reducing” the product by multiplying by 2−32 modulo q. This last 
operation can be done effciently as follows. 

The Montgomery_Reduce function takes as input an integer a with absolute value at most 231q. It returns 
an integer r with absolute value strictly less than q and such that r = a · 2−32 mod q. The output is in 
Montgomery form with multiplier 232 mod q. An implementation would typically use a 64-bit input and 
return a 32-bit output. The “modulo 232” operation simply extracts the 32 least signifcant bits of a 64-bit 
value. The value (a − t · q) on line 3 is an integer divisible by 232. Therefore, the division consists simply 
of taking the most signifcant 32 bits of a 64-bit value. 

Algorithm 37 Montgomery_Reduce(a) 

Converts from Montgomery form to regular form. 

Input: integer a with −231 q ≤ a ≤ 231q. 
Output: r ≡ a · 2−32 mod q such that −q < r < q. 

1: QINV ← 58728449 ▷ the inverse of q modulo 232 

2: t ← 32 32 ((a mod 2 ) · QINV ) mod 2
q)/2323: r ← (a − t · 

4: return r 

With this algorithm, the modular product of a and b is Montgomery_Reduce(a · b). 

Converting an integer modulo q to Montgomery form by multiplying by 232 modulo q is an expensive 
operation. When a sequence of modular operations is to be performed, as in Algorithms 35 and 36, the 
operands are converted once to Montgomery form, the operations are performed, and the factor 232 is 
extracted from the fnal results. 
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