

Withdrawn Draft

Warning Notice

The attached draft document has been withdrawn and is provided solely for historical purposes.
It has been followed by the document identified below.

Withdrawal Date August 13, 2024

Original Release Date August 24, 2023

The attached draft document is followed by:

Status Final

Series/Number NIST FIPS 204

Title Module-Lattice-Based Digital Signature Standard

Publication Date August 13, 2024

DOI https://doi.org/10.6028/NIST.FIPS.204

CSRC URL https://csrc.nist.gov/pubs/fips/204/final

Additional Information https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization

https://doi.org/10.6028/NIST.FIPS.204
https://csrc.nist.gov/pubs/fips/204/final
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

FIPS 204 (Draft)

Federal Information Processing Standards Publication

Module-Lattice-Based Digital
Signature Standard
Category: Computer Security Subcategory: Cryptography

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
https://doi.org/10.6028/NIST.FIPS.204.ipd

Published August 24, 2023

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology

Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

https://doi.org/10.6028/NIST.FIPS.204.ipd
https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.FIPS.204.ipd

18

19

20

21

22

23

24

25

Foreword

The Federal Information Processing Standards Publication Series of the National Institute of Standards and
Technology is the offcial series of publications relating to standards and guidelines developed under 15
U.S.C. 278g-3, and issued by the Secretary of Commerce under 40 U.S.C. 11331.

Comments concerning this Federal Information Processing Standard publication are welcomed and should
be submitted using the contact information in the “Inquiries and comments” clause of the announcement
section.

James A. St. Pierre, Acting Director
Information Technology Laboratory

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

26

27

28

29

30

31

32

33

34

35

Abstract
Digital signatures are used to detect unauthorized modifcations to data and to authenticate the identity
of the signatory. In addition, the recipient of signed data can use a digital signature as evidence in
demonstrating to a third party that the signature was, in fact, generated by the claimed signatory. This is
known as non-repudiation since the signatory cannot easily repudiate the signature at a later time.

This standard specifes ML-DSA, a set of algorithms that can be used to generate and verify digital
signatures. ML-DSA is believed to be secure even against adversaries in possession of a large-scale
quantum computer.

Keywords: cryptography; digital signatures; Federal Information Processing Standards; lattice; post-
quantum; public-key cryptography

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

Federal Information Processing Standards Publication 204

Published: August 24, 2023

Announcing the
Module-Lattice-Based Digital Signature Standard

Federal Information Processing Standards Publications (FIPS PUBS) are developed by the National
Institute of Standards and Technology (NIST) under 15 U.S.C. 278g-3, and issued by the Secretary of
Commerce under 40 U.S.C. 11331.

1. Name of Standard. Module-Lattice-Based Digital Signature Standard (FIPS 204).

2. Category of Standard: Computer Security Standard. Subcategory: Cryptography.

3. Explanation. This standard specifes a lattice-based digital signature algorithm, ML-DSA, for appli-
cations that require a digital signature rather than a written signature. (Additional digital signature
schemes are specifed and approved in other NIST Special Publications and FIPS publications, e.g.,
FIPS 186-5 [1].) A digital signature is represented in a computer as a string of bits and computed using
a set of rules and parameters that allow the identity of the signatory and the integrity of the data to be
verifed. Digital signatures may be generated on both stored and transmitted data.

Signature generation uses a private key to generate a digital signature. Signature verifcation uses
a public key that corresponds to but is not the same as the private key. Each signatory possesses a
key-pair composed of a private key and a corresponding public key. Public keys may be known by
the public, but private keys must be kept secret. Anyone can verify the signature by employing the
signatory’s public key. Only the user who possesses the private key can perform the generation of a
signature that can be verifed by the corresponding public key.

The digital signature is provided to the intended verifer along with the signed data. The verifying
entity verifes the signature by using the claimed signatory’s public key. Similar procedures may be
used to generate and verify signatures for both stored and transmitted data.

This standard specifes several parameter sets for ML-DSA that are approved for use. Additional
parameter sets may be specifed and approved in future NIST Special Publications.

4. Approving Authority. Secretary of Commerce.

5. Maintenance Agency. Department of Commerce, National Institute of Standards and Technology,
Information Technology Laboratory (ITL).

6. Applicability. This standard is applicable to all federal departments and agencies for the protection
of sensitive unclassifed information that is not subject to section 2315 of Title 10, United States
Code, or section 3502 (2) of Title 44, United States Code. Either this standard or Federal Information
Processing Standard (FIPS) 205 or NIST Special Publication 800-208 shall be used in designing and
implementing public-key-based signature systems that federal departments and agencies operate or
that are operated for them under contract. In the future, additional digital signature schemes may be
specifed and approved in FIPS publications or in NIST Special Publications.

The adoption and use of this standard are available to private and commercial organizations.

i

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

7. Applications. A digital signature algorithm allows an entity to authenticate the integrity of signed
data and the identity of the signatory. The recipient of a signed message can use a digital signature
as evidence in demonstrating to a third party that the signature was, in fact, generated by the claimed
signatory. This is known as non-repudiation since the signatory cannot easily repudiate the signature
at a later time. A digital signature algorithm is intended for use in electronic mail, electronic funds
transfer, electronic data interchange, software distribution, data storage, and other applications that
require data integrity assurance and data origin authentication.

8. Implementations. A digital signature algorithm may be implemented in software, frmware, hardware,
or any combination thereof. NIST will develop a validation program to test implementations for
conformance to the algorithm in this standard. For every computational procedure that is specifed in
this standard, a conforming implementation may replace the given set of steps with any mathematically
equivalent set of steps. In other words, different procedures that produce the correct output for every
input are permitted. Information about validation programs is available at https://csrc.nist.gov/projects
/cmvp. Examples for digital signature algorithms are available at https://csrc.nist.gov/projects/cryptog
raphic-standards-and-guidelines/example-values.

Agencies are advised that digital signature key pairs shall not be used for other purposes.

9. Other Approved Security Functions. Digital signature implementations that comply with this
standard shall employ cryptographic algorithms that have been approved for protecting Federal
Government-sensitive information. Approved cryptographic algorithms and techniques include those
that are either:

a. Specifed in a Federal Information Processing Standards (FIPS) publication,

b. Adopted in a FIPS or NIST recommendation, or

c. Specifed in the list of approved security functions for FIPS 140-3.

10. Export Control. Certain cryptographic devices and technical data regarding them are subject to federal
export controls. Exports of cryptographic modules that implement this standard and technical data
regarding them must comply with these federal regulations and be licensed by the Bureau of Industry
and Security of the U.S. Department of Commerce. Information about export regulations is available at
https://www.bis.doc.gov.

11. Patents. The algorithm in this standard may be covered by U.S. or foreign patents.

12. Implementation Schedule. This standard becomes effective immediately upon fnal publication.

13. Specifcations. Federal Information Processing Standards (FIPS) 204, Module-Lattice-Based Digital
Signature Standard (affxed).

14. Qualifcations. The security of a digital signature system is dependent on maintaining the secrecy of
the signatory’s private keys. Signatories shall, therefore, guard against the disclosure of their private
keys. While it is the intent of this standard to specify general security requirements for generating
digital signatures, conformance to this standard does not ensure that a particular implementation is
secure. It is the responsibility of an implementer to ensure that any module that implements a digital
signature capability is designed and built in a secure manner.

Similarly, the use of a product containing an implementation that conforms to this standard does not
guarantee the security of the overall system in which the product is used. The responsible authority in
each agency or department shall ensure that an overall implementation provides an acceptable level of
security.

ii

https://csrc.nist.gov/projects/cmvp
https://csrc.nist.gov/projects/cmvp
https://csrc.nist.gov/projects/cmvp
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://www.bis.doc.gov

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

Since a standard of this nature must be fexible enough to adapt to advancements and innovations in
science and technology, this standard will be reviewed every fve years in order to assess its adequacy.

15. Waiver Procedure. The Federal Information Security Management Act (FISMA) does not allow for
waivers to Federal Information Processing Standards (FIPS) that are made mandatory by the Secretary
of Commerce.

16. Where to Obtain Copies of the Standard. This publication is available by accessing https://csrc.nist.
gov/publications. Other computer security publications are available at the same website.

17. How to Cite this Publication. NIST has assigned NIST FIPS 204 ipd as the publication identifer for
this FIPS, per the NIST Technical Series Publication Identifer Syntax. NIST recommends that it be
cited as follows:

National Institute of Standards and Technology (2023) Module-Lattice-Based Digital
Signature Standard. (Department of Commerce, Washington, D.C.), Federal Information
Processing Standards Publication (FIPS) NIST FIPS 204 ipd. https://doi.org/10.6028/NIST
.FIPS.204.ipd

18. Inquiries and Comments. Inquiries and comments about this FIPS may be submitted to fps-204-
comments@nist.gov.

iii

https://csrc.nist.gov/publications
https://csrc.nist.gov/publications
https://csrc.nist.gov/publications
https://www.nist.gov/document/publication-identifier-syntax-nist-technical-series-publications
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
mailto:fips-204-comments@nist.gov
mailto:fips-204-comments@nist.gov
mailto:fips-204-comments@nist.gov

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Call for Patent Claims

This public review includes a call for information on essential patent claims (claims whose use would be
required for compliance with the guidance or requirements in this Information Technology Laboratory
(ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication
or by reference to another publication. This call also includes disclosure, where known, of the existence
of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant
unexpired U.S. or foreign patents.

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in written
or electronic form, either:

a) assurance in the form of a general disclaimer to the effect that such party does not hold and does not
currently intend holding any essential patent claim(s); or

b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring
to utilize the license for the purpose of complying with the guidance or requirements in this ITL
draft publication either:

(i) under reasonable terms and conditions that are demonstrably free of any unfair discrimination;
or

(ii) without compensation and under reasonable terms and conditions that are demonstrably free
of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its
behalf) will include in any documents transferring ownership of patents subject to the assurance, provisions
suffcient to ensure that the commitments in the assurance are binding on the transferee, and that the
transferee will similarly include appropriate provisions in the event of future transfers with the goal of
binding each successor-in-interest.

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of
whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: fps-204-comments@nist.gov

iv

fips-204-comments@nist.gov

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

Federal Information Processing Standards Publication 204

Specifcation for the

Module-Lattice-Based Digital Signature Standard

Table of Contents

1 Introduction 1

1.1 Purpose and Scope . 1

1.2 Context . 1

1.3 Differences Between the ML-DSA Standard and CRYSTALS-DILITHIUM 2
1.3.1 Differences Between Version 3.1 and the Round 3 Version of CRYSTALS-

DILITHIUM . 2
1.3.2 Differences Between the ML-DSA Standard and Version 3.1 of CRYSTALS-

DILITHIUM . 2

2 Glossary of Terms, Acronyms, and Symbols 3

2.1 Terms and Defnitions . 3

2.2 Acronyms . 5

2.3 Mathematical Symbols . 6

2.4 Notation . 7

2.5 NTT Representation . 8

3 Overview of the ML-DSA Signature Scheme 9

3.1 Security Properties . 9

3.2 Computational Assumptions . 9

3.3 The ML-DSA Construction . 9

3.4 Use of Digital Signatures . 11

3.5 Additional Requirements . 11
3.5.1 Randomness Generation . 11
3.5.2 Public-Key Validity and Signature Length Checks 11
3.5.3 Intermediate Values . 11

4 Parameter Sets 13

5 Key Generation 14

6 Signing 15

7 Verifcation 18

v

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

188

189

190

191

192

193

194

195

196

197

7.1 Prehash ML-DSA . 19

8 Auxiliary Functions 20

8.1 Conversion Between Data Types . 20

8.2 Encodings of ML-DSA Keys and Signatures . 24

8.3 Hashing and Pseudorandom Sampling . 29

8.4 High Order / Low Order Bits and Hints . 33

8.5 NTT and NTT−1 . 36

References 38

Appendix A — Security Strength Categories 41

Appendix B — Montgomery Reduction 44

vi

200

210

220

230

240

198

199

201

202

203

204

205

206

207

208

209

211

212

213

214

215

216

217

218

219

221

222

223

224

225

226

227

228

229

231

232

233

234

235

236

237

238

239

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

List of Tables

Table 1 ML-DSA Parameter sets . 13
Table 2 Sizes (in bytes) of keys and signatures of ML-DSA. 14
Table 3 NIST Security Strength Categories . 42
Table 4 Estimated gate counts for the optimal key recovery and collision attacks on AES

and SHA-3 . 43

List of Algorithms
Algorithm 1 ML-DSA.KeyGen() . 15
Algorithm 2 ML-DSA.Sign(sk, M) . 17
Algorithm 3 ML-DSA.Verify(pk, M, σ) . 19
Algorithm 4 IntegerToBits(x,α) . 20
Algorithm 5 BitsToInteger(y) . 20
Algorithm 6 BitsToBytes(y) . 21
Algorithm 7 BytesToBits(z) . 21
Algorithm 8 CoefFromThreeBytes(b0,b1,b2) . 21
Algorithm 9 CoefFromHalfByte(b) . 22
Algorithm 10 SimpleBitPack(w,b) . 22
Algorithm 11 BitPack(w,a,b) . 22
Algorithm 12 SimpleBitUnpack(v,b) . 23
Algorithm 13 BitUnpack(v,a,b) . 23
Algorithm 14 HintBitPack(h) . 24
Algorithm 15 HintBitUnpack(y) . 24
Algorithm 16 pkEncode(ρ, t1) . 25
Algorithm 17 pkDecode(pk) . 25
Algorithm 18 skEncode(ρ,K, tr,s1,s2, t0) . 26
Algorithm 19 skDecode(sk) . 27
Algorithm 20 sigEncode(c̃,z,h) . 28
Algorithm 21 sigDecode(σ) . 28
Algorithm 22 w1Encode(w1) . 28
Algorithm 23 SampleInBall(ρ) . 30
Algorithm 24 RejNTTPoly(ρ) . 30
Algorithm 25 RejBoundedPoly(ρ) . 31
Algorithm 26 ExpandA(ρ) . 31
Algorithm 27 ExpandS(ρ) . 32
Algorithm 28 ExpandMask(ρ, µ) . 32
Algorithm 29 Power2Round(r) . 34
Algorithm 30 Decompose(r) . 34
Algorithm 31 HighBits(r) . 34
Algorithm 32 LowBits(r) . 35
Algorithm 33 MakeHint(z,r) . 35
Algorithm 34 UseHint(h,r) . 35
Algorithm 35 NTT(w) . 36
Algorithm 36 NTT−1(ŵ) . 37

vii

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

241 Algorithm 37 Montgomery_Reduce(a) . 44

viii

245

250

255

260

265

270

275

280

242

243

244

246

247

248

249

251

252

253

254

256

257

258

259

261

262

263

264

266

267

268

269

271

272

273

274

276

277

278

279

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

1. Introduction

1.1 Purpose and Scope
This standard defnes a digital signature scheme, which includes a method for digital signature generation
that can be used for the protection of binary data (commonly called a message), and a method for the
verifcation and validation of those digital signatures. (NIST SP 800-175B [2], Guideline for Using
Cryptographic Standards in the Federal Government: Cryptographic Mechanisms, includes a general
discussion of digital signatures.)

This standard specifes the mathematical steps that need to be performed for key generation, signature
generation, and signature verifcation. In order for digital signatures to be valid, additional assurances are
required, such as assurance of identity and of private key possession. NIST SP 800-89, Recommendation
for Obtaining Assurances for Digital Signature Applications [3], specifes the required assurances and
methods for obtaining these assurances.

The digital signature scheme approved in this standard is ML-DSA (Module Lattice Digital Signature
Algorithm). It is based on the Module Learning With Errors problem. ML-DSA is believed to be secure
even against adversaries in possession of a large-scale quantum computer. In particular, ML-DSA is
believed to be strongly-unforgeable, which implies that the scheme can be used to detect unauthorized
modifcations to data, and to authenticate the identity of the signatory (one bound to the possession of the
private-key). In addition, a signature generated by this scheme can be used as evidence in demonstrating
to a third party that the signature was, in fact, generated by the claimed signatory. The latter property is
known as non-repudiation, since the signatory cannot easily repudiate the signature at a later time.

This standard gives algorithms for ML-DSA key generation (Section 5), signature (Section 6), and
verifcation, (Section 7) and for supporting algorithms used by them (Section 8). ML-DSA is standardized
with three possible parameter sets, each corresponding to a different security strength. Section 4 describes
the global parameters used by these algorithms and enumerates the parameter sets for ML-DSA that are
approved by this standard. ML-DSA can be used in place of other digital signature schemes specifed in
NIST FIPS and Special Publications (e.g., FIPS 186-5 Digital Signature Standard (DSS) [1]).

1.2 Context
Over the past several years, there has been steady progress toward building quantum computers. The
security of many commonly used public-key cryptosystems will be at risk if large-scale quantum computers
are ever realized. In particular, this would include key-establishment schemes and digital signatures that
are based on integer factorization and discrete logarithms (both over fnite felds and elliptic curves). As a
result, in 2016, the National Institute of Standards and Technology (NIST) initiated a public process to
select quantum-resistant public-key cryptographic algorithms for standardization. A total of 82 candidate
algorithms were submitted to NIST for consideration for standardization.

After three rounds of evaluation and analysis, NIST selected the frst four algorithms to standardize as a
result of the Post-Quantum Cryptography (PQC) Standardization process. The algorithm in this standard,
ML-DSA, is derived from one of the selected schemes: CRYSTALS-DILITHIUM [4, 5] and is intended to
protect sensitive U.S. Government information well into the foreseeable future, including after the advent
of large-scale fault-tolerant quantum computers.

1

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

1.3 Differences Between the ML-DSA Standard and CRYSTALS-
DILITHIUM

ML-DSA is derived from Version 3.1 of CRYSTALS-DILITHIUM [5]. Version 3.1 differs slightly
from the most recent version appearing on the NIST website (Version 3 CRYSTALS-DILITHIUM [4].)
Sections 1.3.1, and 1.3.2 document, respectively, the differences between Versions 3 and 3.1, and the
differences between Version 3.1 and the ML-DSA standard as published in this document.

1.3.1 Differences Between Version 3.1 and the Round 3 Version of CRYSTALS-
DILITHIUM

The lengths of the variables ρ ′ (private random seed) and µ (message representative) in the signing
algorithm were increased from 384 to 512 bits. The increase in the length of µ corrects a security faw that
appeared in the third-round submission, where a collision attack against SHAKE256 with a 384-bit output
would make it so that parameters targeting NIST security strength category 5 could only meet category 4.

Additionally, the length of the variable tr (the hash of the public key) was reduced from 384 to 256 bits. In
key generation, the variable ς was relabeled as ρ ′ and increased in size from 256 bits to 512 bits.

1.3.2 Differences Between the ML-DSA Standard and Version 3.1 of CRYSTALS-
DILITHIUM

In order to ensure the properties noted in [6], ML-DSA increases the length of tr to 512 bits, and increases
the length of c̃ to 384 and 512 bits, respectively, for the parameter sets ML-DSA-65 and ML-DSA-87.

In Version 3.1 of the CRYSTALS-DILITHIUM submission, the default version of the signing algorithm
is deterministic with ρ ′ being generated pseudorandomly from the signer’s private key and the message,
and an optional version of the signing algorithm has ρ ′ sampled instead as a 512-bit random string. In
ML-DSA, ρ ′ is generated by a “hedged” procedure, where ρ ′ is pseudorandomly derived from the signer’s
private key, the message, and a 256-bit string, rnd, which by default should be generated by an Approved
RBG. The ML-DSAstandard also allows for an optional deterministic version, where rnd is instead a
256-bit constant string.

2

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

2. Glossary of Terms, Acronyms, and Symbols

2.1 Terms and Defnitions
approved FIPS-approved and/or NIST-recommended. An algorithm or technique that is

either 1) specifed in a FIPS or NIST recommendation, 2) adopted in a FIPS
or NIST recommendation, or 3) specifed in a list of NIST-approved security
functions.

assurance of
possession

Confdence that an entity possesses a private key and any associated keying
material.

bit string An ordered sequence of zeros and ones.

byte An integer from the set {0, 1, 2, . . . , 255}.

byte string A sequence of bytes.

certifcate A set of data that uniquely identifes a public key (which has a corresponding
private key) and an owner that is authorized to use the key pair. The certifcate
contains the owner’s public key and possibly other information and is digitally
signed by a Certifcation Authority (i.e., a trusted party), thereby binding the
public key to the owner.

certifcation authority
(CA)

The entity in a public key infrastructure (PKI) that is responsible for issuing
certifcates and exacting compliance with a PKI policy.

claimed signatory From the verifer’s perspective, the claimed signatory is the entity that purport-
edly generated a digital signature.

destroy An action applied to a key or a piece of secret data. After a key or a piece of
secret data is destroyed, no information about its value can be recovered.

digital signature The result of a cryptographic transformation of data that, when properly im-
plemented, provides a mechanism for verifying origin authenticity and data
integrity, and enforcing signatory non-repudiation.

entity An individual (person), organization, device, or process. Used interchangeably
with “party.”

extendable-output
function (XOF)

A function on bit strings in which the output can be extended to any desired
length. Approved XOFs (such as those specifed in FIPS 202 [7]) are designed
to satisfy the following properties as long as the specifed output length is
suffciently long to prevent trivial attacks:

1. (One-way) It is computationally infeasible to fnd any input that maps to
any new pre-specifed output.

2. (Collision-resistant) It is computationally infeasible to fnd any two
distinct inputs that map to the same output.

hash function A function on bit strings in which the length of the output is fxed. Approved
hash functions (such as those specifed in FIPS 180 [8] and FIPS 202 [7]) are
designed to satisfy the following properties:

3

345

350

355

360

365

370

375

380

344

346

347

348

349

351

352

353

354

356

357

358

359

361

362

363

364

366

367

368

369

371

372

373

374

376

377

378

379

381

382

383

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

1. (One-way) It is computationally infeasible to fnd any input that maps to
any new pre-specifed output.

2. (Collision-resistant) It is computationally infeasible to fnd any two
distinct inputs that map to the same output.

hash value See “message digest.”

key A parameter used in conjunction with a cryptographic algorithm that deter-
mines its operation. Examples of cryptographic algorithms applicable to this
standard include:

1. The computation of a digital signature from data and

2. The verifcation of a digital signature.

key pair A public key and its corresponding private key.

message The data that is signed. Also known as “signed data” during the signature
verifcation and validation process.

message digest The result of applying a hash function to a message. Also known as a “hash
value.”

non-repudiation A service that is used to provide assurance of the integrity and origin of data in
such a way that the integrity and origin can be verifed and validated by a third
party as having originated from a specifc entity in possession of the private
key (i.e., the signatory).

owner A key pair owner is the entity authorized to use the private key of a key pair.

party An individual (person), organization, device, or process. Used interchangeably
with “entity.”

public key
infrastructure (PKI)

A framework that is established to issue, maintain, and revoke public key
certifcates.

private key A cryptographic key that is used with an asymmetric (public key) cryptographic
algorithm. The private key is uniquely associated with the owner and is not
made public. The private key is used to compute a digital signature that may
be verifed using the corresponding public key.

pseudorandom A process or data produced by a process is said to be pseudorandom when the
outcome is deterministic yet also effectively random as long as the internal
action of the process is hidden from observation. For cryptographic purposes,
“effectively random” means “computationally indistinguishable from random
within the limits of the intended security strength.”

public key A cryptographic key that is used with an asymmetric (public-key) cryptographic
algorithm and is associated with a private key. The public key is associated
with an owner and may be made public. In the case of digital signatures, the
public key is used to verify a digital signature that was generated using the
corresponding private key.

security category A number associated with the security strength of a post-quantum crypto-
graphic algorithm as specifed by NIST (see Appendix A, Table 3).

4

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

security strength A number associated with the amount of work (i.e., the number of operations)
that is required to break a cryptographic algorithm or system.

seed A bit string used as input to a pseudorandom process.

shall Used to indicate a requirement of this standard.

should Used to indicate a strong recommendation but not a requirement of this stan-
dard. Ignoring the recommendation could lead to undesirable results.

signatory The entity that generates a digital signature on data, using a private key.

signature generation The process of using a digital signature algorithm and a private key to generate
a digital signature on data.

signature validation The (mathematical) verifcation of the digital signature along with obtaining
the appropriate assurances (e.g., public-key validity, private-key possession,
etc.).

signature verifcation The process of using a digital signature algorithm and a public key to verify a
digital signature on data.

signed data The data or message upon which a digital signature has been computed. Also
see “message.”

trusted third party
(TTP)

An entity (other than the key pair owner and the verifer) that is trusted by the
owner, the verifer, or both. Sometimes shortened to “trusted party.”

verifer The entity that verifes the authenticity of a digital signature, using the public
key of the signatory.

2.2 Acronyms
AES Advanced Encryption Standard

FIPS Federal Information Processing Standard

ML-DSA Module-Lattice-Based Digital Signature Algorithm

MLWE Module Learning With Errors

NIST National Institute of Standards and Technology

NISTIR NIST Interagency or Internal Report

NTT Number Theoretic Transform

PQC Post-Quantum Cryptography

RBG Random Bit Generator

SHA Secure Hash Algorithm

SHAKE Secure Hash Algorithm KECCAK

SP Special Publication

XOF eXtendable-Output Function

5

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

2.3 Mathematical Symbols
The following symbols and mathematical expressions are used in this standard.

B The set {0,1, . . . ,255}.

N The set of natural numbers {1,2,3, . . .}.

Z The ring of integers.

[a,b] For two integers a ≤ b, [a,b] denotes the set of integers {a,a + 1, . . . ,b}.

Zm The ring of integers modulo m, also denoted by Z/mZ.

R The ring of single-variable polynomials over Z modulo X + 1, also denoted by
Z[X 256]/(X + 1).

256

Rm The ring of single-variable polynomials over Z 256
m modulo X + 1, also denoted by

Zm[X 256]/(X + 1).

q The prime number q = 223 − 213 + 1 = 8380417.

Bτ The set of all polynomials p = ∑255 i
i=0 piX in Rq that are such that exactly τ of the

coeffcients of pi are from the set {−1,1}, and all other coeffcients are zero. (See
subsection 8.3.)

Π Used to denote a direct product of two or more rings, where addition and multiplica-
tion are performed componentwise.

Tq The ring Π255
j=0Zq.

⊤ If A is a matrix, then A⊤ denotes the transpose of A.

log The base-2 logarithm. For example, log256 = 8.

bitlen a For a positive integer a, the minimum number of binary digits required to represent
a. For example, bitlen 32 = 6 and bitlen 31 = 5.

⌊x⌋ The largest integer less than or equal to the real number x, called the foor of x.

⌈x⌉ The least integer greater than or equal to the real number x, called the ceiling of x.

mod If α is a positive integer and m ∈ Z or m ∈ Zα , then m mod α denotes the unique
element m ′ ∈ Z in the range 0 ≤ m ′ < α such that m and m ′ are congruent modulo α .

mod± If α is a positive integer and m ∈ Z or m ∈ Z ±
α , then m mod α denotes the unique

element m ′ ∈ Z in the range −α/2 < m ′ ≤ α/2 such that m and m ′ are congruent
modulo α .

a! The factorial quantity 1 · 2 · 3 · . . . · a. � � a
b The quantity a!/(b!(a− b)!).

brv(r) Bit reversal. If r = r0 + 2r1 + 4r2 + . . . + 128r7 is a byte, with ri ∈ {0,1}, then
brv(r) = r7 + 2r6 + 4r5 + . . . + 128r0.

6

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

r
(
t
o

← If S is a set, then s ← S denotes that s is sampled uniformly at random from S. If
D is a probability distribution on S, then s ← D denotes that s is sampled from S
according to D. If R is an algorithm with input z, then s ← R(z) denotes that s is
the recorded output of a single execution of R(z). This notation is used for both
probabilistic and deterministic algorithms.

x ∈ S ← y Type casting. An element x in a set S is constructed from an element y of a different
set T . The set T , and the mapping from T to S, are not explicitly specifed, but they
should be obvious from the context in which this statement appears.

wJiK For a bit string w, wJiK denotes the ith byte of w,

w[8i]+ 2 · w[8i+ 1]+ 4 · w[8i + 2]+ · · · + 128 · w[8i+ 7]

where w[j is the jth] bit of w. That is, when encoding a byte into a bit string,
“little-endian” order is used.

∥·∥
∞ The infnity norm. For an element � w ∈ Z�, ∥w∥∞ = |w|, the absolute value of w.

For an element w ∈ Zq,∥w∥
∞ = �w mod±q � . For an element w of R or Rq, ∥w∥

∞ =
max0≤i<256 ∥wi∥∞ . For a length-m vector w with entries from R or Rq, ∥w∥

∞ =
max0≤i<m ∥w[i]∥∞ .

[[a < b]] A Boolean predicate. A comparison operator inside double square brackets [[a < b]]
denotes that the expression should be evaluated as a Boolean. Booleans can also be
interpreted as elements of Z2 with 1 denoting true and 0 denoting false.

⟨⟨ f (x)⟩⟩ A temporary variable that stores the output of a computation f (x), so that this output
can be used many times, without needing to recompute it. This is equivalent to
defning a temporary variable y ← f (x). Naming the variable ⟨⟨ f (x)⟩⟩ makes the
pseudocode less cluttered.

a||b Concatenation of two bit or byte strings, a and b.

a ◦ b Multiplication (of a and b) in the ring Tq.

a · b or ab Multiplication in any of the rings Z,Zd ,R,Rd .

a + b Addition of a and b.

a/b Division of integers. When this notation is used, a and b are always integers. If b
cannot be assumed to divide a, then either ⌊a/b⌋ or ⌈a/b⌉ is used.

A × B Cartesian product of two sets A,B.

⊥ Blank symbol. (This symbol indicates failure or lack of an output from an algorithm.)

2.4 Notation
Elements of the rings Z, Zq, Z2, R, Rq, are denoted by italicized lowercase letters (e.g., w). Elements of the
ing Tq are length-256 arrays of elements of Zq, and they are denoted by italicized letters with a hat symbol
e.g., ŵ). Addition and multiplication of elements of Tq are performed entry-wise. (Thus, the ith entry of
he product of two elements û and v̂ of Tq is û[i] · v̂[i] ∈ Zq.) As noted in subsection 2.3, the multiplication
peration in Tq is denoted by the symbol ◦.

7

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

When a product a · b or a sum a + b is written and either a or b is a congruence class modulo m (i.e., if
either is an element of Zm or Rm), then the product is also understood to be a congruence class modulo m.
Likewise when an element of R or Z may be used as the input of a function specifed to act on an element
of Rm or Zm, respectively. In both cases, the element itself or its coeffcients are mapped from Z to Zm by
taking the unique congruence class containing the integer.

The coeffcients of an element w of R or Rm are denoted by wi so that w = w0 + w1X + . . . + w255X255.
If w is in R (respectively, Rm) and t is in Z (respectively, Zd), then w(t) denotes the polynomial w =
w0 + w1X + . . . + w255X255 evaluated at X = t.

Vectors with elements in R or Rm are denoted by bold lowercase letters, such as, v. Matrices with elements
in R or Rm are denoted by bold uppercase letters, such as, A.

If S is a ring and v is a length-L vector over S, then the entries in the vector v are expressed as

v[0],v[1], . . . ,v[L − 1].

The entries of a K × L matrix A over S are denoted as A[i, j], where 0 ≤ i < K and 0 ≤ j < L. The set of
all length-L vectors over S is denoted by SL . The set of all K × L matrices over S is denoted by SK×L . A
length-L vector can also be treated as an L × 1 matrix.

2.5 NTT Representation
The Number Theoretic Transform (NTT) is a specifc isomorphism between the rings Rq and Tq. Let
ζ = 1753 ∈ Zq, which is a 512th root of unity. If w ∈ Rq, then

NTT(w) = (w(ζ0),w(−ζ0), . . .w(ζ127),w(−ζ127)) ∈ Tq, (2.1)

where ζi = ζ brv(128+i). See section 8.5 for a discussion of the implementation of NTT and NTT−1.

The motivation for using NTT is that multiplication is considerably faster in the ring Tq. Since NTT is an
isomorphism, for any a,b ∈ Rq,

NTT(ab) = NTT(a) ◦ NTT(b). (2.2)

If A is a matrix with entries from Rq, then NTT(A) denotes the matrix computed via the entry-wise
application of NTT to A. The symbol ◦ is also used to denote matrix multiplication of matrices with entries
in Tq. Thus, NTT(AB) = NTT(A) ◦ NTT(B).

8

515

520

525

530

535

540

545

510

511

512

513

514

516

517

518

519

521

522

523

524

526

527

528

529

531

532

533

534

536

537

538

539

541

542

543

544

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

3. Overview of the ML-DSA Signature Scheme
ML-DSA is a digital signature scheme based on CRYSTALS-DILITHIUM [5]. It consists of three
main algorithms: ML-DSA.KeyGen (Algorithm 1), ML-DSA.Sign (Algorithm 2), and ML-DSA.Verify
(Algorithm 3). The ML-DSA scheme uses the “Fiat-Shamir with Aborts” construction [9, 10] and bears
the most resemblance to the schemes proposed in [11, 12].

3.1 Security Properties
ML-DSA is designed to be strongly existentially unforgeable under chosen message attack (i.e. it is
expected that even if an adversary can get the honest party to sign arbitrary messages, the adversary cannot
create any additional valid signatures based on the signer’s public key, including on messages for which
the signer has already provided a signature).

ML-DSA is also designed to satisfy additional security properties beyond unforgeability, which are
described in [6].

3.2 Computational Assumptions
Security for lattice-based digital signature schemes is typically related to two central problems: the
Learning With Errors (LWE) problem and the Short Integer Solution (SIS) problem. The LWE problem
[13] is to recover a vector s ∈ Zn

q given a set of random noisy linear equations satisfed by s. The SIS
problem is to fnd, for a given linear system over Zq of the form At = 0, a solution t ∈ Zn such that ∥q t∥

∞ is
small. For appropriate choices of parameters, these problems are intractable for the best known techniques
(including Gaussian elimination).

When the module Zn
q in LWE and SIS is replaced by a module over a ring larger than Zq (such as Rq),

the resulting problems are called MLWE (Module Learning With Errors [14]) and MSIS (Module Short
Integer Solution). The security of ML-DSA is based on the MLWE problem over Rq and a nonstandard
variant of MSIS called SelfTargetMSIS [15].

3.3 The ML-DSA Construction
ML-DSA is a Schnorr-like signature with several optimizations. The Schnorr signature scheme applies the
Fiat-Shamir heuristic to an interactive protocol between a verifer who knows g (the generator of a group in
which discrete logs are believed to be diffcult) and the value y x= g , and a prover who knows g and x. The
interactive protocol, where the prover demonstrates knowledge of x to the verifer, consists of three steps:

1. Commitment: The prover generates a random positive integer r less than the order of g and commits
to its value by sending gr to the verifer

2. Challenge: The verifer sends a random positive integer c less than the order of g to the prover.

3. Response: The prover returns s = r − cx, and the verifer checks whether gs · yc = gr .

This protocol is made noninteractive and turned into a signature scheme by replacing the verifer’s random
choice of c in step 2 with a deterministic process that pseudorandomly derives c from a hash of the
commitment, gr, concatenated with the message to be signed. For this signature scheme, y is the public
key and x is the private key.

9

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

The basic idea of ML-DSA and similar lattice signature schemes is to build a signature scheme from an
analogous interactive protocol, where a prover who knows matrices A ZK×L , S ZL×n K∈ , n

1 ∈ and S ∈ Z ×
q q 2 q

with short coeffcients, demonstrates knowledge of these matrices to a verifer who knows A and T ∈
ZK×n

q = AS1 + S2. Such an interactive protocol would proceed as follows:

1. Commitment: The prover generates y ∈ ZL
q with short coeffcients and commits to its value by

sending Ay to the verifer.

2. Challenge: The verifer sends a vector c ∈ Zn
q with short coeffcients to the prover.

3. Response: The prover returns z = y + S1c, and the verifer checks that z has small coeffcients and
that Az − Tc ≈ Ay.

As written the above protocol has a security faw: The response z will be biased in a direction related to
the private value S1. However, this faw can be corrected when converting the interactive protocol into
a signature scheme: As with Schnorr signatures, the signer derives the challenge by a pseudorandom
process from a hash of the commitment concatenated with the message. However, to correct the bias, the
signer applies rejection sampling to z: if coeffcients of z fall outside a specifed range, the signing process
is aborted, and the signer starts over from a new value of y. In the resulting “Fiat-Shamir with Aborts”
signature, the public key is (A,T) and the private key is (S1,S2)

In the ML-DSA standard, a number of tweaks and modifcations are added to this basic framework for
security or effciency reasons:

• To reduce key and signature size and to use fast NTT-based polynomial multiplication, ML-DSA
uses module-structured matrices. That is to say, relative to the basic scheme described above, it
replaces dimension-n× n blocks of matrices and dimension-n blocks of vectors with polynomials in
the ring Rq. Thus, instead of A ∈ ZK×L , T ∈q ZK×n , S1 ∈ ZL×n , S2 ∈ ZK×n , y ∈q q q ZL c ∈ Zn

q , q , ML-DSA
has A ∈ Rk×ℓ , t ∈ Rk k ∈ ℓ ∈ ∈ ℓ ∈q q, s1 Rq, s2 Rq, y Rq, c Rq.

• To further reduce the size of the public key, the matrix A is pseudorandomly derived from a 256-bit
public seed, ρ which is included in the ML-DSA public key in place of A.

• For a still further reduction in public key size, the ML-DSA public key substitutes for t a compressed
value t0, which drops the d low order bits of each coeffcient.

• To obtain beyond unforgeability (BUFF) properties noted in [6], ML-DSA does not sign the message
M directly, but rather signs a message representative µ obtained by hashing the concatenation of a
hash tr of the public key and M.

• To reduce signature size, rather than including the commitment w = Ay in the signature, the ML-
DSA signature uses a rounded version w1 as a commitment, and includes only the hash, c̃, of w1
concatenated with µ .

To ensure that w1 can be reconstructed by the verifer from z and the compressed value t0, the
signature must also include a hint h ∈ Rk

2 computed by the signer using the signer’s private key.

In this document, we use the abbreviations ML-DSA-44, ML-DSA-65, and ML-DSA-87 to refer to
ML-DSA with the parameter choices given in Table 1. (In these abbreviations, the numerical suffx refers
to the dimension of the matrix A. For example, in ML-DSA-65, the matrix A is a 6 × 5 matrix over Rq.)

10

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

3.4 Use of Digital Signatures
Secure key management is an essential requirement for the use of digital signatures. This is context-
dependent and involves more than the key generation, signing, and signature verifcation algorithms in this
document. Guidance for key management is provided in the NIST SP 800-57 series [16, 17, 18].

Digital signatures are most useful when bound to an identity. Binding a public key to an identity requires
proof of possession of the private key. In the PKI context, issuing certifcates involves assurances of
identity and proof of possession. When a public-key certifcate is not available, users of digital signatures
should determine whether a public key needs to be bound to an identity. Methods for obtaining assurances
of identity and proof of possession are provided in [3].

3.5 Additional Requirements
This section describes several required assurances when implementing ML-DSA. These are in addition to
the considerations in Section 3.4.

3.5.1 Randomness Generation

Algorithm 1, implementing key generation for ML-DSA, uses an RBG to generate the 256-bit random
value ξ . The seed ξ shall be freshly generated using an approved RBG, as prescribed in NIST SP 800-90A,
SP 800-90B, and SP 800-90C [19, 20, 21]. Moreover, the RBG used shall have a security strength of at
least 192 bits for ML-DSA-65 and 256 bits for ML-DSA-87. For ML-DSA-44, the RBG should have a
security strength of at least 192 bits and shall have a security strength of at least 128 bits. (If an approved
RBG with at least 128 bits of security but less than 192 bits of security is used, then the claimed security
strength of ML-DSA-44 is reduced from category 2 to category 1.)

Additionally, in the default “hedged” variant of Algorithm 2, implementing signing for ML-DSA, the
value rnd is generated using an RBG. While this value should ideally be generated by an approved RBG,
other methods for generating fresh randomness may be used. The primary purpose of rnd is to facilitate
countermeasures to side-channel attacks and fault attacks on deterministic signatures, such as [22, 23, 24].
For this purpose, even a weak RBG may be preferable to the fully deterministic variant of Algorithm 2.

1

1In addition, when signing is deterministic, there is leakage through timing side-channels of information about the
message (but not the private key). In cases where the signer does not want to reveal the message being signed,
hedged signatures should be used; see section 3.2 in [5].

3.5.2 Public-Key Validity and Signature Length Checks

Algorithm 3, implementing verifcation for ML-DSA, specifes the length of the signature σ and the public
key pk in terms of the parameters described in Table 1. If an implementation of ML-DSA can accept
inputs for σ or pk of any other length, it shall return false whenever the lengths of either of these inputs
differs from its specifed length. Checking the length of pk serves as a partial public-key validity check,
and failing to do so may interfere with the security properties that ML-DSA is designed to have, like strong
unforgeability. ML-DSA is not designed to require any additional public-key validity checks.

3.5.3 Intermediate Values

Data used internally by the key generation and signing algorithms in intermediate computation steps could
be used by an adversary to gain information about the private key, and thereby compromise security. For
some applications, including the verifcation of signatures that are used as bearer tokens (i.e., authentication

11

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

620

621

622

623

624

625

626

627

628

629

630

secrets) or the verifcation of signatures on plaintext messages that are intended to be confdential, data
used internally by verifcation algorithms is similarly sensitive. (Intermediate values of the verifcation
algorithm may reveal information about its inputs, i.e., the message, signature, and public key, and in some
applications security or privacy requires one or more of these inputs to be confdential.) Implementations
of ML-DSA shall, therefore, ensure that any potentially sensitive intermediate data is destroyed as soon as
it is no longer needed.

In certain situations, such as deterministic signing (described above), and the verifcation of confdential
messages and signatures (described above), additional care must be taken to protect implementations
against side-channel attacks or fault attacks. A cryptographic device may leak critical information through
side-channels that allows internal data or keying material to be extracted without breaking the cryptographic
primitives.

12

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

4. Parameter Sets

Table 1. ML-DSA Parameter sets

Parameters Values assigned by each parameter set
(see sections 5 and 6 of this document) ML-DSA-44 ML-DSA-65 ML-DSA-87

q - modulus [see §5] 8380417 8380417 8380417
d - # of dropped bits from t [see §5] 13 13 13

τ - # of ±1’s in polynomial c [see §6] 39 49 60
λ - collision strength of c̃ [see §6] 128 192 256

217 219 219γ1 - coeffcient range of y [see §6]
γ2 - low-order rounding range [see §6] (q− 1)/88 (q − 1)/32 (q − 1)/32

(k, ℓ) - dimensions of A [see §5] (4,4) (6,5) (8,7)
η - private key range [see §5] 2 4 2

β = τ · η [see §6] 78 196 120
ω - max # of 1’s in the hint h [see §6] 80 55 75��256Challenge entropy log

τ + τ [see §6] 192 225 257
Repetitions (see explanation below) 4.25 5.1 3.85

Claimed security strength Category 2 Category 3 Category 5

Three ML-DSA parameter sets are included in Table 1. Each parameter set assigns values for all of the
parameters used in the ML-DSA algorithms for key generation, signing, and verifcation. For informational
purposes, some parameters used in the analysis of these algorithms are also included in the table. In
particular, “repetitions” refers to the expected number of repetitions of the main loop in the signing
algorithm, from eq. 5 in [4]. The names of the parameter sets are of the form “ML-DSA-kℓ,” where (k, ℓ)
are the dimensions of the matrix A.

These parameter sets were designed to meet certain security strength categories defned by NIST in its
original Call for Proposals [25]. These security strength categories are explained further in Appendix A.

Using this approach, security strength is not described by a single number, such as “128 bits of security.”
Instead, each ML-DSA parameter set is claimed to be at least as secure as a generic block cipher with a
prescribed key size or a generic hash function with a prescribed output length. More precisely, it is claimed
that the computational resources needed to break ML-DSA are greater than or equal to the computational
resources needed to break the block cipher or hash function when these computational resources are
estimated using any realistic model of computation. Different models of computation can be more or less
realistic and, accordingly, lead to more or less accurate estimates of security strength. Some commonly
studied models are discussed in [26].

Concretely, the parameter set ML-DSA-44 is claimed to be in security strength category 2, ML-DSA-65 is
claimed to be in category 3, and ML-DSA-87 is claimed to be in category 5 [5]. For additional discussion
of the security strength of MLWE-based cryptosystems, see [27].

The sizes of keys and signatures corresponding to each parameter set are given in Table 2. Note that certain
optimizations are possible, when storing ML-DSA public and private keys. If additional space is available,
one can pre-compute and store Â, to speed up signing and verifying. Alternatively, if one wants to reduce
the space needed for the private key, one can only store the 32-byte seed ξ , which is suffcient to generate
the other parts of the private key. For additional details, see Section 3.1 in [5].

13

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

ML-DSA-44
ML-DSA-65
ML-DSA-87

Private Key
2528
4000
4864

Public Key
1312
1952
2592

Signature Size
2420
3293
4595

Table 2. Sizes (in bytes) of keys and signatures of ML-DSA.

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

5. Key Generation

The key generation algorithm ML-DSA.KeyGen takes no input and outputs a public key and a private key,
which are both encoded as byte strings.

The algorithm begins by using an approved RBG to generate a 256-bit random seed ξ , which is expanded
as needed using an XOF (namely, SHAKE-256) to produce other random values. In particular:

• A public random seed ρ . Using this seed, a polynomial matrix, A Rk ∈ ×ℓ
q is pseudorandomly

sampled from Rk×ℓ
q .

• A private random seed ρ ′ . Using this seed, the polynomial vectors s1 ∈ Rℓ and s2 ∈q Rk
q are

pseudorandomly sampled from the subset of polynomial vectors whose coeffcients are short, (i.e.
in the range [−η ,η]).

• A private random seed K for use during signing.

The core cryptographic operation computes the public value,

t = As1 + s2.

The vector t together with the matrix A may be thought of as an expanded form of the public key. The
vector t is compressed in the actual public key by dropping the d least signifcant bits from each coeffcient,
thus producing the polynomial vector t1. This compression is an optimization for performance, not security.
The low order bits of t can be reconstructed from a small number of signatures and, therefore, need not be
regarded as secret.

The ML-DSA public key pk is a byte encoding of the public random seed ρ and the compressed polynomial
vector t1.

The ML-DSA private key sk is a byte encoding of the public random seed ρ ; a 256-bit private random seed
K for use during signing; a 512-bit hash of the public key, tr, for use during signing; the secret polynomial
vectors s1 and s2; and a polynomial vector t0 encoding the d least signifcant bits of each coeffcient of the
uncompressed public-key polynomial t.

2

2More precisely, since only the NTT form of A, Â ∈ T k×ℓ
q = NTT(A) is needed in subsequent calculations, the code

actually computes Â as a pseudorandom sample over T k×ℓ
q , and the sampling of A = NTT−1(Â) is only implicit (it

could be computed but is not).

14

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

Algorithm 1 ML-DSA.KeyGen()

Generates a public-private key pair.

Output: Public key, pk ∈ B32+32k(bitlen (q−1)−d),
and private key, sk B32+32+64+32·((ℓ+k bitlen ∈)· (2η)+dk).

1: ξ 256 ←{0,1} ▷ Choose random seed
′ 2: (ρ,ρ ,K 256 512) ∈ {0,1} ×{0,1} ×{0 256 ,1} ← H(ξ ,1024) ▷ Expand seed

3: Â ← ExpandA(ρ) ▷ A is generated and stored in NTT representation as Â
4: (s ′

1,s2) ← ExpandS(ρ)
5: t ← NTT−1(Â ◦ NTT(s1)) + s2 ▷ Compute t = As1 + s2
6: (t1, t0) ← Power2Round(t,d) ▷ Compress t
7: pk ← pkEncode(ρ, t1)
8: tr ← H(BytesToBits(pk),512)
9: sk ← skEncode(ρ,K, tr,s1,s2, t0) ▷ K and tr are for use in signing

10: return (pk,sk)

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

6. Signing
ML-DSA.Sign (Algorithm 2) takes as input a private key sk, encoded as a byte string, and a message,
M, encoded as a bit string, and it outputs a signature encoded as a byte string. There are two versions
of the algorithm: “hedged” and “deterministic.” The default “hedged” version of ML-DSA.Sign uses
fresh randomness. In addition, for platforms where a random number generator is unavailable, an optional
deterministic variant is specifed. However, the lack of randomness in the deterministic variant makes
the risk of side-channel attacks more diffcult to mitigate. Therefore, this variant should not be used on
platforms where side-channel attacks are a concern and where they cannot be otherwise mitigated. (See
the discussion in Section 3 for more details.)

Note that implementing the hedged variant only (without the deterministic variant) is suffcient to guarantee
interoperability. The same verifcation algorithm will work to verify signatures produced by either
variant, so implementing the deterministic variant in addition to the hedged variant does not enhance
interoperability.

In both variants, the signer frst extracts the following from the private key: the public random seed ρ;
the 256-bit private random seed K; the 512-bit hash of the public key, tr; the secret polynomial vectors
s1 and s2; and the polynomial vector t0 encoding the d least signifcant bits of each coeffcient of the
uncompressed public key polynomial t. ρ is then expanded to the same matrix A as in key generation.

Before the message, M, is signed, it is concatenated with the public-key hash tr and hashed down to a
512-bit message representative, µ , using the hash function H (see section 8.3).

The signer produces an additional 512-bit seed ρ ′, for private randomness during each signing operation.
ρ ′ is computed as ρ ′ ← H(K||rnd||µ,512). In the default “hedged” variant, rnd is the output of an RBG,
while in the deterministic variant rnd is a 256-bit string consisting entirely of zeroes. This is the only
difference between the deterministic and hedged variant of ML-DSA.Sign.

The main part of the signing algorithm consists of a rejection sampling loop, where each iteration of the
loop either produces a valid signature or an invalid signature whose release would leak information about
the private key. The loop is repeated until a valid signature is produced, which can then be encoded as a
byte string and output. The rejection sampling loop follows the Fiat-Shamir with aborts paradigm [9] and

15

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

(aside from the rejection step) is similar in structure to Schnorr signatures [28] (e.g., EdDSA [29]). The
signer frst produces a “commitment” w1. Then the signer pseudorandomly derives a “challenge” c from
w1 and the message representative µ . Finally, the signer computes a response z.

In more detail, the main computations involved in the rejection sampling loop are as follows:

• Using the ExpandMask function (Algorithm 28), the seed ρ ′ and a counter κ , a polynomial vector
y ∈ Rℓ

q is pseudorandomly sampled from the subset of polynomial vectors whose coeffcients are
moderately short (i.e. in the range [−γ1 + 1,γ1]).

• From y, the signer computes the commitment w1 by computing w = Ay and then rounding to a
nearby multiple of 2γ2, using HighBits (Algorithm 31).

• w1 and µ are concatenated and hashed to produce the commitment hash c̃. This uses the function
w1Encode (Algorithm 22). Let c̃1 denote the frst 256 bits of c̃. The bit string c̃1 is used to
pseudorandomly sample a polynomial c ∈ Rq that has coeffcients in {−1,0,1} and Hamming
weight τ . The sampling is done with the function SampleInBall (Algorithm 23).

• The signer computes the response z = y+ cs1 and performs various validity checks. If any of the
checks fail, the signer will continue the rejection sampling loop.

• If the checks pass, the signer can compute a hint polynomial, h, which will allow the verifer to
reconstruct w1 using the compressed public key (along with the other components of the signature).
This uses the function MakeHint (Algorithm 33). The signer will then output the fnal signature,
which is a byte encoding of the commitment hash c̃, the response z, and the hint h.

In addition, there is an alternative way of implementing the validity checks on z, and the computation of h,
which is described in section 5.1 of [5]. This method may also be used in implementations of ML-DSA.

In Algorithm 2, variables are sometimes used to store products to avoid recomputing them later in the
signing algorithm. These precomputed products are denoted in the pseudocode by a pair of double angle
brackets enclosing the variables being multiplied (e.g., ⟨⟨cs1⟩⟩).

3

3The length of c̃1 is determined by the targeted security strength against signature forgery attacks, and the required
length is only 256 bits for 256 bits of classical security. The length of c̃ is determined by the desired security with
respect to the “message-bound signatures” property described in [6]. Here, a length of 2λ bits is required for λ bits
of classical security.

16

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

Algorithm 2 ML-DSA.Sign(sk, M)

Generates a signature for a message M.

Input: Private key, sk B32+32 (k∈ +64+32· (ℓ+)·bitlen (2η)+dk) and the message M ∈ {0,1}∗ .
Output: Signature, σ 32 32 1 bitlen γ 1 ω∈ B +ℓ· ·(+ (1−))+ +k .

1: (ρ,K, tr,s1,s2, t0) ← skDecode(sk)
2: ŝ1 ← NTT(s1)
3: ŝ2 ← NTT(s2)
4: t̂0 ← NTT(t0)
5: Â ← ExpandA(ρ) ▷ A is generated and stored in NTT representation as Â
6: µ ← H(tr||M,512) ▷ Compute message representative µ

rnd 0 1 256 256 7: ←{ , } ▷ For the optional deterministic variant, substitute rnd ←{0}
8: ρ ′ ← H(K||rnd||µ,512) ▷ Compute private random seed
9: κ ← 0 ▷ Initialize counter κ

10: (z,h) ←⊥
11: while (z,h) = ⊥ do ▷ Rejection sampling loop

′ 12: y ← ExpandMask(ρ ,κ)
13: w ← NTT−1(Â ◦ NTT(y))
14: w1 ← HighBits(w) ▷ Signer’s commitment
15: c̃ ∈ {0,1 2λ } ← H(µ||w1Encode(w1),2λ) ▷ Commitment hash
16: (c̃1, c̃2) 256 2λ 256 ∈ {0,1} ×{0,1} − ← c̃ ▷ First 256 bits of commitment hash
17: c ← SampleInBall(c̃1) ▷ Verifer’s challenge
18: ĉ ← NTT(c)
19: ⟨⟨cs1⟩⟩ ← NTT−1(ĉ◦ ŝ1)
20: ⟨⟨cs2⟩⟩ ← NTT−1(ĉ◦ ŝ2)
21: z ← y + ⟨⟨cs1⟩⟩ ▷ Signer’s response
22: r0 ← LowBits(w − ⟨⟨cs2⟩⟩)
23: if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β then (z,h) ←⊥ ▷ Validity checks
24: else
25: ⟨⟨ct0⟩⟩ ← NTT−1(ĉ◦ t̂0)
26: h ← MakeHint(−⟨⟨ct0⟩⟩,w− ⟨⟨cs2⟩⟩ + ⟨⟨ct0⟩⟩) ▷ Signer’s hint
27: if ||⟨⟨ct0⟩⟩||∞ ≥ γ2 or the number of 1’s in h is greater than ω , then (z,h) ←⊥
28: end if
29: end if
30: κ ← κ + ℓ ▷ Increment counter
31: end while
32: σ ← sigEncode(c̃,z mod±q,h)
33: return σ

17

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

7. Verifcation

The algorithm ML-DSA.Verify (Algorithm 3) takes as input a public key pk encoded as a byte string, a
message M encoded as a bit string, and a signature σ encoded as a byte string. ML-DSA.Verify requires
no randomness. It produces as output a Boolean value (i.e., a value that is true if the signature is valid
with respect to the message and public key, and false if the signature is invalid). Algorithm 3 specifes the
length of the signature σ and the public key pk in terms of the parameters described in section 1. If an
implementation of ML-DSA.Verify can accept inputs for σ or pk of any other length, it shall return false
whenever the length of either of these inputs differs from its specifed length.

The verifer frst extracts the public random seed ρ and the compressed polynomial vector t1 from the
public key pk; and extracts the signer’s commitment hash c̃, response z, and hint h from the signature σ .
The verifer may fnd that the hint was not properly byte encoded, denoted by the symbol “⊥,” in which
case the verifcation algorithm will immediately return false, indicating that the signature is invalid.

Assuming that the signature is successfully extracted from its byte encoding, the verifer pseudorandomly
derives A from ρ , as is done in key generation and signing, and creates a message representative µ , by
hashing the concatenation of tr (the hash of the public key pk) and the message M.

The verifer then attempts to reconstruct the signer’s commitment (the polynomial vector w1) from
the public key pk and the signature σ . In ML-DSA.Sign, w1 is computed by rounding w = Ay. In
ML-DSA , the reconstructed value of w is called w ′ .Verify 1 1, since it may have been computed in a different
way, in the case where the signature is invalid. This w ′ 1 is computed through the following process:

• Derive the challenge polynomial c from the signer’s commitment hash c̃, as done in ML-DSA.Sign.

• Use the signer’s response z to compute

w′ d − ·Approx = Az ct1 2 .

Note that assuming the signature was computed correctly, as in ML-DSA.Sign, it follows that

w = Ay = Az − ct + cs d ≈ ′
2 wApprox = Az − ct1 · 2 ,

because c and s2 have small coeffcients, and t1 · 2d ≈ t .

• Use the signer’s hint h to obtain w ′ 1 from w ′ Approx.

Finally, the verifer checks that the signer’s response z and the signer’s hint h are valid, and that the
reconstructed w ′ 1 is consistent with the signer’s commitment hash c̃. More precisely, the verifer checks
that all of the coeffcients of z are suffciently small (i.e., in the range [−(γ1 − β),γ1 − β]); that h contains
no more than ω nonzero coeffcients; and that c̃ matches the hash c̃′ of the message representative µ
concatenated with w ′ 1 (represented as a bit string). If all of these checks succeed, then ML-DSA.Verify
returns true. Otherwise it returns false.

18

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

Algorithm 3 ML-DSA.Verify(pk, M, σ)

Verifes a signature σ for a message M.

Input: Public key, pk ∈ B32+32k(bitlen (q−1)−d) and message M ∈ {0,1}∗.
Input: Signature, σ B32+ℓ·32·(1+bitlen (γ1−1))+ω k ∈ + .
Output: Boolean

1: (ρ, t1) ← pkDecode(pk)
2: (c̃,z,h) ← sigDecode(σ) ▷ Signer’s commitment hash c̃, response z and hint h
3: if h = ⊥ then return false ▷ Hint was not properly encoded
4: end if
5: Â ← ExpandA(ρ) ▷ A is generated and stored in NTT representation as Â
6: tr ← H(BytesToBits(pk),512)
7: µ ← H(tr||M,512) ▷ Compute message representative µ
8: (c̃ 256 2λ 256

1, c̃2) ∈ {0,1} ×{0,1} − ← c̃
9: c ← SampleInBall(c̃1) ▷ Compute verifer’s challenge from c̃

10: w ′ ← A ˆ ◦NTT(z d d NTT−1() − NTT(c) ◦ NTT(▷ w ′Approx t1 · 2)) = Approx Az− ct1 · 2
11: w ′ ← UseHint(1 h,w ′) ▷ Approx Reconstruction of signer’s commitment
12: c̃′ ← H (µ||w1Encode(w ′),1 2λ) ▷ Hash it; this should match c̃
13: return [[||z||∞ < γ1 − β]] and [[c̃ = c̃′]] and [[number of 1’s in h is ≤ ω]]

760

761

762

763

764

765

766

767

768

769

770

7.1 Prehash ML-DSA
For some cryptographic modules that generate ML-DSA signatures, hashing the message in ML-DSA.Sign
(step 6 of Algorithm 2) may have unacceptable performance when the message M is large. For example, the
platform may require hardware support for hashing to achieve acceptable performance, but lack hardware
support for SHAKE256 specifcally. For some use cases, this may be addressed by signing a digest of the
message rather than signing the message directly.

In order to maintain the same level of security strength, the digest that is signed needs to be generated using
an approved hash function or extendable-output function (XOF) (e.g., from FIPS 180 [8] or FIPS 202 [7])
that provides at least λ bits of classical security strength against both collision and second preimage
attacks [7, Table 4]. Note that verifcation of a signature created in this way will require the verify function
to generate a digest from the message in the same way to be used as input for the verifcation function.

4

4Obtaining at least λ bits of classical security strength against collision attacks requires that the digest to be signed
be at least 2λ bits in length.

19

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

771

772

773

774

775

776

777

778

779

8. Auxiliary Functions
This section provides pseudocode for subroutines utilized by ML-DSA, including functions for data-type
conversions, arithmetic, and sampling.

8.1 Conversion Between Data Types
All keys and signatures in ML-DSA are communicated as byte strings. The goal in this subsection is to
construct procedures for translating between byte strings and the various other algebraic objects defned in
subsection 2.3.

Algorithms 4–7 are simple intermediate procedures for converting between bit strings, byte strings, and
integers.

Algorithm 4 IntegerToBits(x,α)

Computes the base-2 representation of x mod 2α (using in little-endian order).

Input: A nonnegative integer x and a positive integer α .
Output: A bit string y of length α .

1: for i from 0 to α − 1 do
2: y[i] ← x mod 2
3: x ← ⌊x/2⌋
4: end for
5: return y

Algorithm 5 BitsToInteger(y)
Computes the integer value expressed by a bit string (using little-endian order).

Input: A bit string y of length α .
Output: A nonnegative integer x.

1: x ← 0
2: for i from 1 to α do
3: x ← 2x + y[α − i]
4: end for
5: return x

20

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

Algorithm 6 BitsToBytes(y)
Converts a string of bits of length c into a string of bytes of length ⌈c/8⌉.
Input: A bit string y of length c.
Output: A byte string z.

1: z ← 0⌈c/8⌉

2: for i from 0 to c − 1 do
i mod 8 3: z [⌊i/8⌋] ← z [⌊i/8⌋]+ y[i] · 2

4: end for
5: return z

Algorithm 7 BytesToBits(z)
Converts a byte string into a bit string.

Input: A byte string z of length d.
Output: A bit string y.

1: for i from 0 to d − 1 do
2: for j from 0 to 7 do
3: y[8i+ j] ← z[i] mod 2
4: z[i] ← ⌊z[i]/2⌋
5: end for
6: end for
7: return y

780

781

782

783

784

Algorithms 8–9 translate byte strings into coeffcients of polynomials in Rq. CoeffFromThreeBytes
uses a three-byte string to either generate an element of {0,1, . . . ,q − 1} or return the blank symbol ⊥.
CoefFromHalfByte uses an element of {0,1, . . . ,15} to either generate an element of {−η ,−η +1, . . . ,η}
or return ⊥. These two procedures will be used in the uniform sampling algorithms, RejNTTPoly and
RejBoundedPoly, discussed in subsection 8.3.

Algorithm 8 CoefFromThreeBytes(b0,b1,b2)

Generates an element of {0,1,2, . . . ,q − 1} ∪ {⊥}.
Input: Bytes b0,b1,b2.
Output: An integer modulo q or ⊥.

1: if b2 > 127 then
2: b2 ← b2 − 128 ▷ Set the top bit of b2 to zero
3: end if
4: z ← 216 · b 8

2 + 2 · b1 + b0
5: if z < q then return z
6: else return ⊥
7: end if

21

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

Algorithm 9 CoefFromHalfByte(b)

Generates an element of {−η ,−η + 1, . . . ,η} ∪ {⊥}.
Input: Integer b ∈ {0,1, . . . ,15}.
Output: An integer between −η and η , or ⊥.

1: if η = 2 and b < 15 then return 2− (b mod 5)
2: else
3: if η = 4 and b < 9 then return 4 − b
4: else return ⊥
5: end if
6: end if

Algorithms 10–13 effciently translate an element w ∈ R into a byte string and vice versa under the
assumption that the coeffcients of w are in a restricted range. SimpleBitPack assumes that wi ∈ [0,b]
for some positive integer b and packs w into a byte string of length 32 · bitlen b. BitPack allows for the
more general restriction wi ∈ [−a,b]. The BitPack algorithm works by merely subtracting w from the
polynomial ∑255 i

i=0 bX and then applying SimpleBitPack.

Algorithm 10 SimpleBitPack(w,b)

Encodes a polynomial w into a byte string.

Input: b ∈ N and w ∈ R such that the coeffcients of w are all in [0,b].
Output: A byte string of length 32 · bitlen b.

1: z ← () ▷ set z to the empty string
2: for i from 0 to 255 do
3: z ← z||IntegerToBits(wi,bitlen b)
4: end for
5: return BitsToBytes(z)

Algorithm 11 BitPack(w,a,b)
Encodes a polynomial w into a byte string.

Input: a,b ∈ N and w ∈ R such that the coeffcients of w are all in [−a,b].
Output: A byte string of length 32 · bitlen (a + b).

1: z ← () ▷ set z to the empty string
2: for i from 0 to 255 do
3: z ← z||IntegerToBits(b − wi,bitlen (a + b))
4: end for
5: return BitsToBytes(z)

SimpleBitUnpack and BitUnpack are used to decode the byte strings produced by the above functions.
Note that for some choices of a and b, there exist malformed byte strings that will cause SimpleBitUnpack
and BitUnpack to output polynomials whose coeffcients do not lie in the ranges [0,b] and [−a,b],
respectively. This can be a concern, when running SimpleBitUnpack and BitUnpack on inputs that may
come from an untrusted source.

785

786

787

788

789

790

791

792

793

794

22

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

Algorithm 12 SimpleBitUnpack(v,b)

Reverses the procedure SimpleBitPack.

Input: b ∈ N and a byte string v of length 32 · bitlen b.
Output: A polynomial w ∈ R, with coeffcients in c [0,2 − 1], where c = bitlen b.
When b + 1 is a power of 2, the coeffcients are in [0,b].

1: c ← bitlen b
2: z ← BytesToBits(v)
3: for i from 0 to 255 do
4: wi ← BitsToInteger((z[ic],z[ic + 1], . . .z[ic + c − 1]),c)
5: end for
6: return w

Algorithm 13 BitUnpack(v,a,b)
Reverses the procedure BitPack.

Input: a,b ∈ N and a byte string v of length 32 · bitlen (a + b).
Output: A polynomial w ∈ R, with coeffcients in [b− 2c + 1,b], where c = bitlen (a + b).
When a + b + 1 is a power of 2, the coeffcients are in [−a,b].

1: c ← bitlen (a + b)
2: z ← BytesToBits(v)
3: for i from 0 to 255 do
4: wi ← b − BitsToInteger((z[ic],z[ic + 1], . . .z[ic + c − 1]),c)
5: end for
6: return w

795

796

797

798

799

800

801

802

803

Algorithms 14–15 carry out byte-string-to-polynomial conversions for polynomials with sparse binary
coeffcients. In particular, the signing and verifcation algorithms (sections 6 and 7) make use of a “hint,”
which is a vector of polynomials h ∈ Rk

2 such that the total number of coeffcients in h[0],h[1], . . . ,h[k − 1]
that are equal to 1 is no more than ω . This constraint enables encoding and decoding procedures that are
more effcient (although more complex) than BitPack and BitUnpack.

HintBitPack (h) outputs a byte string y of length ω + k. The last k bytes of y contain information about
how many nonzero coeffcients are present in each of the polynomials h[0],h[1], . . . ,h[k − 1], and the frst
ω bytes of y contain information about exactly where those nonzero terms occur. HintBitUnpack reverses
the procedure performed by HintBitPack and recovers the vector h.

23

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

Algorithm 14 HintBitPack(h)
Encodes a polynomial vector h with binary coeffcients into a byte string.

Input: A polynomial vector h ∈ Rk 2 such that at most ω of the coeffcients in h are equal to 1.
Output: A byte string y of length ω + k.

1: y ∈ Bω+k ← 0ω+k

2: Index ← 0
3: for i from 0 to k − 1 do
4: for j from 0 to 255 do
5: if h[i] j = 0 then
6: y[Index] ← j ▷ Store the locations of the nonzero coeffcients in h[i]
7: Index ← Index + 1
8: end if
9: end for

10: y[ω + i] ← Index ▷ Store the value of Index after processing h[i]
11: end for
12: return y

Algorithm 15 HintBitUnpack(y)
Reverses the procedure HintBitPack.

Input: A byte string y of length ω + k.
Output: A polynomial vector h ∈ Rk

2 or ⊥.
h Rk k 1: ∈ ← 2 0

2: Index ← 0
3: for i from 0 to k − 1 do
4: if y[ω + i] < Index or y[ω + i] > ω then return ⊥
5: end if
6: while Index < y[ω + i] do
7: h[i]y[Index] ← 1
8: Index ← Index + 1
9: end while

10: end for
11: while Index < ω do
12: if y[Index] = 0 then return ⊥
13: end if
14: Index ← Index + 1
15: end while
16: return h

̸

̸

804

805

806

807

8.2 Encodings of ML-DSA Keys and Signatures
Algorithms 16–21 translate keys and signatures for ML-DSA into byte strings. These procedures take
certain sequences of algebraic objects, encode them (consecutively) into byte strings, and perform the
respective decoding procedures.

24

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

808

809

810

811

First, pkEncode and pkDecode translate ML-DSA public keys into byte strings, and vice versa. Note that,
when verifying a signature, pkDecode might be run on an input that comes from an untrusted source. Thus,
care is required when using SimpleBitUnpack. As used here, SimpleBitUnpack always returns values in
the correct range.

Algorithm 16 pkEncode(ρ, t1)

Encodes a public key for ML-DSA into a byte string.

Input:ρ ∈ {0,1 256 } , t1 ∈ Rk with coeffcients in [0, 2bitlen (q−1)−d − 1]).
Output: Public key pk ∈ B32+32k(bitlen (q−1)−d).

1: pk ← BitsToBytes(ρ)
2: for i from 0 to k − 1 do

pk pk t i 2bitlen (q−1)−d 3: ← || SimpleBitPack (1[], − 1)
4: end for
5: return pk

Algorithm 17 pkDecode(pk)
Reverses the procedure pkEncode.

Input: Public key pk ∈ B32+32k(bitlen (q−1)−d).
Output: ρ ∈ {0,1 256 } , t1 ∈ Rk with coeffcients in [0, 2bitlen (q−1)−d − 1]).� �k

1: (y 0 ∈ B32 ,z , . . . ,zk−1) × B32(bitlen (q−1)−d) ← pk
2: ρ ← BytesToBits(y)
3: for i from 0 to k − 1 do
4: t bitlen (q−1)−d

1[i] ← SimpleBitUnpack(zi,2 − 1)) ▷ This is always in the correct range
5: end for
6: return (ρ, t1)

25

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

812

813

814

Next, skEncode and skDecode translate ML-DSA secret keys into byte strings, and vice versa. Note that
there exist malformed inputs that can cause skDecode to return values that are not in the correct range.
Hence skDecode should only be run on input that comes from trusted sources.

Algorithm 18 skEncode(ρ,K, tr,s1,s2, t0)

Encodes a secret key for ML-DSA into a byte string.

Input: ρ 0 1 256 K 0 1 256 tr 0 1 512, s Rℓ ∈ { , } , ∈ { , } , ∈ { , } 1 ∈ with coeffcients in [−η ,η],
s2 ∈ Rk with coeffcients in [−η η 1,], t k d 1 d

0 ∈ R with coeffcients in [−2 − + 1,2 −].
Output: Private key, sk ∈ B32+32+64+32·((k+ℓ)·bitlen (2η)+dk).

1: sk ← BitsToBytes(ρ) || BitsToBytes(K) || BitsToBytes(tr)
2: for i from 0 to ℓ − 1 do
3: sk ← sk || BitPack (s1[i],η ,η)
4: end for
5: for i from 0 to k − 1 do
6: sk ← sk || BitPack (s2[i],η ,η)
7: end for
8: for i from 0 to k − 1 do
9: sk ← sk || BitPack (t0[i d 1 d 1],2 − − 1,2 −)

10: end for
11: return sk

26

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

Algorithm 19 skDecode(sk)

Reverses the procedure skEncode.

Input: Private key, sk ∈ B32+32+64+32·((ℓ+k)·bitlen (2η)+dk).
Output: ρ ∈ {0,1 256 } , K ∈ {0,1 256 512} , tr ∈ {0,1} ,
s1 ∈ Rℓ , s2 ∈ Rk , t0 ∈ Rk with coeffcients in [−2d−1 + 1,2d−1]. � �ℓ

1: (f ,g,h,y0, . . . ,yℓ−1,z0, . . . ,zk−1,w0, . . . ,wk−1) B32 × B32 × B64 B32·bitlen (2η∈ ×) × � �k � �kB32·bitlen (2η) B32d× ← sk
2: ρ ← BytesToBits(f)
3: K ← BytesToBits(g)
4: tr ← BytesToBits(h)
5: for i from 0 to ℓ − 1 do
6: s1[i] ← BitUnpack(yi,η ,η) ▷ This may lie outside [−η ,η], if input is malformed
7: end for
8: for i from 0 to k − 1 do
9: s2[i] ← BitUnpack(zi,η ,η) ▷ This may lie outside [−η ,η], if input is malformed

10: end for
11: for i from 0 to k − 1 do
12: t0[i] d← BitUnpack(wi,2 −1 − 1,2d−1) ▷ This is always in the correct range
13: end for
14: return (ρ,K, tr,s1,s2, t0)

27

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

815

816

817

818

819

820

821

Next, sigEncode and sigDecode translate ML-DSA signatures into byte strings, and vice versa. Note that,
when verifying a signature, sigDecode might be run on input that comes from an untrusted source. Thus
care is required when using BitUnpack. As used here, BitUnpack always returns values in the correct
range.

Algorithm 20 sigEncode(c̃,z,h)
Encodes a signature into a byte string.

Input: c̃ ∈ {0,1 2λ} , z ∈ Rℓ with coeffcients in γ γ k [− 1 + 1, 1], h ∈ R2.
Output: Signature, σ Bλ 32·(1+bitlen γ∈ /4+ℓ· (1−1))+ω+k .

1: σ ← BitsToBytes(c̃)
2: for i from 0 to ℓ − 1 do
3: σ ← σ || BitPack (z[i],γ1 − 1,γ1)
4: end for
5: σ ← σ || HintBitPack (h)
6: return σ

Algorithm 21 sigDecode(σ)

Reverses the procedure sigEncode.

Input: Signature, σ Bλ /4+ℓ·32·(1+bitlen (γ ω k ∈ 1−1))+ + .
Output: c̃ 2∈ {0 1 λ } , z k , ∈ Rℓ

q with coeffcients in [−γ1 + 1,γ1], h ∈ R2 or ⊥.

w λ 4 32 11: (,x , . . . ,x ,y) ∈ B / × Bℓ· ·(+bitlen (γ1−1))
0 ℓ−1 × Bω+k ← σ

2: c̃ ← BytesToBits(w)
3: for i from 0 to ℓ − 1 do
4: z[i] ← BitUnpack(xi,γ1 − 1,γ1) ▷ This is always in the correct range, as γ1 is a power of 2
5: end for
6: h ← HintBitUnpack(y)
7: return (c̃,z,h)

Lastly, w1Encode (Algorithm 22) is a specifc subroutine that is used in ML-DSA.Sign (Algorithm 2).
Algorithm 22 encodes a polynomial vector w1 into a string of bits, so that it can be processed by the hash
function, H.

Algorithm 22 w1Encode(w1)

Encodes a polynomial vector w1 into a bit string.

Input: w Rk
1 ∈ with coeffcients in [0,(q − 1)/(2γ2) − 1].

Output: A bit string representation, w̃ 32k bitlen q 1∈ {0,1} · ((−)/(2γ2)−1)
1 .

1: w̃1 ← ()
2: for i from 0 to k − 1 do
3: w̃1 ← w̃1 || BytesToBits (SimpleBitPack (w1[i],(q − 1)/(2γ2) − 1))
4: end for
5: return w̃1

28

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

8.3 Hashing and Pseudorandom Sampling
The ML-DSA scheme makes use of two extendable-output functions (XOFs) that will be denoted by H
and H128, each of which accepts a bit string v and a positive integer d and returns a length-d bit string. The
functions H and H128 shall be computed from the procedures in FIPS 202 [7] as follows:

H(v,d) ← SHAKE256(v,d), (8.1)
H128(v,d) ← SHAKE128(v,d). (8.2)

The algorithm SHAKE256 is such that if c < d are positive integers and ρ ∈ {0,1}∗, then H(ρ,c) is exactly
equal to the frst c bits of H(ρ,d). The same is true of SHAKE128. For convenience, the expression
H(ρ)[k] may be used to denote the bit H(ρ,k + 1)[k] for any nonnegative integer k. Similarly, H(ρ)J jK
denotes the byte expressed by the bit string

H(ρ,8(j + 1))[8 j],H(ρ,8(j + 1))[8 j + 1], . . . ,H(ρ,8(j + 1))[8 j + 7] (8.3)

(in little endian-order). The expressions H128(ρ)[k] and H128(ρ)J jK are similarly defned.

The notation H(ρ)[k] is used in loops where an unknown number of bits of the form H(ρ)[k] will be needed
to compute a pseudorandom value (for the same ρ and consecutive, increasing values of k). It is expected
that implementations will avoid recomputation by keeping track of the internal state of the SHAKE256
computation throughout the loop, and will only completely destroy that information once the the loop ends.
Similar implementation considerations apply when the XOF is H128 and when the output is parsed in bytes.

When H is used with a fxed length output, this standard sometimes refers to H as a hash function. Note
that, while H used with a fxed output length is a hash function, it is not an approved hash function for
general use. This standard only approves the use of H as a hash function where it is explicitly specifed as
part of the algorithms herein, or as part of a mathematically equivalent set of steps being performed in
place of the steps of these algorithms. In other contexts, the fact that H(ρ,c) is a prefx of H(ρ,d) for any
d > c, may interfere with desired security properties, but it is believed that when H is used as described in
this standard, it is overwhelmingly unlikely that H will be used with the same input string but a different
output length.

In addition, this subsection specifes various algorithms for generating algebraic objects pseudorandomly
from a seed ρ . The length of the bit string ρ varies depending on the algorithm.

The frst procedure to be defned is SampleInBall in Algorithm 23. Let Bτ denote the set of all polynomials
c ∈ Rq such that

• Each coeffcient of c is either −1, 0, or 1, and

• Exactly τ of the coeffcients of c are nonzero.

SampleInBall generates an element of Bτ pseudorandomly using the XOF of a seed ρ . The procedure is
based on the Fisher-Yates shuffe. The frst 8 bytes of H(ρ) are used to choose the signs of the nonzero
entries of c, and subsequent bytes of H(ρ) are used to choose the positions of those nonzero entries. 5

5The parameter τ is always less than or equal to 64, and thus 8 bytes are suffcient to choose the signs for all τ
nonzero entries of c.

29

Algorithm 23 SampleInBall(ρ)

Samples a polynomial c ∈ Rq with coeffcients from {−1,0,1} and Hamming weight τ .

Input: A seed ρ ∈ {0,1 256 }
Output: A polynomial c in Rq.

1: c ← 0
2: k ← 8
3: for i from 256 − τ to 255 do
4: while H(ρ)JkK > i do
5: k ← k + 1
6: end while
7: j ← H(ρ)JkK ▷ j is a pseudorandom byte that is ≤ i
8: ci ← c j

9: c τ← (−1 H) (ρ)[i+ −256]
j

10: k ← k + 1
11: end for
12: return c

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

853

854

855

856

857

858

859

Algorithms 24–28 are the pseudorandom procedures RejNTTPoly, RejBoundedPoly, ExpandA, ExpandS,
d ExpandMask. Each generates elements of Rq or Tq under different input and output conditions.
jNTTPoly and ExpandA make use of the more effcient XOF H128, whereas the other three procedures
e the XOF H.

e procedure ExpandMask (Algorithm 28) generates a polynomial vector s in Rk
q that disguises the secret

y in the Sign procedure (Algorithm 2). In addition to the seed ρ , ExpandMask also accepts an integer
put µ that is incorporated into the pseudorandom procedure that generates s.

lgorithm 24 RejNTTPoly(ρ)
mples a polynomial ∈ Tq.

put: A seed ρ ∈ {0,1 272} .
utput: An element â ∈ Tq.
: j ← 0
: c ← 0
: while j < 256 do
: â[j] ← CoefFromThreeBytes(H128(ρ)JcK,H128(ρ)Jc + 1K,H128(ρ)Jc + 2K)
: c ← c + 3
: if â[j] =⊥ then
: j ← j + 1
: end if
: end while
: return â

an
Re
us

Th
ke
in

A
Sa

In
O

1
2
3
4
5
6
7
8
9

10

̸

30

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

Algorithm 25 RejBoundedPoly(ρ)
Samples an element a ∈ Rq with coeffcients in [−η ,η] computed via rejection sampling from ρ .

Input: A seed ρ ∈ {0,1 528} .
Output: A polynomial a ∈ Rq.

1: j ← 0
2: c ← 0
3: while j < 256 do
4: z ← H(ρ)JcK
5: z0 ← CoefFromHalfByte(z mod 16,η)
6: z1 ← CoefFromHalfByte(⌊z/16⌋,η)
7: if z0 =⊥ then
8: a j ← z0
9: j ← j + 1

10: end if
11: if z1 =⊥ and j < 256 then
12: a j ← z1
13: j ← j + 1
14: end if
15: c ← c + 1
16: end while
17: return a

Algorithm 26 ExpandA(ρ)

Samples a k × ℓ matrix Â of elements of Tq.

Input: ρ ∈ {0,1 256} .
Output: Matrix Â.

1: for r from 0 to k − 1 do
2: for s from 0 to ℓ − 1 do
3: Â[r,s] ← RejNTTPoly(ρ||IntegerToBits(s,8)||IntegerToBits(r,8))
4: end for
5: end for
6: return Â

̸

̸

31

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

Algorithm 27 ExpandS(ρ)

Samples vectors s1 ∈ Rℓ and s2 ∈ Rk, each with coeffcients in the interval [−q q η ,η].

Input: ρ 512 ∈ {0,1}
Output: Vectors s1,s2 of polynomials in Rq.

1: for r from 0 to ℓ − 1 do
2: s1[r] ← RejBoundedPoly(ρ||IntegerToBits(r,16))
3: end for
4: for r from 0 to k − 1 do
5: s2[r] ← RejBoundedPoly(ρ||IntegerToBits(r + ℓ,16))
6: end for
7: return (s1,s2)

Algorithm 28 ExpandMask(ρ, µ)

Samples a vector s ∈ Rℓ
q such that each polynomial s j has coeffcients between −γ1 + 1 and γ1.

Input: A bit string ρ ∈ {0,1 512 } and a nonnegative integer µ .
Output: Vector s ∈ Rℓ

q.
1: c ← 1 + bitlen (γ1 − 1) ▷ γ1 is always a power of 2
2: for r from 0 to ℓ − 1 do
3: n ← IntegerToBits(µ + r,16)
4: v ← (H(ρ||n)J32rcK,H(ρ||n)J32rc + 1K, . . . ,H(ρ||n)J32rc + 32c − 1K)
5: s[r] ← BitUnpack(v,γ1 − 1,γ1)
6: end for
7: return s

32

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

8.4 High Order / Low Order Bits and Hints
This specifcation uses the auxiliary functions Power2Round, Decompose, HighBits, LowBits, MakeHint,
and UseHint. This document explicitly defnes these functions where r ∈ Zq, r1,r0 ∈ Z and h is a boolean
(or equivalently an element of Z2). However, the specifcation also uses these functions where r,z ∈ Rk

q,
r1,r0 ∈ Rk and h ∈ Rk

2. In this case, the functions are applied coeffcientwise.

That is:

• For r k ∈ R and d ∈ Z, defne (r1,r0) ∈ (Rk 2
q) = Power2Round(r,d), so that:

((r1[i]) j,(r0[i]) j) = Power2Round((r[i]) j,d).

• For r ∈ Rk
q defne (r1,r k∈ (R 2

0)) = Decompose(r), so that:

((r1[i]) j,(r0[i]) j) = Decompose((r[i]) j).

• For r ∈ Rk
q defne r1 = HighBits (r), so that:

(r1[i]) j = HighBits((r[i]) j).

• For r k ∈ Rq defne r0 = LowBits(r), so that:

(r0[i]) j = LowBits((r[i]) j).

• For z,r ∈ Rk k
q defne h ∈ R2 = MakeHint(z,r), so that:

(h[i]) j = MakeHint((z[i]) j),(r[i]) j)).

• For h ∈ Rk and r ∈ Rk
q , defne r ∈ Rk

1 = 2 UseHint(h,r), so that:

r1[i] j = UseHint((h[i]) j),(r[i]) j)).

These algorithms are used to support the key compression optimization of ML-DSA. The basic idea is
to drop the d low-order bits of each coeffcient of the polynomial vector t from the public key using the
function Power2Round. However, in order to make this optimization work, additional information, called
a “hint”, needs to be provided in the signature to allow the verifer to reconstruct enough of the information
in the dropped public key bits to verify the signature. Hints are created during signing and used during
verifcation by the functions MakeHint and UseHint, respectively. In the verifcation of a valid signature,
the hint allows the verifer to recover w k

1 ∈ R , which represents w k ∈ Rq rounded to a nearby multiple
of α = 2γ2. The signer obtains w1 directly using the function HighBits, and the part rounded off, r0, is
obtained by LowBits. r0 is used by the signer in the rejection sampling procedure.

Power2Round decomposes an input r ∈ Zq into integers that represent the high- and low-order bits of
r mod q in the straightforward bitwise way, r mod q = r1 · 2d + r0, where r0 = (r mod q mod±2d) and
r d

1 = (r mod q − r0)/2 .

However, for the purpose of computations related to hints, this method of decomposing r has the undesirable
property that when r is close to q − 1 or 0, a small rounding error in r can cause r1 to change by more than
1 (even accounting for wrap-around). This is because unlike for other unequal pairs of values of r1 · 2d and
r′ · 2d , the distance between d d ⌊q ⌋1 /2 · 2 and 0 may be very small.

33

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

888

889

890

891

892

893

894

To avoid this problem, this specifcation defnes Decompose, which is similar to Power2Round except:

• r is generally decomposed as r mod q = r1 · α + r0, where α = 2γ2 is a divisor of q − 1.

• If the straightforward rounding procedure would return (r1 = (q− 1)/α,r0 ∈ [−(α/2)+ 1,α/2]),
Decompose instead returns (r1 = 0,r0 − 1).

The functions HighBits and LowBits– which only return r1 and r0, respectively – and MakeHint and
UseHint use Decompose. For additional discussion of the mathematical properties of these functions that
are relevant to the correctness and security of ML-DSA, see Section 2.4 in [5].

Algorithm 29 Power2Round(r)

Decomposes r into d (r1,r0) such that r ≡ r12 + r0 mod q.

Input: r ∈ Zq.
Output: Integers (r1,r0).

1: r+ ← r mod q
r r+ d2: 0 ← mod±2� �

3: return (r+ − r0)/2d ,r0

Algorithm 30 Decompose(r)

Decomposes r into (r1,r0) such that r ≡ r1(2γ2)+ r0 mod q.

Input: r ∈ Zq
Output: Integers (r1,r0).

1: r+ ← r mod q
2: r0 ← r+ mod±(2γ2)
3: if r+ − r0 = q − 1 then
4: r1 ← 0
5: r0 ← r0 − 1
6: else r

1 ← (r+− r0)/(2γ2)
7: end if
8: return (r1,r0)

Algorithm 31 HighBits(r)
Returns r1 from the output of Decompose (r)

Input: r ∈ Zq
Output: Integer r1.

1: (r1,r0) ← Decompose(r)
2: return r1

34

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

Algorithm 32 LowBits(r)
Returns r0 from the output of Decompose (r)

Input: r ∈ Zq
Output: Integer r0.

1: (r1,r0) ← Decompose(r)
2: return r0

Algorithm 33 MakeHint(z,r)

Compute hint bit indicating whether adding z to r alters the high bits of r.

Input: z,r ∈ Zq
Output: Boolean

1: r1 ← HighBits(r)
2: v1 ← HighBits(r + z)
3: return [[r1 = v1]]

Algorithm 34 UseHint(h,r)
Returns the high bits of r adjusted according to hint h

Input:boolean h, r ∈ Zq

Output:r Z with 0 ≤ r q −1
1 ∈ 1 ≤ 2 γ2

1: m ← (q− 1)/(2γ2)
2: (r1,r0) ← Decompose(r)
3: if h = 1 and r0 > 0 return (r1 + 1) mod m
4: if h = 1 and r0 ≤ 0 return (r1 − 1) mod m
5: return r1

̸

35

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

8.5 NTT and NTT−1

The following algorithms implement the NTT and its inverse (NTT−1). Using the NTT is important for
effciency. There are other important optimizations that are not included in this standard. In particular,
mod and mod± are expensive operations whose use can be minimized by using Montgomery reduction

(see Appendix B).

The algorithm takes a polynomial w R as input and returns ŵ T . −1 NTT ∈ q ∈ q NTT takes ŵ ∈ Tq as input
and returns w such that ŵ = NTT(w).

This document always distinguishes between elements of Rq and elements of Tq. However, the natural data
structure for both of these sets is as an integer array of size 256. This would allow for the NTT and NTT−1

algorithms to perform computation in place on an integer array passed by reference. That optimization is
not included in this document.

Recall that ζ = 1753 ∈ Zq, which is a 512th root of unity modulo q. On input w ∈ Rq, the algorithm
outputs

NTT(w) = (w(ζ0),w(−ζ0), . . .w(ζ127),w(−ζ127)) ∈ Tq, (8.4)

where ζi = ζ brv(128+i) mod q. The values ζ brv(k) mod q for k = 1, . . . ,255 used in line 10 of Algorithm
35 and line 10 of Algorithm 36 are typically pre-computed. That optimization is not included in this
document.

Algorithm 35 NTT(w)
Computes the Number-Theoretic Transform.

Input: polynomial w(X) = ∑255 w jX j ∈j=0 Rq.
Output: ŵ = (ŵ[0], . . . , ŵ[255]) ∈ Tq.

1: for j from 0 to 255 do
2: ŵ[j] ← w j
3: end for
4: k ← 0
5: len ← 128
6: while len ≥ 1 do
7: start ← 0
8: while start < 256 do
9: k ← k + 1

10: zeta ← ζ brv(k) mod q
11: for j from start to start + len − 1 do
12: t ← zeta · ŵ[j + len]
13: ŵ[j + len] ← ŵ[j] − t
14: ŵ[j] ← ŵ[j]+ t
15: end for
16: start ← start + 2 · len
17: end while
18: len ← ⌊len/2⌋
19: end while
20: return ŵ

36

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

Algorithm 36 NTT−1(ŵ)

Computes the inverse of the Number-Theoretic Transform.

Input: ŵ = (ŵ[0], . . . , ŵ[255]) ∈ Tq.
Output: polynomial w(X) = ∑255 j ∈j=0 w jX Rq.

1: for j from 0 to 255 do
2: w j ← ŵ[j]
3: end for
4: k ← 256
5: len ← 1
6: while len < 256 do
7: start ← 0
8: while start < 256 do
9: k ← k − 1

10: zeta ←−ζ brv(k) mod q
11: for j from start to start + len − 1 do
12: t ← w j
13: w j ← t + w j+len
14: w j+len ← t − w j+len
15: w j+len ← zeta · w j+len
16: end for
17: start ← start + 2 · len
18: end while
19: len ← 2 · len
20: end while
21: f ← 8347681 1 ▷ f = 256− mod q
22: for j from 0 to 255 do
23: w j ← f · w j
24: end for
25: return w

37

915

920

925

930

935

940

945

950

911

912

913

914

916

917

918

919

921

922

923

924

926

927

928

929

931

932

933

934

936

937

938

939

941

942

943

944

946

947

948

949

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

References

[1] National Institute of Standards and Technology. Digital signature standard (DSS). (U.S. Department
of Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 186-5,
February 2023. https://doi.org/10.6028/NIST.FIPS.186-5.

[2] Elaine Barker. Guideline for using cryptographic standards in the federal government: Cryptographic
mechanisms. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special
Publication (SP) 800-175B, Rev. 1, March 2020. https://doi.org/10.6028/NIST.SP.800-175Br1.

[3] Elaine B. Barker. Recommendation for obtaining assurances for digital signature applications.
National Institute of Standards and Technology, Gaithersburg, MD. NIST Special Publication (SP)
800-89, November 2006. https://doi.org/10.6028/NIST.SP.800-89.

[4] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS-Dilithium: Algorithm specifcations and supporting doc-
umentation. Submission to the NIST’s post-quantum cryptography standardization process, 2020.
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions.

[5] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS-Dilithium: Algorithm specifcations and supporting docu-
mentation (Version 3.1), 2021. https://pq-crystals.org/dilithium/data/dilithium-specifcation-round3
-20210208.pdf.

[6] C. Cremers, S. Düzlü, R. Fiedler, C. Janson, and M. Fischlin. BUFFing signature schemes beyond
unforgeability and the case of post-quantum signatures. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 1696–1714, Los Alamitos, CA, USA, may 2021. IEEE Computer Society.

[7] National Institute of Standards and Technology. SHA-3 standard: Permutation-based hash and
extendable-output functions. (U.S. Department of Commerce, Washington, DC), Federal Information
Processing Standards Publication (FIPS) 202, August 2015. https://doi.org/10.6028/NIST.FIPS.202.

[8] National Institute of Standards and Technology. Secure hash standard (SHS). (U.S. Department of
Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 180-4,
August 2015. https://doi.org/10.6028/NIST.FIPS.180-4.

[9] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.
In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, pages 598–616, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[10] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, volume 7237 of Lecture
Notes in Computer Science, pages 738–755. Springer, 2012.

[11] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based cryptography:
A signature scheme for embedded systems. In CHES, volume 7428, pages 530–547. Springer, 2012.

[12] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based on
learning with errors. In Josh Benaloh, editor, Topics in Cryptology – CT-RSA 2014, pages 28–47,
Cham, 2014. Springer International Publishing.

[13] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings
of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’05, page 84–93,
New York, NY, USA, 2005. Association for Computing Machinery.

38

https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/10.6028/NIST.SP.800-175Br1
https://doi.org/10.6028/NIST.SP.800-89
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.180-4

955

960

965

970

975

980

985

990

951

952

953

954

956

957

958

959

961

962

963

964

966

967

968

969

971

972

973

974

976

977

978

979

981

982

983

984

986

987

988

989

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

[14] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography, 75(3):565–599, 2015.

[15] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2018, pages 552–586, Cham, 2018. Springer International
Publishing.

[16] Elaine B. Barker. Recommendation for key management:part 1 - general. National Institute of
Standards and Technology, Gaithersburg, MD. NIST Special Publication (SP) 800-57 Part 1 Revision
5, May 2020. https://doi.org/10.6028/NIST.SP.800-57pt1r5.

[17] Elaine B. Barker and William C. Barker. Recommendation for key management: Part 2 - best
practices for key management organizations. National Institute of Standards and Technology,
Gaithersburg, MD. NIST Special Publication (SP) 800-57 Part 2 Revision 1, May 2019. https:
//doi.org/10.6028/NIST.SP.800-57pt2r1.

[18] Elaine B. Barker and Quynh Dang. Recommendation for key management: Part 3 - application-
specifc key management guidance. National Institute of Standards and Technology, Gaithersburg,
MD. NIST Special Publication (SP) 800-57 Part 3 Revision 1, May 2019. http://dx.doi.org/10.6028
/NIST.SP.800-57pt3r1.

[19] Elaine B. Barker and John M. Kelsey. Recommendation for random number generation using
deterministic random bit generators. (National Institute of Standards and Technology, Gaithersburg,
MD), NIST Special Publication (SP) 800-90A, Rev. 1, June 2015. https://doi.org/10.6028/NIST.SP.
800-90Ar1.

[20] Meltem Sönmez Turan, Elaine B. Barker, John M. Kelsey, Kerry A. McKay, Mary L. Baish, and
Mike Boyle. Recommendation for the entropy sources used for random bit generation. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-90B,
January 2018. https://doi.org/10.6028/NIST.SP.800-90B.

[21] Elaine B. Barker, John M. Kelsey, Kerry McKay, Allen Roginsky, and Meltem Sönmez Turan.
Recommendation for random bit generator (RBG) constructions. (National Institute of Standards
and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-90C (Third Public Draft),
September 2022. https://csrc.nist.gov/publications/detail/sp/800-90c/draft.

[22] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on deterministic lattice signatures.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 21–43, 2018.

[23] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter, and Paul Rösler.
Attacking deterministic signature schemes using fault attacks. In 2018 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 338–352. IEEE, 2018.

[24] Niels Samwel, Lejla Batina, Guido Bertoni, Joan Daemen, and Ruggero Susella. Breaking ed25519
in wolfssl. In Topics in Cryptology–CT-RSA 2018: The Cryptographers’ Track at the RSA Conference
2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings, pages 1–20. Springer, 2018.

[25] National Institute of Standards and Technology. Submission requirements and evaluation criteria for
the post-quantum cryptography standardization process, 2016. https://csrc.nist.gov/CSRC/media/Pro
jects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf.

39

https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt2r1
https://doi.org/10.6028/NIST.SP.800-57pt2r1
https://doi.org/10.6028/NIST.SP.800-57pt2r1
http://dx.doi.org/10.6028/NIST.SP.800-57pt3r1
http://dx.doi.org/10.6028/NIST.SP.800-57pt3r1
http://dx.doi.org/10.6028/NIST.SP.800-57pt3r1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90B
https://csrc.nist.gov/publications/detail/sp/800-90c/draft
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

[26] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John Kelsey, Jacob Lichtinger,
Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, and Daniel
Smith-Tone. Status report on the third round of the NIST post-quantum cryptography standardization
process. Technical Report NIST Interagency or Internal Report (IR) 8413, National Institute of
Standards and Technology, Gaithersburg, MD, July 2022. https://doi.org/10.6028/NIST.IR.8413-upd
1.

[27] Robert Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Kyber algorithm specifca-
tions and supporting documentation. 3rd Round submission to the NIST’s post-quantum cryptography
standardization process, 2020. https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-sub
missions.

[28] C. P. Schnorr. Effcient identifcation and signatures for smart cards. In Gilles Brassard, editor,
Advances in Cryptology — CRYPTO’ 89 Proceedings, pages 239–252, New York, NY, 1990. Springer
New York.

[29] Simon Josefsson and Ilari Liusvaara. Edwards-Curve Digital Signature Algorithm (EdDSA). RFC
8032, January 2017.

[30] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia. Implementing Grover
oracles for quantum key search on AES and LowMC. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology – EUROCRYPT 2020, pages 280–310, Cham, 2020. Springer International
Publishing.

[31] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, page 212–219, New
York, NY, USA, 1996. Association for Computing Machinery.

40

https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

Appendix A — Security Strength Categories

NIST understands that there are signifcant uncertainties in estimating the security strengths of post-
quantum cryptosystems. These uncertainties come from two sources: frst, the possibility that new
cryptanalytic attacks are discovered, based on classical or quantum computation; and second, our limited
ability to predict the performance characteristics of future quantum computers, such as their cost, speed,
and memory size.

In order to address these uncertainties, NIST proposed the following approach in its original Call for
Proposals [25]. Instead of defning the strength of an algorithm using precise estimates of the number
of “bits of security,” NIST defned a collection of broad security strength categories. Each category is
defned by a comparatively easy-to-analyze reference primitive whose security serves as a foor for a wide
variety of metrics that NIST deems potentially relevant to practical security. A given cryptosystem may
be instantiated using different parameter sets in order to ft into different categories. The goals of this
classifcation are:

• To facilitate meaningful performance comparisons between various post-quantum algorithms by
ensuring – insofar as possible – that the parameter sets being compared provide comparable security

• To allow NIST to make prudent future decisions regarding when to transition to longer keys

• To help submitters make consistent and sensible choices regarding what symmetric primitives to use
in padding mechanisms or other components of their schemes that require symmetric cryptography

• To better understand the security/performance trade-offs involved in a given design approach

In accordance with the second and third goals above, NIST based its classifcation on the range of security
strengths offered by the existing NIST standards in symmetric cryptography, which NIST expects to offer
signifcant resistance to quantum cryptanalysis. In particular, NIST defned a separate category for each of
the following security requirements (listed in order of increasing strength):

1. Any attack that breaks the relevant security defnition must require computational resources com-
parable to or greater than those required for key search on a block cipher with a 128-bit key (e.g.,
AES-128).

2. Any attack that breaks the relevant security defnition must require computational resources compa-
rable to or greater than those required for collision search on a 256-bit hash function (e.g., SHA-256/
SHA3-256).

3. Any attack that breaks the relevant security defnition must require computational resources com-
parable to or greater than those required for key search on a block cipher with a 192-bit key (e.g.,
AES-192).

4. Any attack that breaks the relevant security defnition must require computational resources compa-
rable to or greater than those required for collision search on a 384-bit hash function (e.g., SHA-384/
SHA3-384).

5. Any attack that breaks the relevant security defnition must require computational resources com-
parable to or greater than those required for key search on a block cipher with a 256-bit key (e.g.,
AES-256).

41

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

Table 3. NIST Security Strength Categories

Security Category Corresponding Attack Type Example

1 Key search on block cipher with 128-bit key AES-128

2 Collision search on 256-bit hash function SHA3-256

3 Key search on block cipher with 192-bit key AES-192

4 Collision search on 384-bit hash function SHA3-384

5 Key search on block cipher with 256-bit key AES-256

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

When considering the fve categories, computational resources may be measured using a variety of
different metrics (e.g., number of classical elementary operations, quantum circuit size). In order for a
cryptosystem to satisfy one of the above security requirements, any attack must require computational
resources comparable to or greater than the stated threshold with respect to all metrics that NIST deems to
be potentially relevant to practical security.

NIST intends to consider a variety of possible metrics that refect different predictions about the future
development of quantum and classical computing technology and the cost of different computing resources
(such as the cost of accessing extremely large amounts of memory). NIST will also consider input from
the cryptographic community regarding this question.

In an example metric provided to submitters, NIST suggested an approach where quantum attacks are
restricted to a fxed running time or circuit depth. Call this parameter MAXDEPTH. This restriction is mo-
tivated by the diffculty of running extremely long serial computations. Plausible values for MAXDEPTH
range from 240 logical gates (the approximate number of gates that presently envisioned quantum comput-
ing architectures are expected to serially perform in a year) through 264 logical gates (the approximate
number of gates that current classical computing architectures can perform serially in a decade), to no
more than 296 logical gates (the approximate number of gates that atomic scale qubits with speed-of-light
propagation times could perform in a millennium). The most basic version of this cost metric ignores
costs associated with physically moving bits or qubits so that they are physically close enough to per-
form gate operations. This simplifcation may result in an underestimate of the cost of implementing
memory-intensive computations on real hardware.

The complexity of quantum attacks can then be measured in terms of circuit size. These numbers can be
compared to the resources required to break AES and SHA-3. During the post-quantum standardization
process, NIST gave the following estimates for the classical and quantum gate counts

6

6See the discussion in [26, Appendix B].

for the optimal
key recovery and collision attacks on AES and SHA-3, respectively, where circuit depth is limited to
MAXDEPTH.

7

7Quantum circuit sizes are based on the work in [30].

8

8NIST believes that the above estimates are accurate for the majority of values of MAXDEPTH that are relevant to its
security analysis, but the above estimates may understate the security of SHA for very small values of MAXDEPTH
and may understate the quantum security of AES for very large values of MAXDEPTH.

42

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

Table 4. Estimated gate counts for the optimal key recovery and collision attacks on AES
and SHA-3

Algorithm Estimated number of gates

AES-128 2157/MAXDEPTH quantum gates or 2143 classical gates

SHA3-256 2146 classical gates

AES-192 2221/MAXDEPTH quantum gates or 2207 classical gates

SHA3-384 2210 classical gates

AES-256 2285/MAXDEPTH quantum gates or 2272 classical gates

SHA3-512 2274 classical gates

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

It is worth noting that the security categories based on these reference primitives provide substantially
more quantum security than a naïve analysis might suggest. For example, categories 1, 3, and 5 are defned
in terms of block ciphers, which can be broken using Grover’s algorithm [31] with a quadratic quantum
speedup. However, Grover’s algorithm requires a long-running serial computation, which is diffcult to
implement in practice. In a realistic attack, one has to run many smaller instances of the algorithm in
parallel, which makes the quantum speedup less dramatic.

Finally, for attacks that use a combination of classical and quantum computation, one may use a cost metric
that rates logical quantum gates as being several orders of magnitude more expensive than classical gates.
Presently envisioned quantum computing architectures typically indicate that the cost per quantum gate
could be billions or trillions of times the cost per classical gate. However, especially when considering
algorithms that claim a high security strength (e.g., equivalent to AES-256 or SHA-384), it is likely prudent
to consider the possibility that this disparity will narrow signifcantly or even be eliminated.

43

FIPS 204 (DRAFT) MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

Appendix B — Montgomery Reduction

This document uses modular multiplication. This is an expensive operation that is, in practice, often
avoided. One way of achieving this is through the use of Montgomery multiplication. If a is an integer
modulo q, then its Montgomery form with multiplier 232 is r a 232 ≡ · mod q.

Suppose two integers a and b modulo q are in Montgomery form. Their product modulo q is c = a 2−32· b · ,
also in Montgomery form. If a and b have absolute value less than q, one can compute c by frst performing
the integer multiplication a · b and then “reducing” the product by multiplying by 2−32 modulo q. This last
operation can be done effciently as follows.

The Montgomery_Reduce function takes as input an integer a with absolute value at most 231q. It returns
an integer r with absolute value strictly less than q and such that r = a · 2−32 mod q. The output is in
Montgomery form with multiplier 232 mod q. An implementation would typically use a 64-bit input and
return a 32-bit output. The “modulo 232” operation simply extracts the 32 least signifcant bits of a 64-bit
value. The value (a − t · q) on line 3 is an integer divisible by 232. Therefore, the division consists simply
of taking the most signifcant 32 bits of a 64-bit value.

Algorithm 37 Montgomery_Reduce(a)

Converts from Montgomery form to regular form.

Input: integer a with −231 q ≤ a ≤ 231q.
Output: r ≡ a · 2−32 mod q such that −q < r < q.

1: QINV ← 58728449 ▷ the inverse of q modulo 232

2: t ← 32 32 ((a mod 2) · QINV) mod 2
q)/2323: r ← (a − t ·

4: return r

With this algorithm, the modular product of a and b is Montgomery_Reduce(a · b).

Converting an integer modulo q to Montgomery form by multiplying by 232 modulo q is an expensive
operation. When a sequence of modular operations is to be performed, as in Algorithms 35 and 36, the
operands are converted once to Montgomery form, the operations are performed, and the factor 232 is
extracted from the fnal results.

44

	Module-Lattice-Based Digital Signature Standard
	Preamble
	Foreword
	Abstract
	Keywords

	Contents
	Table of Contents
	List of Tables
	List of Algorithms

	1 Introduction
	1.1 Purpose and Scope
	1.2 Context
	1.3 Differences Between the ML-DSA Standard and CRYSTALS-Dilithium
	1.3.1 Differences Between Version 3.1 and the Round 3 Version of CRYSTALS-Dilithium
	1.3.2 Differences Between the ML-DSA Standard and Version 3.1 of CRYSTALS-Dilithium

	2 Glossary of Terms, Acronyms, and Symbols
	2.1 Terms and Definitions
	2.2 Acronyms
	2.3 Mathematical Symbols
	2.4 Notation
	2.5 NTT Representation

	3 Overview of the ML-DSA Signature Scheme
	3.1 Security Properties
	3.2 Computational Assumptions
	3.3 The ML-DSA Construction
	3.4 Use of Digital Signatures
	3.5 Additional Requirements
	3.5.1 Randomness Generation
	3.5.2 Public-Key Validity and Signature Length Checks
	3.5.3 Intermediate Values

	4 Parameter Sets
	5 Key Generation
	6 Signing
	7 Verification
	7.1 Prehash ML-DSA

	8 Auxiliary Functions
	8.1 Conversion Between Data Types
	8.2 Encodings of ML-DSA Keys and Signatures
	8.3 Hashing and Pseudorandom Sampling
	8.4 High Order / Low Order Bits and Hints
	8.5 NTT and Its Inverse

	References
	Appendix A — Security Strength Categories
	Appendix B — Montgomery Reduction

