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Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and 

Technology (NIST) promotes the U.S. economy and public welfare by providing technical 

leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, 

test methods, reference data, proof of concept implementations, and technical analyses to 

advance the development and productive use of information technology. ITL’s responsi-

bilities include the development of management, administrative, technical, and physical 

standards and guidelines for the cost-effective security and privacy of other than national 

security-related information in federal information systems.

Abstract

This report considers threshold signature schemes interchangeable with respect to the verifica-

tion mechanism of the Edwards-Curve Digital Signature Algorithm (EdDSA). Historically, 

EdDSA is known as a variant of Schnorr signatures, which are well-studied and suitable for 

efficient thresholdization, i.e., for being computed when the private signing key is secret-sha-

red across multiple parties. In the threshold setting, signatures remain unforgeable even if up 

to some threshold number of the cosigners become compromised. The report analyzes the 

conventional (non-threshold) EdDSA specification from Draft FIPS 186-5, reviews important 

security properties, with an emphasis on strong unforgeability, and distinguishes various 

approaches for corresponding threshold schemes. Notably, while providing better security 

assurances, threshold signatures can be used as drop-in replacement for conventionally pro-

duced signatures, without changing legacy code for verification of authenticity. The report 

identifies various challenges and questions that would benefit from more attention, are of 

interest for future guidance and recommendations, and may be applicable beyond EdDSA.

Keywords

Digital signatures; EdDSA; secure multi-party computation; Schnorr; threshold cryptogra-

phy; threshold schemes.
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Preface

This document is intended for: technicians engaged in the development of recommendations 

for threshold signature schemes; cryptography experts interested in providing constructive 

technical feedback, or in collaborating in the development of open reference material; and all 

those, including from academia, industry, government and the public in general, interested 

in future recommendations about threshold signatures.

The reference threshold approaches identified in this document are representative examples 

not to be construed as preferences. See NISTIR 8214A for previous context of the NIST 

Multi-Party Threshold Cryptography project. Feedback is welcome from the community. 
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Call for Patent Claims

This public review includes a call for information on essential patent claims (claims whose 

use would be required for compliance with the guidance or requirements in this Information 

Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may 

be directly stated in this ITL Publication or by reference to another publication. This call 

also includes disclosure, where known, of the existence of pending U.S. or foreign patent 

applications relating to this ITL draft publication and of any relevant unexpired U.S. or 

foreign patents.

ITL may require from the patent holder, or a party authorized to make assurances on its 

behalf, in written or electronic form, either:

a) assurance in the form of a general disclaimer to the effect that such party does not 

hold and does not currently intend holding any essential patent claim(s); or

b) assurance that a license to such essential patent claim(s) will be made available to ap-

plicants desiring to utilize the license for the purpose of complying with the guidance 

or requirements in this ITL draft publication either:

i) under reasonable terms and conditions that are demonstrably free of any unfair 

discrimination; or

ii) without compensation and under reasonable terms and conditions that are demon-

strably free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make 

assurances on its behalf) will include in any documents transferring ownership of patents 

subject to the assurance, provisions sufficient to ensure that the commitments in the assurance 

are binding on the transferee, and that the transferee will similarly include appropriate 

provisions in the event of future transfers with the goal of binding each successor-in-interest.

The assurance shall also indicate that it is intended to be binding on successors-in-interest 

regardless of whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: nistir-8214B-comments@nist.gov
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Executive Summary

Digital signatures, based on public-key cryptography, underpin the security of critical 

information systems. They support authentication and non-repudiation, and have been 

standardized by NIST, via the Federal Information Processing Standard (FIPS) Publication 

186. Its most recent version — Draft FIPS 186-5 — specifies three signature schemes, the 

most recent of which is the Edwards-Curve Digital Signature Algorithm (EdDSA).

The security of signatures relies critically on the secrecy and proper use of its private signing 

key. In threshold cryptography, the key is split (secret-shared) across various parties, so that 

a signature can be produced only if a threshold number of parties agrees. In a threshold 

signature scheme, the signing takes place without the parties ever recombining the key.

For interoperability, a threshold scheme should produce signatures that, with respect to the 

verification operation, are interchangeable with those produced in a non-threshold (conven-

tional) manner. This allows for a drop-in replacement of the signature generation, without 

changing legacy code for verification. EdDSA, being a Schnorr-style scheme, has a linearity 

property that is very well suited for thresholdization, once the needed secrets have been 

secret-shared. However, there are various ways in which to distributively achieve those secret 

sharings. They give rise to a diversity of threshold approaches, with various tradeoffs.

EdDSA signatures are specified as deterministic, but their determinism is not verifiable from 

the signature. Thus, a variant probabilistic signature can still be interchangeable with respect 

to EdDSA verification. Such a variant would use a randomized or hybrid (with randomness 

and pseudorandomness) nonce, allowing for a simpler threshold protocols.

Threshold EdDSA has a high potential for adoption, as it enables distribution of trust for 

signing operations and higher resistance to certain attacks. Several considerations in this 

report are also applicable to other NIST-approved signature schemes specified in Draft 

FIPS 186-5. Allowing threshold EdDSA for pre-quantum security may also provide useful 

experience for the exploration of threshold schemes for post-quantum primitives.

The analysis in the present report is covered in four main sections:

• Conventional setting: the context of the NIST specification, and the security proper-

ties of EdDSA and interchangeable Schnorr-style signature schemes.

• Threshold approaches: high-level summary of four types of approaches from the 

literature, including both deterministic and probabilistic schemes.

• Further considerations: various aspects of relevance in the threshold setting.

• Conclusions: a synthesis of the benefits of the threshold setting, with a highlight on 

probabilistic schemes, and a proposal for consultation with the greater community.

The main security property of interest for EdDSA signatures is strong unforgeability. This 

ensures that an adversarial client cannot produce any signature that has not been generated 

by the key holder. There are other properties, such as binding, which can be considered from 

the perspective of a malicious signer. 
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A main concern with the implementation of EdDSA is the assurance of good nonces. The 

inadvertent reuse of a nonce (across different messages being signed) leaks the private key. 

In fact, even a slight bias in the nonce allows for key-recovery, provided enough signatures 

are obtained. Conversely, when the nonce is pseudorandomly generated as a transformation 

of a persistent secret key and the message, thus avoiding a detectable bias, some side-channel 

attacks may enable determining the secret key. The implementation of a hybrid mode, using 

both randomness and pseudorandomness, has the potential to improve on each of the two 

non-hybrid modes. This hybrid approach can also be useful in the threshold setting, where 

there are more opportunities and challenges about randomness and determinism. 

There are known solutions for threshold EdDSA/Schnorr-style schemes, including distributed 

key generation. Recently there has been a surge of new approaches, focused on features like 

low number of rounds and/or simulatability, for both deterministic and probabilistic signing. 

For deterministic signing, a secure multi-party computation can distributively generate 

a secret-sharing of a pseudorandom nonce, based on the message and a secret-shared 

nonce-derivation key. Another approach is to let each party provide a deterministic nonce 

contribution, while proving correctness with a zero-knowledge proof.

For probabilistic signing, the distributed generation of a randomized nonce can take advan-

tage of homomorphic properties already innate to the EdDSA/Schnorr scheme. Here, it is 

important to safeguard security under concurrent executions, where an adversary has a view 

of the intermediate state of many signing operations. Recent proposals have focused on 

protocols with reduced number of rounds of interaction, with two and three being the norm 

(assuming broadcast is possible in a single round), depending on the security formulation.

There are two main frameworks used in practice to formulate and prove threshold security:

• simulation-based (useful for modularity and composability): where the notion of 

security is incorporated into an ideal functionality.

• game-based: where a game defines each property of interest, e.g., unforgeability.

Some considerations are inherent to the threshold setting: agreement on what to sign, 

malicious “random” contributions, interface between requester and cosigners, authenticated 

channel, timing assumptions, precomputation before receiving signature requests, failure 

modes, good vs. bad randomness, modularity and composability. The options related to these 

considerations create a diverse space of solutions that should be considered.

This document explains the potential benefits of the threshold setting. In particular, there 

are various advantages for probabilistic approaches. Yet, safely realizing the promise of 

the threshold approach requires a thorough analysis. This can be pursued with an open 

consultation with the community of experts, via a public call for threshold schemes, to 

create a testbed, gathering security formulations, technical explanations, and reference 

implementations. The clarification resulting from analyzing said reference material can then 

be helpful to synthesize recommendations about threshold signature schemes.
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1. Introduction

A signature scheme enables generating a “digital signature” (hereafter just “signature”) 

that assures the authenticity of a “message” (any digital datum). The scheme is based on 

a cryptographic private/public key-pair, such that only the private-key holder can produce 

signatures that are verifiably valid with respect to that public key [DH76]. In other words, a 

signature scheme is unforgeable. When the public key is certifiably bound to the identity of 

the private-key holder, a valid signature provides non-repudiation: the signer cannot credibly 

deny having produced said signature. These unforgeability and non-repudiation features 

underpin the security of many modern applications of information systems, including public-

key infrastructures (PKI). For example, they are extensively used to prevent impersonation 

in cyberspace, establish authenticated channels between parties, enable contract signing 

with legal validity, and provide offline-verifiable authenticity of software.

NIST-specified signatures.  As of August 2022, the Edwards-curve Digital Signature 

Algorithm (EdDSA) is the most recent signature scheme included by the National Institute 

of Standards and Technology (NIST) in a Federal Information Processing Standard (FIPS), 

albeit still in draft mode: Draft FIPS 186-5. This FIPS also specifies the Elliptic Curve Digital 

Signature Algorithm (ECDSA) and the Rivest–Shamir–Adleman (RSA) signature schemes. 

Both EdDSA and ECDSA, relying on the infeasibility of computing discrete logarithms (and 

related assumptions) over approved elliptic curves, allow signatures noticeably shorter than 

RSA, which relies on the infeasibility of integer factorization (and related assumptions). For 

example, at an estimated level of 128 bits of security, EdDSA and ECDSA signatures have a 

bit length of 512, which is one-sixth of the 3072 bits required by RSA signatures.

The threshold setting. The critical reliance on signature schemes requires a careful con-

sideration of the techniques that help ensure the secrecy of the private signing key. The 

multi-party “threshold” setting allows for a distribution of trust of the private key, by use of 

secret sharing [Bla79; Sha79]. The key is split (i.e., “secret shared”) across multiple parties, 

such that no coalition of up to some corruption threshold number f  of faulty parties is able 

to recover the key. Furthermore, the actual cryptographic operation of interest — in this 

case signing — can be performed by any quorum with a stipulated participation threshold. 

The signing takes place without reconstructing the key. Moreover, the signatures remain 

unforgeable by a coalition of up to f  malicious parties, without the help of other honest 

parties. The study of threshold schemes has been active for over three decades [Des88; 

DF90]. More recently, the NIST Internal Report NISTIR 8214A proposed that a focused 

analysis takes place, to collect expert feedback that can be useful as a basis for developing 

recommendations about threshold schemes.

Schnorr and thresholdizability. EdDSA [BDLSY11; RFC 8032] is based on Schnorr 

signatures [Sch90], which have been subject to extensive analysis in the literature. They have 

the special feature of one of their components resulting from a linear combination of two 

secret elements: the private signing key s and the (per-message secret) nonce r. This linearity 






Table 1. Acronyms


Acronym  Extended form


AES  Advanced Encryption Standard


CA  Certification authority


CSM  Cryptographic Security Module


CMA  Chosen message attack


DKG  Distributed key generation


DSS  Digital Signature Standard


ECC  Elliptic-curve cryptography


ECDSA  Elliptic-Curve Digital Signature Algorithm


EdDSA  Edwards-curve Digital Signature Algorithm


EUF  Existential unforgeability


FIPS  Federal Information Processing Standard


HMAC  Hash-based message authentication code


KOSK  Knowledge of secret key (assumption)


LSS  Linear secret sharing


MPC  [Secure] multiparty computation


NIST  National Institute of Standards and Technology


NISTIR  NIST Internal or Interagency Report


NIZKPoK  Non-interactive zero-knowledge proof of knowledge


PKCS  Public-key cryptography Standards


PKI  Public-key infrastructure


PVSS  Publicly verifiable secret sharing


PRF  Pseudorandom function


RFC  Request For Comments, from the Internet Engineering Task Force


RSA  Rivest–Shamir–Adleman (cryptosystem or signature scheme)


RSA-SSA  RSA Signature Scheme with Appendix


RSA-PSS  RSA-based Probabilistic Signature Scheme


SHA  Secure Hash Algorithm


SHAKE  SHA combined with KECCAK


SP 800  (NIST) Special Publication in Computer Security


SS; SSS  Secret sharing; secret sharing scheme


SUF  Strong unforgeability (or strongly unforgeable)


TLS  Transport Layer Security (a communication protocol)


UTC  Coordinated Universal Time (a time standard)


UC  Universal composability (or universally composable)


UF  Unforgeability (or Unforgeable), in an EUF-CMA sense


VSS  Verifiable secret sharing


ZK; ZKP  Zero knowledge; zero-knowledge proof


ZKPoK  Zero-knowledge proof of knowledge







Table 2. Symbols for conventional setting


Symbol Description


+, · Binary operators for integer addition and multiplication.


✚, − Binary operators for addition and subtraction of two elliptic curve elements.
• Non-commutative binary operator used to multiply an elliptic curve element 


(on the right) by an non-negative integer (on the left), e.g., s • G.
←$ Random sampling of a value.


b Bit-length (multiple of 8) of the public key Q, and the initial private key d. 
EdDSA signatures σ  have 2b bits. Approved values: 256 and 456.


c Binary logarithm (3 for Ed25519, 2 for Ed448) of the cofactor 2c (order of 
small subgroup); useful to compare cofactorless vs. cofactored verification.


χ Challenge component computed in the Sign and Verify operations.


ctx Context (optional parameter in some signature modes).


d Precursor private key of the signature scheme. It is the hash pre-image used 
to derive the signing key s and the nonce-derivation key ν .


Ei, j Some encoding function (the subscripts are used to differentiate encodings).


G Base point (aka generator), generator of the subgroup G of prime order n.


G Subgroup generated by G. It is the domain of public keys. It is the large 
subgroup (or order n) of the elliptic curve group (of order 2c ·n)


H Some cryptographic hash function (subscripts can be used to differentiate 
between hash functions).


κ Standardized security level (estimated bits of strength, e.g., 128 or 224).


M Message (string) being signed.


µ Index identifying the mode of a signature scheme.


n Prime order of the elliptic curve subgroup generated by G.


Q Public key of the signature scheme, equal to s • G.


r Nonce (secret).


R Commitment of the nonce r; used as the first component of the signature.


s Signing key (also called hdigest1 in Draft FIPS 186-5): it is the 1st half of 
the digest of the private key d. It is used to generate the public key Q, and to 
compute the 2nd component (S) of each signature.


ν Nonce-derivation key (hdigest2 in Draft FIPS 186-5): it is the 2nd half of the 
digest of the private key d; used to pseudorandomly generate each nonce. 


S Second component of the signature, obtained via a linear combination of the 
signing key s and the secret nonce r, with the help of the challenge χ .


σ Signature — a pair (R,S) of elements.







Table 3. Symbols for threshold setting


Symbol Description


f Corruption threshold (smaller than t) w.r.t. unforgeability. With “mixed adver-
saries” one may differentiate thresholds across types of corruptions.


n Total number of “parties” (share-holders) [does not include the requester client, 
coordinators and others without a share of the private key].


P Set of possible cosigners (aka parties) — there are n of them.


P ′ Set of cosigners agreed to participate in a particular signing execution.


Pi One of the parties (share holders) — the index i is used similarly for shares of 
contributions, to identify to which party they correspond.


sid Session identifier (to distinguish sessions in a concurrent setting)


t Reconstruction threshold (usually t = f +1) of the baseline secret sharing.


t ′ Participation threshold: minimum size of quorum needed to generate a signa-
ture, when the number of corrupted parties does not exceed f .







 


σ =
(


r •G , r+H
(
R , Q , M


)
·s


)
EdDSA signature


 Secret nonce r = H(ν ,M)


 Base point (generator of order n)


 Hash function
 Public verification key Q = s • G


 Message being signed


 Private signing key


 Nonce “commitment” R = r • G


 “Challenge” χ = H(R,Q,M) S (2nd component of the signature)


Figure 1. Annotated simplified formula of an EdDSA signature







• Keygen[n]: { (private key) s←$ Zn;  (public key) Q = s • G; output (s,Q) }.


• Sign[s](M): {r← GenNonce(. . .);  R = r • G;  χ = H(R,Q,M);
S = r+χ · s(mod n);  output σ = (R,S)}.


• Verify[Q](M,σ): {χ ′ = H(R,Q,M); output accept iff S • G =? R✚χ ′ • Q}


Legend: χ (challenge); G (base point, i.e., generator of G); GenNonce(. . .) (procedure used to generate 
the secret nonce); M (message being signed); n (order of the group generated by G); Q (public key); 
r (secret nonce); R (nonce commitment; first component of the signature); s (private signing key; in 
the detailed scheme it is obtained as a digest — hdigest1 — of a precursor private key d); S (second 
component of the signature); σ  (signature); ←$ (random sampling); +, · (integer sum and multiplication); 
✚, • (sum and multiplication-by-constant in additive group G). Extra verification details are required.


Figure 2. (Simplified) EdDSA-style scheme, with generic nonce







Table 4. Determinism vs. verifiable determinism of signature schemes


 Signature scheme  Is the signature
 algorithm deterministic?


 Is the output signature
 verifiably deterministic?


 RSASSA-PKCS Yes Yes


 EdDSA Yes No
 Deterministic ECDSA Yes No


 RSA-PSS  No  No


 (Probabilistic) ECDSA  No  No







Keygen[b]: {
  (private key) d←$ Zb


2


 s‖ν = Hash(d);
  (public key) Q = s • G;
  output (d,Q)  }


Sign[d](µ [,ctx],M): {
 s‖ν = HashKµ(d);
 r = GenNonce[ν ](µ [,ctx],M) ∈ Zn;
 R = r • G;
 χ = HashCµ([ctx‖]R‖Q‖ f (M));


 S = r+χ · s(mod n);
  output σ = (R,S)  }


Verify[Q](µ [,ctx],M,σ): {
 (R,S) = σ ;
  if not 0≤ S < n, then reject;
 χ = HashCµ([ctx‖]R‖Q‖ f (M));
 S′ = 2c • S; R′ = 2c • R; χ ′ = 2c • χ;
  if S′ • G =? R′✚χ ′ • Q
  then output accept,
  else output reject  }


Legend/notation: b (number of bits of private key, as well as of public key; it is a multiple of 8); 2c


(cofactor — 8 for Ed25519, 2 for Ed448 — needed for cofactored verification); χ (challenge); ctx
(optional context string, empty by default, only available for the Ed25519ph, Ed448 and Ed448ph 
modes, i.e., not available only for the Ed25519 mode; d (private key of the signature scheme); f
(transformation function applied to the message: identity for regular EdDSA; some hashing for 
HashEdDSA); G (base point, aka generator, of a subgroup G of prime order n); HashK (hash function 
used to derive the secret keys s and ν); HashC (hash function used to derive the challenge χ); µ
(mode: Ed25519, Ed448, Ed25519ph, Ed448ph, respectively encodable as (2,0), (4,0), (2,1), (4,1) 
— see details in Table 5); M (message being signed); q (order of G); Q (public key, for verification); 
r (secret nonce); s (private signing key); ν  (private key for nonce generation; it is called hdigest2 in 
Draft FIPS 186-5); R (public commitment of nonce); (+, ·) (integer sum and multiplication); (✚, •)


(sum and multiplication-by-constant in additive group G). = (assignment); =? (equality check); ||
(concatenation). For simplicity, details about encodings are omitted. As secret input to the Sign 
algorithm, both the signing key s and nonce-derivation key ν  can be used instead of the precursor key d.


Figure 3. EdDSA pseudo-code and notation







Table 5. EdDSA variants


 Type  Standard  Mode µ κ b = |d| s||ν  GenNonce r  Challenge χ


 Det.  EdDSA  Ed25519  128  256 H0(d) H0(ν‖M) H0(R‖Q‖M)


 Ed448  224  456 H1(d) H1(E4,0(ctx)‖ν‖M) H1(E4,0(ctx)‖R‖Q‖M)


 HashEdDSA  Ed25519ph  128  256 H0(d) H0(E2,1(ctx)‖ν‖H0(M)) H0(E2,1(ctx)‖R‖Q‖H0(M))


 Ed448ph  224  456 H1(d) H1(E4,1(ctx)‖ν‖H2(M)) H1(E4,1(ctx)‖R‖Q‖H2(M))


 Type  Variation  Mode µ κ b = |d| s||ν  GenNonce r  Challenge χ


 Prob.  Random  —  —  —  — ←$ Zq  —
 Hybrid  —  —  —  — H(ν ,rand, f (M))  —


Legend: Some symbols are better contextualized in Fig. 3. Det. (deterministic). Prob. (probabilistic). s, ν (first 
and second halves, respectively, of Hash(d), also denoted as 1st and 2nd digests of d; before encoding into an integer, 
some bits in the left and right extremities of each of these digests is preset — see details in Draft FIPS 186-5). Ei, j(...)


(encoding function, defined in FIPS 186 as domi( j,...), where i is 2 or 4, corresponding to the Ed25519 or Ed448 
curves, and j is 1 or 0, corresponding to whether or not it is a “pre-hash” mode). H (some cryptographic hash function 
or extendable output function); H0 (SHA-512); H1 (SHAKE256-length-912); H2 (SHAKE256-length-512); rand
(secret randomness or any other secret material). The four deterministic modes (Det.) are based on Draft FIPS 186-5. 
The two probabilistic variants (Prob.) produce signatures interchangeable w.r.t. EdDSA verification.







Table 6. Types of nonce generation


 Nonce generation type  Bias
 attacks


 Side-channel and
 fault injection attacks


 Deterministic: Pseudorandom, based on a secret key Not applicable More vulnerable


 Purely random: Entropy independent of secret key Vulnerable Less vulnerable


 Hybrid: Randomness and pseudo-randomness Not applicable Less vulnerable







Table 7. Conventional Schnorr vs. baseline semi-honest threshold Schnorr


 Phase  Conventional Semi-honest threshold baseline


 Key-Gen Q = s • G [Q] = [s] • G; then open Q
 Commit nonce R = r • G [R] = [r] • G; then open R
 Compute challenge χ = H(R,Q,M) Same as in conventional
 Produce signature S = r+χ · s(mod n) [S] = [r]+χ · [s] (mod n); then open S
 Verify signature S • G =? R✚χ • Q Same as in conventional


To “open” a public value (Q, R and S) means that every party reveals their corresponding share (Qi, 
Ri and Si, respectively), so that everyone can reconstruct the corresponding public value.







Table 8. Threshold approaches for deterministic signatures


 Reference
 Function-
 ally equi
valent?


 EdDSA
 Interchan-
 geable?


 Same signature per message?
Some gadgets Per/across


 quorums
 Across re
 sharings


 [BST21, §5] Yes Yes Yes/ Yes Yes  MPC gadgets
 [BST21, §6]  No Yes Yes/ Yes Yes  MPC-friendly hash
 [GKMN21]  No Yes Yes/ No  No  ZKGC, COT
 [NRSW20]  No Yes Yes/ No  N/A  ZKP-friendly PRF


Some schemes implement the HashEdDSA mode (see Table 5). The last row [NRSW20] corresponds 
to a multi-signature scheme, for which the resharing does not apply (N/A), since that would imply a 
change in public key. COT = committed oblivious transfer. ZKGC = ZKPs from garbled circuits. The 
approaches also differ in efficiency, allowed thresholds, and cryptographic assumptions.







Table 9. Types of signature vs. concern — informal assessment


 Signature
 mode


 Nonce
 generation


 Attack of
 Concern


 Informal assessment


 Conventional  Threshold


 Deterministic  Pseudorandom
 Bias Not applicable Not applicable


 Side channel More vulnerable Safer


 Probabilistic  Randomized
 Bias Vulnerable Safer


 Side channel Less vulnerable Safer


 Hybrid
 Bias Not applicable Not applicable


 Side channel Less vulnerable Safer


The use of “Less” and “More” preceding “vulnerable” is only for comparison within the side-channel attack 
concern. Each “Safer” is meant in comparison with the assessment of the conventional setting in the same row. 
In the threshold setting, the assessment does not relate to the corruptibility of individual parties, but rather to 
unforgeability property when assumed that the number of corrupted parties is within the allowed threshold. This 
informal table is meant only to provide intuition; more context is needed for formal conclusions about each 
concrete signature scheme. 
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allows for simple threshold schemes based on a linear secret-sharing of the two secrets. The 

matter becomes more elaborate when considering the nature of the nonce: pseudorandom 

(deterministic) vs. randomized. The essential property is that r remains indistinguishable 

from random. The secret-sharing of a random nonce can be easily achieved by leveraging 

independent contributions from each party. Conversely, the threshold production of a 

pseudorandom nonce based on the EdDSA specification is considerably more complex. It 

requires an expensive distributed (multi-party) computation of a specific hash over a secret-

shared input. Fortunately, probabilistic versions of EdDSA, when properly parameterized, 

are interchangeable with respect to the verification algorithm of standardized EdDSA.

EdDSA relevance. In applications where succinctness matters, RSA signatures may be too 

long, and those based on elliptic curves may be preferred. In a threshold context, EdDSA 

may be prefered to ECDSA because the process for threshold generation of interchangeable 

signatures is far simpler. This report discusses the properties of conventional (non-threshold) 

and threshold schemes interchangeable with respect to (w.r.t.) EdDSA verification, paving 

the way to possible future recommendations or guidance about the latter.

Avoiding bias. The Draft FIPS 186-5 specification of EdDSA requires the use of a pseu-

dorandom nonce (i.e., deterministic, depending on a secret key). While this avoids the 

catastrophic security breakdown in case of a biased “random” nonce, it raises a concern 

about higher vulnerability to some side-channel attacks. Fortunately, determinism is not the 

only solution to the mentioned problem. By properly adding a random component, as input 

to the pseudorandom transformation already used by deterministic schemes, it is possible 

to create a probabilistic scheme that minimizes the risk of bias. The EdDSA verification 

algorithm works interchangeably with randomized and with deterministic signatures. In 

fact, determinism is not a standalone verifiable property of EdDSA signatures.

Toward guidance. After summarizing the NIST Draft FIPS 186-5 requirements of the 

conventional EdDSA, this document puts in perspective various aspects of interest to corre-

sponding Schnorr-based threshold schemes. This is intended to support possible future NIST 

recommendations promoting secure implementations of threshold signatures interchangeable 

with respect to the EdDSA verification algorithm. It is worth noting that Schnorr/EdDSA is 

already widely deployed and used, albeit with variations of the curves and parameters. For 

example, these signatures are used in Transport Layer Security (TLS), Secure Shell Protocol 

(SSH), Signal, The Onion Router (TOR) / Invisible Internet Project (I2P) and Domain Name 

Server Security Extensions (DNSSEC), as well as some cryptocurrencies.

Document organization. Section 2 explains the notation. Section 3 establishes the NIST 

context about the EdDSA specification, and analyzes some security properties, including 

its non-verifiable determinism. Section 4 compares various approaches to thresholdize Ed-

DSA/Schnorr. Section 5 comprises additional considerations relevant to future guidelines and 

recommendations about threshold signatures. Section 6 concludes with a summary of insights 

and a recommendation for a public call for threshold signature schemes interchangeable w.r.t. 

the NIST specified EdDSA verification. 
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2. Notation

This section explains the acronyms, abbreviations and symbols used in the document.

2.1. Acronyms

Table 1. Acronyms

Acronym  Extended form

AES  Advanced Encryption Standard

CA  Certification authority

CSM  Cryptographic Security Module

CMA  Chosen message attack

DKG  Distributed key generation

DSS  Digital Signature Standard

ECC  Elliptic-curve cryptography

ECDSA  Elliptic-Curve Digital Signature Algorithm

EdDSA  Edwards-curve Digital Signature Algorithm

EUF  Existential unforgeability

FIPS  Federal Information Processing Standard

HMAC  Hash-based message authentication code

KOSK  Knowledge of secret key (assumption)

LSS  Linear secret sharing

MPC  [Secure] multiparty computation

NIST  National Institute of Standards and Technology

NISTIR  NIST Internal or Interagency Report

NIZKPoK  Non-interactive zero-knowledge proof of knowledge

PKCS  Public-key cryptography Standards

PKI  Public-key infrastructure

PVSS  Publicly verifiable secret sharing

PRF  Pseudorandom function

RFC  Request For Comments, from the Internet Engineering Task Force

RSA  Rivest–Shamir–Adleman (cryptosystem or signature scheme)

RSA-SSA  RSA Signature Scheme with Appendix
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Table 1 (continued from previous page) 

Acronym  Extended form

RSA-PSS  RSA-based Probabilistic Signature Scheme

SHA  Secure Hash Algorithm

SHAKE  SHA combined with KECCAK

SP 800  (NIST) Special Publication in Computer Security

SS; SSS  Secret sharing; secret sharing scheme

SUF  Strong unforgeability (or strongly unforgeable)

TLS  Transport Layer Security (a communication protocol)

UTC  Coordinated Universal Time (a time standard)

UC  Universal composability (or universally composable)

UF  Unforgeability (or Unforgeable), in an EUF-CMA sense

VSS  Verifiable secret sharing

ZK; ZKP  Zero knowledge; zero-knowledge proof

ZKPoK  Zero-knowledge proof of knowledge

2.2. Abbreviations

The report uses some abbreviations: det. (deterministic); discrete log (discrete logarithm); 

e.g. (exempli gratia = for example); i.e. (id est = that is); iff (if and only if); keygen (key 

generation); prob. (probabilistic); pub key (public key); vs. (versus); w.r.t. (with respect to).

2.3. Symbols

The symbols of some variables were chosen to match the notation used in Draft FIPS 186-5. 

These often vary across the literature. The colors red, blue and green are sometimes used 

to help identify private input or intermediate values, public output or intermediate values, 

and public input values, respectively. However, color identification is not required for 

understanding the descriptions.

2.3.1. Symbols useful for the conventional setting

Table 2. Symbols for conventional setting

Symbol Description 

+, · Binary operators for integer addition and multiplication. 
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 Table 2 (continued from previous page)

Symbol Description 

✚, − Binary operators for addition and subtraction of two elliptic curve elements. 

• Non-commutative binary operator used to multiply an elliptic curve element 
(on the right) by an non-negative integer (on the left), e.g., s • G.

 
 

←$ Random sampling of a value. 

b Bit-length (multiple of 8) of the public key Q, and the initial private key d. 
EdDSA signatures σ  have 2b bits. Approved values: 256 and 456.

 
 

c Binary logarithm (3 for Ed25519, 2 for Ed448) of the cofactor 2c (order of 
small subgroup); useful to compare cofactorless vs. cofactored verification.

 
 

χ Challenge component computed in the Sign and Verify operations. 

ctx Context (optional parameter in some signature modes). 

d Precursor private key of the signature scheme. It is the hash pre-image used 
to derive the signing key s and the nonce-derivation key ν .

 
 

Ei, j Some encoding function (the subscripts are used to differentiate encodings). 

G Base point (aka generator), generator of the subgroup G of prime order n. 

G Subgroup generated by G. It is the domain of public keys. It is the large 
subgroup (or order n) of the elliptic curve group (of order 2c ·n)

 
 

H Some cryptographic hash function (subscripts can be used to differentiate 
between hash functions).

 
 

κ Standardized security level (estimated bits of strength, e.g., 128 or 224). 

M Message (string) being signed. 

µ Index identifying the mode of a signature scheme. 

n Prime order of the elliptic curve subgroup generated by G. 

Q Public key of the signature scheme, equal to s • G. 

r Nonce (secret). 

R Commitment of the nonce r; used as the first component of the signature. 

s Signing key (also called hdigest1 in Draft FIPS 186-5): it is the 1st half of 
the digest of the private key d. It is used to generate the public key Q, and to 
compute the 2nd component (S) of each signature.

 
 
 

ν Nonce-derivation key (hdigest2 in Draft FIPS 186-5): it is the 2nd half of the 
digest of the private key d; used to pseudorandomly generate each nonce. 

 
 

S Second component of the signature, obtained via a linear combination of the 
signing key s and the secret nonce r, with the help of the challenge χ .

 
 

σ Signature — a pair (R,S) of elements. 
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2.3.2. Symbols specific to the threshold setting

Table 3. Symbols for threshold setting

Symbol Description 

f Corruption threshold (smaller than t) w.r.t. unforgeability. With “mixed adver-
saries” one may differentiate thresholds across types of corruptions.

 
 

n Total number of “parties” (share-holders) [does not include the requester client, 
coordinators and others without a share of the private key].

 
 

P Set of possible cosigners (aka parties) — there are n of them. 

P ′ Set of cosigners agreed to participate in a particular signing execution. 

Pi One of the parties (share holders) — the index i is used similarly for shares of 
contributions, to identify to which party they correspond.

 
 

sid Session identifier (to distinguish sessions in a concurrent setting) 

t Reconstruction threshold (usually t = f +1) of the baseline secret sharing. 

t ′ Participation threshold: minimum size of quorum needed to generate a signa-
ture, when the number of corrupted parties does not exceed f .

 
 

For simplicity we assume throughout the paper that f  is also the corruption threshold for 

key-recovery, being equal to the corruption threshold for the underlying secret-sharing of 

the signing key. However, there are conceivable protocols where the corruption threshold 

for unforgeability is lower than that for key-recovery.

2.3.3. On the use of square brackets []

In the present document, square-bracketing is used for various purposes.

1. Secret-sharing. To represent a (linear or additive) secret-sharing of the enclosed 

element, when used in some operation, to indicate that a vector of operations takes 

place. For example, [d] • G indicates that each secret-share di of d is multiplied by the 

base point G, with each such operation being performed locally by a different party. 

In Draft FIPS 186-5, the use of brackets in a left-side multiplier (e.g., [d]) is instead 

used to indicate that the enclosed element is an integer, thus distinguished from the 

group element (on the right side) G.

2. Optional argument. When nested inside a parenthesis, to indicate an optional 

argument of a function, e.g., f (a,b[,c]).

3. Predicate evaluation. When embracing an equality with question mark, to enclose a 

predicate evaluation/verification, e.g., [x =? y].
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3. The conventional EdDSA and Schnorr schemes

The Edwards-curve Digital Signature Algorithm (EdDSA) is a signature scheme specified 

in the Draft FIPS 186-5 “Digital Signature Standard (DSS)”. EdDSA operates over elliptic 

curves, whose allowed parameters are specified in Draft SP 800-186. The NIST specification 

is based on RFC 8032, which in turn was based on prior work [BDLSY11; BJLSY15]. 

EdDSA is a variant of the Schnorr signature scheme, itself a proof of knowledge of a discrete 

logarithm (discrete log) [Sch90].

The EdDSA scheme specifies a triple (keygen,sign,verify) of algorithms. It operates 

over an elliptic curve group of known order 2c ·n, where n is prime and c is a short integer 

(2 or 3). However, the actual operations (in additive notation) are performed in the cyclic 

subgroup G of order n, with an agreed base point G, the generator. Fig. 1 shows a simplified 

version (missing some encoding details) of the formula for an EdDSA signature. Notably, 

the 2nd element (the S) of the signature is a linear combination of the signing key s and the 

secret nonce r, once the public challenge χ has been calculated. This linearity is a distinctive 

feature of Schnorr/EdDSA-style signatures, as compared to ECDSA.










 

σ =
(

r •G , r+H
(
R , Q , M

)
·s

)
EdDSA signature

 Secret nonce r = H(ν ,M)

 Base point (generator of order n)

 Hash function
 Public verification key Q = s • G

 Message being signed

 Private signing key

 Nonce “commitment” R = r • G

 “Challenge” χ = H(R,Q,M) S (2nd component of the signature)

Figure 1. Annotated simplified formula of an EdDSA signature

The secrecy of the private signing key s (which is actually a cryptographic digest of the 

precursor private key d) depends on the infeasibility of computing “discrete logs” (in 

traditional multiplicative notation). In additive notation (as usual with elliptic curves, and as 

used in this document), this requires that it be infeasible to compute which integer s needs 

to multiply the base-point G to yield the public key Q = s • G. The generation of the secret 

nonce r for each message requires the use of a nonce-derivation key ν  (which is actually 

another cryptographic digest of the precursor private key d), which must also remain secret. 

The property of unforgeability also depends on the one-wayness (or collision resistance, 

depending on the signature mode) of the hash function H.

EdDSA as a variant of Schnorr. The EdDSA signature of a message M can be interpreted 

as a (transferable) non-interactive zero-knowledge proof of knowledge (ZKPoK) of the 

discrete-log (the private signing key) of the public key, with the property that M is bound to 

the proof. The binding is done by including M in the pre-image of the ZKPoK “challenge” 
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element χ that is determined as a hash, according to the Fiat-Shamir heuristic [FS87]. This 

ZKPoK approach for a signature was devised by Schnorr in 1989 [Sch90]. While the original 

Schnorr scheme is probabilistic, the standardized EdDSA signature (per Draft FIPS 186-5) 

is deterministic, since its secret nonce r = H(ν ||M) is pseudorandom. The original Schnorr 

scheme includes the challenge χ in the signature, whereas EdDSA replaces it with the nonce 

commitment R. This change of format requires a change in the verification operation, but 

the rationale for unforgeability is similar, since both R and χ can be obtained from any of 

the signatures. More concretely: χ = H(R,Q,M) and R = S • G−χ • Q. Based on the above, 

EdDSA is sometimes said to be a Schnorr-style signature, or a variant of Schnorr.

NIST-approved curves and modes. The Draft FIPS 186-5 specifies two Edwards curves 

(with corresponding subgroups (G,+)), for two corresponding security levels: curve Ed-

wards25519 for 128-bit strength; curve Edwards448 for 224-bit strength. Each of the two 

curves allows two signing modes, w.r.t. whether the signed message is pre-hashed or not. 

The Draft FIPS 186-5 specifies four allowed EdDSA modes: Ed25519, Ed25519ph, Ed448, 

Ed448ph. The suffix “ph” means the message is prehashed when given as input to the 

Sign operation, and these modes are sometimes called HashEdDSA. The preceding part 

“EdXXX[XX]” identifies the underlying elliptic curve. Note that RFC 8032 defines an 

extra mode Ed25519ctx that is not approved in Draft FIPS 186-5. Consequently, in Draft 

FIPS 186-5, Ed25519 is the only mode (out of four) that does not use a context field (denoted 

ctx in Fig. 3 and Table 5).

Other curves and modes. In this document, the mode is sometimes left implicit, using a 

“simplified” description that omits details about the used curves, the differentiated hash func-

tions, encodings and/or a “context” argument. The logic of EdDSA can for the most part be 

modularized away from these details. Thus, when some of these details are abstracted away, 

some of the rationale may be applicable to non-standardized parameters. For example, while 

the Draft FIPS 186-5 specification requires Ed22519 or Ed448 for the curve, and SHA-512 

or SHAKE256 for hashing, a Schnorr variant used in Bitcoin [WNR20] specifies secp256k1 

for the curve and SHA-256 for hashing. Nonetheless, when actual interchangeability with 

Draft FIPS 186-5 EdDSA verification is required, the focus is on the concrete standardized 

modes summarized in Table 5.

Pre-Quantum. EdDSA is not a post-quantum secure scheme. It is plausible that a future 

quantum computer will be able to use any EdDSA public verification key to determine the 

corresponding secret signing key. Therefore, EdDSA may in the future be decommissioned 

in favor of post-quantum alternatives. Nevertheless, EdDSA is currently an important 

signature scheme with useful features. Guidance regarding how to thresholdize it can thus 

be useful as a way to enable distribution of trust.

3.1. Schemes interchangeable w.r.t. EdDSA verification

NISTIR 8214A proposed the notion of interchangeability that is relevant for this document. 

A secure scheme is said to be interchangeable w.r.t. the verification algorithm of (determin-
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istic) EdDSA signatures if the Verify algorithm accepts, without distinction, the variant 

signatures. In particular for EdDSA, this applies to a probabilistic distribution of the nonce, 

such as uniformly at random from Zn.

Figure 2 shows a simplified description of a generic signature scheme interchangeable w.r.t. 

EdDSA verification. It abstracts the nonce generation to fit several possibilities and omits 

various details deferred to Fig. 3. A probabilistic variant of EdDSA can use a random nonce. 

In a hybrid mode, it can also be a hash whose pre-image includes a secret key, as well as 

some fresh randomness per signature. See Section 3.5 for security considerations about 

these variants.

• Keygen[n]: { (private key) s←$ Zn;  (public key) Q = s • G; output (s,Q) }. 

• Sign[s](M): {r← GenNonce(. . .);  R = r • G;  χ = H(R,Q,M); 
S = r+χ · s(mod n);  output σ = (R,S)}. 

• Verify[Q](M,σ): {χ ′ = H(R,Q,M); output accept iff S • G =? R✚χ ′ • Q} 

Legend: χ (challenge); G (base point, i.e., generator of G); GenNonce(. . .) (procedure used to generate 
the secret nonce); M (message being signed); n (order of the group generated by G); Q (public key); 
r (secret nonce); R (nonce commitment; first component of the signature); s (private signing key; in 
the detailed scheme it is obtained as a digest — hdigest1 — of a precursor private key d); S (second 
component of the signature); σ  (signature); ←$ (random sampling); +, · (integer sum and multiplication); 
✚, • (sum and multiplication-by-constant in additive group G). Extra verification details are required.

 
 
 
 
 
 

Figure 2. (Simplified) EdDSA-style scheme, with generic nonce

Key-prefixing. The inclusion of the public key Q in the hash-calculation of the challenge χ

is a best practice (known as key-prefixing) that addresses concerns w.r.t. application settings 

with more than one public key [Ber15; BCJZ21]. It is used in EdDSA, but it is actually not 

considered in the original Schnorr signature scheme [Sch90]. Hereafter in this document, 

the reference to “Schnorr” type signatures is considered (sometimes implicitly) only within 

the scope of key-prefixed versions.

Non-verifiable determinism. The EdDSA signing procedure defined in Draft FIPS 186-5 

generates a deterministic signature, since GenNonce is a hash-based pseudorandom function. 

However, the deterministic property is not verifiable from the signature itself, without 

the secret signing key. This lack of verifiable determinism distinguishes EdDSA (and 

ECDSA) from some other schemes (see Table 4). Particularly, the RSA Signature Scheme 

with Appendix (SSA) — RSASSA-PKCS-v1_5 — part of the Public Key Cryptography 

Standards (PKCS) incorporated in Draft FIPS 186-5 produces verifiably deterministic 

signatures. (Note that Draft FIPS 186-5 also specifies an RSA-based Probabilistic Signature 

Scheme (PSS): RSA-PSS-PKCS-v2_1.)

At considerable computation cost compared to that of producing a signature, a signer could 

produce a ZKP that an EdDSA signature was correctly generated with the prescribed secret 
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Table 4. Determinism vs. verifiable determinism of signature schemes

  Signature scheme  Is the signature
 algorithm deterministic?

 Is the output signature
 verifiably deterministic?

  RSASSA-PKCS Yes Yes

  EdDSA Yes No
  Deterministic ECDSA Yes No

  RSA-PSS  No  No

  (Probabilistic) ECDSA  No  No

nonce. Such a ZKP is outside the scope of the EdDSA specification. 

3.2. Detailed EdDSA procedures

The next subsections describe the three EdDSA operations: Keygen, Sign, and Verify. 

In comparison with the simplified Fig. 2, the pseudo-code describing EdDSA in Fig. 3 

includes: a parameter µ to differentiate various EdDSA modes (encoding, curves, and hash 

functions); details about the pseudorandom nonce generation; the use of a cofactor c in the 

verification mechanism; and the differentiation between signing key s and nonce-derivation 

key ν . Table 5 gives further details for Hash and GenNonce. 

3.2.1. Keygen

As an asymmetric-key signature scheme, EdDSA requires a private signing key s for signing, 

and a public verification key Q to validate signatures. As specified in Draft FIPS 186-5, the 

private signing key is in fact derived from a precursor private key d of the scheme. Specif-

ically, d is hashed to yield a pair (s,ν) of secret digests, which are then used separately. For 

simplicity, some encoding details (explained in Draft FIPS 186-5) are being omitted here, 

namely on how some bits in the extremities of the digests need to be preset, and on how the 

strings are converted into integers. The first digest — the signing key s — is used in two 

ways: (i) it is multiplied by the base point G to yield the public key Q = s ·G; (ii) it is used 

in the signing process to derive a linear form S that combines the nonce and the challenge. 

The second digest — the nonce-derivation key ν  — is used only in the signing process, to 

derive a message-specific secret nonce r. In practice, the two digests can be computed once 

in the keygen phase and stored, for use thereafter in the signing phase; otherwise they can 

be recomputed from d during each signing operation.

As described in Table 5, EdDSA has parameters approved for two security strengths (called 

requested_security_strength in Draft FIPS 186-5) κ: 128 and 224. The private key d is 

required to be obtained using an approved random bit generator (RBG) as a string with at 

least b bits. The integer b must be a multiple of 8 and is at least double κ: b = 256 for 
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Keygen[b]: {
  (private key) d←$ Zb

2

 s‖ν = Hash(d);
  (public key) Q = s • G;
  output (d,Q)  }

 

 

 

 

 
 

Sign[d](µ [,ctx],M): {
 s‖ν = HashKµ(d);
 r = GenNonce[ν ](µ [,ctx],M) ∈ Zn;
 R = r • G;
 χ = HashCµ([ctx‖]R‖Q‖ f (M));

 

 

 

 

 

 S = r+χ · s(mod n);
  output σ = (R,S)  }

Verify[Q](µ [,ctx],M,σ): {
 (R,S) = σ ;
  if not 0≤ S < n, then reject;
 χ = HashCµ([ctx‖]R‖Q‖ f (M));
 S′ = 2c • S; R′ = 2c • R; χ ′ = 2c • χ;
  if S′ • G =? R′✚χ ′ • Q
  then output accept,
  else output reject  }

Legend/notation: b (number of bits of private key, as well as of public key; it is a multiple of 8); 2c

(cofactor — 8 for Ed25519, 2 for Ed448 — needed for cofactored verification); χ (challenge); ctx
(optional context string, empty by default, only available for the Ed25519ph, Ed448 and Ed448ph 
modes, i.e., not available only for the Ed25519 mode; d (private key of the signature scheme); f
(transformation function applied to the message: identity for regular EdDSA; some hashing for 
HashEdDSA); G (base point, aka generator, of a subgroup G of prime order n); HashK (hash function 
used to derive the secret keys s and ν); HashC (hash function used to derive the challenge χ); µ
(mode: Ed25519, Ed448, Ed25519ph, Ed448ph, respectively encodable as (2,0), (4,0), (2,1), (4,1) 
— see details in Table 5); M (message being signed); q (order of G); Q (public key, for verification); 
r (secret nonce); s (private signing key); ν  (private key for nonce generation; it is called hdigest2 in 
Draft FIPS 186-5); R (public commitment of nonce); (+, ·) (integer sum and multiplication); (✚, •)

(sum and multiplication-by-constant in additive group G). = (assignment); =? (equality check); ||
(concatenation). For simplicity, details about encodings are omitted. As secret input to the Sign 
algorithm, both the signing key s and nonce-derivation key ν  can be used instead of the precursor key d.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. EdDSA pseudo-code and notation

κ = 128; b = 456 for κ = 224. Note that for κ = 224 the private key length b is 8 beyond 

the double, as defined in the RFC. Hereafter, d is simply assumed to be uniformly selected 

from Zb = {0, ...,2b−1}.

3.2.2. Sign

The signing procedure (Sign) involves generating a pseudorandom nonce r (secret), whose 

procedure GenNonce varies with the signature mode, as described in Table 5. The “Prob” 

types (rows 6 and 7), although not FIPS-approved, are “interchangeable” in the sense of 

being verifiable as correct signatures by the FIPS-approved Verify algorithm. For that 

reason they are of interest to consider in the threshold setting, where some advantages will 

emerge from the use of randomness.
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Table 5. EdDSA variants

  Type  Standard  Mode µ κ b = |d| s||ν  GenNonce r  Challenge χ

  Det.  EdDSA  Ed25519  128  256 H0(d) H0(ν‖M) H0(R‖Q‖M)

  Ed448  224  456 H1(d) H1(E4,0(ctx)‖ν‖M) H1(E4,0(ctx)‖R‖Q‖M)

  HashEdDSA  Ed25519ph  128  256 H0(d) H0(E2,1(ctx)‖ν‖H0(M)) H0(E2,1(ctx)‖R‖Q‖H0(M))

  Ed448ph  224  456 H1(d) H1(E4,1(ctx)‖ν‖H2(M)) H1(E4,1(ctx)‖R‖Q‖H2(M))

  Type  Variation  Mode µ κ b = |d| s||ν  GenNonce r  Challenge χ

  Prob.  Random  —  —  —  — ←$ Zq  —
  Hybrid  —  —  —  — H(ν ,rand, f (M))  —

Legend: Some symbols are better contextualized in Fig. 3. Det. (deterministic). Prob. (probabilistic). s, ν (first 
and second halves, respectively, of Hash(d), also denoted as 1st and 2nd digests of d; before encoding into an integer, 
some bits in the left and right extremities of each of these digests is preset — see details in Draft FIPS 186-5). Ei, j(...)

(encoding function, defined in FIPS 186 as domi( j,...), where i is 2 or 4, corresponding to the Ed25519 or Ed448 
curves, and j is 1 or 0, corresponding to whether or not it is a “pre-hash” mode). H (some cryptographic hash function 
or extendable output function); H0 (SHA-512); H1 (SHAKE256-length-912); H2 (SHAKE256-length-512); rand
(secret randomness or any other secret material). The four deterministic modes (Det.) are based on Draft FIPS 186-5. 
The two probabilistic variants (Prob.) produce signatures interchangeable w.r.t. EdDSA verification.

















The actual signature is a pair σ = (R,S), whose first element is a “commitment” R of the 

secret nonce r. The second element is a linear combination S = r+χ · s of the nonce r and 

of the first digest s of the signing key (d), applying as slope factor in the latter a hash-based 

“challenge” χ . The challenge χ is computed as a cryptographic hash of the commitment R, 

the public key Q and the message M, as shown in Table 5. Some modes (all except Ed25519) 

can also use a context string ctx to determine the nonce r and the challenge χ . The hash 

functions (and encodings) vary depending on the signature mode.

On the meaning of “commitment” in reference to R. The name “nonce commiment” 

given to R is used for convenience, but it should be understood in a sense more loose than 

that of a typical commitment scheme. The latter has two phases (commit and open), and 

needs to satisfy binding and semantic hiding properties. Conversely, the use of R as a 

“commitment” of the nonce r never requires an open phase, and its hiding property is only 

as provided by the application of a one-way permutation (which, being a bijection, does not 

semantically hide the input). The binding is satisfied unconditionally.

3.2.3. Verify

The verification procedure (Verify) corresponds to checking a relation between the com-

ponents (S and R) of the signature, the public parameters (Q and G) and the message M. The 

operation requires recomputing the challenge χ , which in turn also depends on the signed 

message M, and then performing two multiplications and one group addition. All values (Q, 

R and S) are to be checked for canonical encoding. The actual verification operation specified 
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in Draft FIPS 186-5 is called cofactored, as it includes a cofactor adjustment (multiplication 

by 2c) of S, R and χ . 

Both cofactorless (i.e., without cofactor adjusmtent) and cofactored verifications validate 

signatures generated per Draft FIPS 186-5 signing specification. However, cofactored 

verification is less strict, also validating “signatures” outside the subgroup G, i.e., with 

components in a subgroup different from the one generated by G [CGN20].

It is worth noting that an additional check (not specified in Draft FIPS 186-5) on the public 

key Q and the nonce commitment R — namely that their order is not smaller than the cofactor 

2c — can be used to protect against some key substitution attacks [BCJZ21, Table 2].

Batch verification. In Draft FIPS 186-5, the EdDSA Verify algorithm is only specified for 

individual signatures. However, in practice some applications amortize the cost of simultane-

ous verification of multiple signatures (possibly across different messages and public keys). 

This can be done as a single verification using an adjusted S, R, and Q, with each adjusted 

element being obtained as the same random linear combination (i.e., with random coeffi-

cients) of the corresponding elements used across all signatures [CGN20]. An accepted test 

implies an overwhelming probability, in the size of the random linear coefficients (e.g., 128 

bits), that all of the individual signatures would pass their respective verifications.

3.3. Strong unforgeability

Unforgeability is the essential security property of a signature scheme. It considers an adver-

sary not knowing the private signing key s, but being able to obtain, from a signing oracle, 

signatures on many chosen messages [GMR88]. A scheme is “existentially unforgeable 

against a chosen message attack” (EUF-CMA) if no such adversary can produce a new 

valid signature (denoted forgery) σ  for a previously unsigned message. For simplicity, this 

is hereafter simply referred to as UF — the existential (“E”) and the CMA aspects remain 

implicit. The interest in this document is in a stronger notion: strong UF (SUF) [CD95, 

Remark 2], where the adversary cannot produce any new previously unseen message/sig-

nature pair (M,σ ) that is accepted by the Verify algorithm. (The acronym SUF should 

not be confused with the notion of selective unforgeability, which is a notion weaker than 

existential unforgeability, in both the regular and strong senses). That is, SUF requires, 

in addition to UF, that the adversary be unable to construct an alternative signature for a 

message that has already been signed. More formally, SUF requires the adversary to have a 

negligible probability (in the security parameter κ) of winning the following game:

1. The keygen phase takes place as prescribed and the private key remains secret, i.e., 

known only to a signing oracle.

2. The adversary can choose up to q messages — {Mi : i = 1, ...,q}, for which it can 

obtain corresponding valid signatures σi from the oracle.

3. The adversary wins the game if it can output a previously unseen pair (σq+1,Mq+1), 

for which Verify[Q](Mq+1,σq+1) outputs accept.
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Note that, in the SUF game (as well as in a corresponding UF game), the adversarial 

capability varies between deterministic and probabilistic signatures. In the latter case the 

adversary receives a different signature each time it repeats a query for the signing oracle to 

sign the same message. The UF and SUF notions for signatures are the direct analogue of 

the same type of properties for message authentication codes (MAC) in the symmetric key 

setting [BKR00; BN08].

Strong unforgeability implies unforgeability, i.e., if a scheme is SUF, then it is also UF. 

This is because the adversarial goal in the SUF game is less ambitious than in the UF game. 

Moreover, if a scheme is verifiably deterministic and UF, then it is also SUF, since it is 

infeasible to produce more than one valid signature for the same message (as in the case 

of RSASSA-PKCS-v1_5; see Section 3.1). However, both probabilistic and non-verifiably 

deterministic schemes can be UF without being SUF. 

The study of Schnorr/EdDSA unforgeability has been the subject of much research, with 

techniques such as the forking lemma [PS00, Theorem 4] in the programmable random oracle 

model, and other results ([PS96, Thm 13], [FF13; KMP16; RS21; BCJZ21]). Assuming the 

infeasibility of solving the “discrete log” problem in the underlying elliptic curve and the 

one-wayness of the hash function, the EdDSA specified in Draft FIPS 186-5 provides strong 

unforgeability. The HashEdDSA mode additionally requires collision resistance from the 

hash function.

Intuitively, SUF of EdDSA stems from SUF of Schnorr signatures, where the adversary has 

access to multiple random signatures for each message. The adversary in EdDSA can only get 

one signature per message which, although deterministic, is indistinguishable from random. 

Still, the details matter for an actual proof [BCJZ21]. Note that achieving SUF requires 

checking that the signature components are in a canonical representation. For EdDSA, this 

requires (as specified in Fig. 3) checking that S is a positive integer less than n. Otherwise, 

replacing S by S+n would trivially produce a valid forgery violating SUF.

A signature scheme that is interchangeable with Draft FIPS 186-5 EdDSA verification 

is not automatically unforgeable. While interchangeability only depends on the Verify 

function, unforgeability also depends on the space and distribution of signatures. Consider 

the pathological case of a signing algorithm that always uses the same nonce even when 

signing different messages. Such a scheme would allow extraction of the private key when 

the adversary queries the signing oracle on two different messages (see Section 3.5.1), and 

is therefore forgeable. Other pathological examples of interchangeable schemes can be 

devised to break strong unforgeability without breaking UF, or break UF without allowing 

key-recovery (see Section 5.2.4).

3.4. Binding and non-repudiation

The classical notion of unforgeability, where the adversary is external to the signer, does 

not consider all possibly desirable security properties of a signature scheme. For example, 

SP 800-57-P1-R5 specifies that: a “Digital Signature” is “the result of a cryptographic 
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transformation of data that, when properly implemented with a supporting infrastructure 

and policy, provides the services of: 1. Source/identity authentication, 2. Data integrity 

authentication, and/or 3. Support for signer non-repudiation.” 

The unforgeability game considers the case of an adversary without knowledge of the private 

key. What happens, however, if the adversary controls the signer, i.e., knows and/or is able 

to generate the private key, and then tries to manipulate the signature generation against an 

unwary verifier? That may jeopardize the “data integrity authentication” requirement, even if 

maintaining “source/identity authentication”. For example, an unforgeable signature scheme 

may still allow a malicious signer to produce two messages (possibly under two different 

public keys) and one signature that validates both messages [CGN20; BCJZ21]. 

3.4.1. Binding

The EdDSA verification specified in Draft FIPS 186-5 provides a form of binding that 

follows trivially from the collision resistance of the hash used to calculate the challenge χ . 

Considering a fixed public key Q, a malicious signer cannot find two messages M and M’ 

and a signature σ  that validates both of them under that public key. Thus, when the signer’s 

identity is certifiably bound to a single public key Q, such as when relying on a PKI, then a 

signature σ  binds the signer to a single message.

A stronger binding notion [CGN20; BCJZ21] goes further, considering that the public key 

may also be manipulated: a signature scheme provides strong binding if no malicious signer 

is able to find two different pubkey–message pairs — (Q,M) and (Q’,M’) — and a signature 

σ  that is valid against both pairs. In the case of EdDSA, such a collision can be obtained by 

a malicious signer, by using a public-key Q that is part of the small subgroup. This allows 

the signer to later perform a key-substitution attack: after initially sending (M,σ), w.r.t. 

public key Q, the signer later claims that it has actually sent (M’,σ) w.r.t. a public key Q’. 

While having one of the keys being in the small subgroup is not compliant with the EdDSA 

keygen phase, such a key is nonetheless not caught as incorrect in the standardized EdDSA 

verification. As already briefly mentioned in Section 3.2.3, this can be fixed by adding a 

simple additional verification regarding the public key Q and the nonce commitment R.

Binding can even be considered in a stronger sense, across various signature schemes and 

parameters (e.g., approved EdDSA and ECDSA modes), which may use different hash 

functions H, base-points G, encodings Eµ , moduli n and even Verify algorithms. For 

example, one can ask whether one can find a signature simultaneously valid for EdDSA and 

for ECDSA, each with their own parameters.

3.4.2. Non-repudiation

The colloquial expression “non-repudiation” means the inability of a signer to repudiate

(plausibly deny) having produced a signature w.r.t. a message. However, the expression 

leaves some room for ambiguity, as evident by comparing the two notions explained below. 
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Such ambiguity can be resolved by expressing the needed non-repudiation features in terms 

of unforgeability and binding properties.

A (weak) notion of non-repudiation considers that the signature can be used “to support a 

determination by a third party of whether a message was actually signed by a given entity” 

[SP 800-57-P1-R5], if it can be assumed that the private key is indeed private. This property 

is implied by SUF, since SUF implies that any valid message–signature pair must have been 

created by a holder of the private key. Even if a SUF scheme is non-binding in the sense 

of allowing a malicious signer to produce, under the same public key, two messages and 

one signature that validates both messages, it still follows that both messages must indeed 

have been signed by the entity that knows the private key. EdDSA, being SUF, provides 

non-repudiation in the mentioned sense.

Some application settings may warrant a stronger notion of “non-repudiation”, equivalent to 

binding. The following is an example application setting where a false repudiation occurs 

despite of the use of a SUF signature scheme. Consider, hypothetically, a non-binding 

signature scheme used in an application where an honest signer, upon request by a server A, 

generates and sends to A two messages M0 and M1, and a corresponding single signature σ

that validates both messages. Later, the signer is asked to securely send to another server 

B one of those messages, Mb, for some b of the client’s choice. If server B is unaware 

of the non-binding property, it may think that the authenticity of the message sent by the 

client is protected by the accompanying signature σ . However, if server A controls the 

communication channel, it could now replace the message by M1−b, without the client or 

the server B realizing it, even though server B could check that the received signature σ  is 

valid for the received message M1−b. Alternatively, if server A is honest (and thus server 

B actually receives the original message Mb), then a malicious client can later plausibly 

repudiate that it sent said message, and claim that the message was in fact M1−b, and that, 

plausibly, server A may have tampered with the communication. The use of a signature 

scheme with strong binding would make this repudiation implausible.

3.5. Nonce implementation issues

Even if the unforgeability of the specified EdDSA algorithms is assumed or proven (see 

Section 3.3), there are still potential security issues that arise from the implementation. The 

security of signatures interchangeable w.r.t. EdDSA verification depends critically on the 

secrecy and unbiased selection of the nonce r used in any signature (R,S). For example, 

should a nonce ever be known to an adversary, the signing key s can then be recovered, 

simply as s = χ−1 · (S− r)(mod n). Other subtle issues within the GenNonce procedure can 

cause catastrophic security failures. The same type of issues apply to implementations of 

the ECDSA signature scheme, against which the mentioned attacks have been demonstrated. 

To summarize (also see Table 6):

• Implementations of probabilistic nonces may introduce biases, and even small biases 

can result in full recovery of the private signing key.
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• Deterministic nonce generation prevents bias, but is more subject to side-channel and 

fault injection attacks that also enable key recovery.

• The upshot is that it can be more secure to generate the nonce in a hybrid manner, by 

adding some random noise to an otherwise deterministic procedure.

Table 6. Types of nonce generation

  Nonce generation type  Bias
 attacks

 Side-channel and
 fault injection attacks

  Deterministic: Pseudorandom, based on a secret key Not applicable More vulnerable

  Purely random: Entropy independent of secret key Vulnerable Less vulnerable

  Hybrid: Randomness and pseudo-randomness Not applicable Less vulnerable

3.5.1. Nonce reuse

A serious nonce-related security failure occurred when the ECDSA signing key of a home 

video game console was recovered [bmss10]. This is due to the use of the same nonce 

when signing different pieces of software. A similar attack is possible if nonces are reused 

when EdDSA-signing different messages. In that case, from two signatures (R,S) and 

(R′,S′), one can find the secret key by solving a pair of linear equations with two unknowns. 

From S′− S = (r′− r)+ s · (χ ′− χ) (mod n), and r = r′, the secret key follows as s =

(S′−S)(χ ′−χ)−1 (mod n).

Nonce reuse can occur when an adversary is able to perform a “rewinding” attack. For 

example, if the signer is running in a virtual machine and nonces are generated before 

the message to be signed is determined, an adversary may rewind the virtual machine in 

order to obtain signatures on two different messages using the same nonce and different 

challenges. This attack can be prevented by generating the nonce in a way that depends on 

the message to be signed, as happens in the pseudorandom nonce generation specified for 

EdDSA in Draft FIPS 186-5. Some system models may also avoid rewinding concerns based 

on other assumptions on fresh randomness, such as selecting the nonce via a non-rewindable 

hardware random-number generator that produces true fresh randomness on every call.

3.5.2. Partial knowledge of random nonce

Partial information about nonces can be leaked through a poorly implemented or biased 

random number generator [BH19], as well as various side-channel attacks, such as cache-

timing side-channels [ANTTY20]. Deliberately injected faults can also induce bias in the 

nonce [TTA18]. This bias can be leveraged to recover the private signing key by solving 

the Hidden Number Problem (HNP) [BV96] using one of two known techniques. Fourier 

analysis [Ble00; ANTTY20] is used when there is a very small bias (potentially even less 
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than a single bit [ANTTY20]) but the adversary has access to many signatures; lattice-

based techniques [HS01] can be used when the bias is more significant but the adversary 

has access to fewer signatures.

3.5.3. Side-channel and fault injection attacks against deterministic nonce

A pseudorandom (deterministic) nonce generation avoids the issues caused by bad ran-

domness. However, that may result in a signing process more susceptible to side-channel 

[ABFJLM18] and fault injection attacks [RP17; SB18]. For example, differential power 

analysis on the modular addition operation within SHA-512 can enable the recovery of the 

nonce-derivation key ν  being hashed. Also, a differential fault injection attack can induce 

a “glitch” during the computation of the challenge χ , resulting in a faulted challenge hash 

χ ′. Then, the computation follows with the proper formula S = R+ χ · s, but using the 

incorrect challenge value χ ′, leading to an invalid signature component S′ that is nonetheless 

a linear relation of the secret key and a secret nonce. Since the signature is pseudorandom, 

the adversary can additionally obtain a valid signature component S for the same message, 

using the same nonce r as before (and thus the same R as before), and necessarily having 

a different (correct) challenge χ . From S and S′ the adversary can recover the private key, 

similar to as when a nonce is reused when signing different messages (see Section 3.5.1). 

The exploitation of these vulnerabilities often requires physical access to the signing device.

3.5.4. Hybrid nonce generation — combined randomness and determinism

The security issues mentioned above can be mitigated by using a hybrid mode of nonce 

generation, combining both random and pseudorandom components. As with deterministic 

nonce generation, the nonce can be computed as the output of a pseudorandom function 

(using as key the nonce-derivation key), whose input is the message. However, to protect 

against side-channel and fault-injection attacks, the function can additionally take some 

random bytes as input. The actual details on how the randomness and the nonce-derivation 

key are possibly intertwined when used as input to the pseudorandom function may depend 

on the concrete side-channel protection being sought.

Even if there is some bias in the used randomness, the use of a PRF (dependent on the secret 

nonce-derivation key) will prevent the bias from being apparent in the nonce itself. The idea 

is not new [SBBDS18; PSSLR18]. It has also been suggested as an update [MTR22] to 

RFC 8032 (on which the EdDSA specified in Draft FIPS 186-5 is based), which after the 

encoding of the nonce derivation key ν  would concatenate a random string (with the same 

length as ν), used as a preimage to the hashing that computes the nonce.

Furthermore, as long as the “random” values contributed to this function do not repeat for the 

same message, there is some additional protection against side-channels and fault-injection 

attacks. With a single signer, if the needed entropy is unavailable at signing time, the signing 

simply falls back to the deterministic mode. (The threshold setting requires particular 

attention against insider attacks, as discussed in Section 4.3.1).
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4. Threshold approaches

This section surveys, at a high level, several approaches for threshold signatures with 

potential interchangeability w.r.t. EdDSA verification. Section 4.1 provides intuition about 

the linear operations involved in a semi-honest probabilistic setting. Section 4.2 describes a 

template protocol for threshold Schnorr/EdDSA signatures, matching at a high-level many 

concrete protocols. Section 4.3 explains several deterministic approaches, while Section 4.4 

considers probabilistic approaches.

4.1. Intuition for efficiency of threshold [probabilistic] Schnorr signatures

The baseline building block assumed available for threshold signatures is a secret sharing 

(SS) scheme . From an initial secret value x, the SS scheme allows producing a vector 

[x] = 〈x1,x2, ...,xn〉 of shares, usually for distribution across n parties, such that any subset 

of t parties can reconstruct the secret x, but any subset of t − 1 colluding parties learns 

“nothing” about the secret. For example, Shamir SS [Sha79] selects a random polynomial of 

degree t−1, subject to its evaluation at zero being the secret x; then the various shares are 

the evaluation of the polynomial at other points. The evaluation points across shares must 

not collide (which would affect the threshold guarantee) and must not be zero (which would 

reveal the secret).

For Schnorr signatures in particular, it is most useful to use a linear SS (LSS) scheme. 

Linearity enables local computation of the sum of shares, and multiplication-by-constant 

of shares. Therefore: if z = x+ y, it follows that [z] = [x] + [y] (i.e., each local share zi

can be obtained as xi + yi.); also, if z = a ·w, then [z] = [a ·w] (i.e., each local share zi can 

be obtained as a ·wi). The threshold properties of the secret-sharing [z] upon these linear 

operations remains the same (namely t shares are required to reconstruct a secret). It should 

be noted that different secret-sharing schemes exist and can be useful, including those with 

multiplicative properties.

Compared with ECDSA, the better efficiency of threshold Schnorr signatures comes from 

being able to compute the signature operations (all linear) locally at each party, once the 

needed shares are distributed. In particular, when the nonce is allowed to be randomized (as 

in regular Schnorr, although not in EdDSA), then even the distributed secret selection of the 

nonce and the calculation of its commitment depend only on simple linear/homomorphic 

operations. Conversely, ECDSA requires computing the modular inverse of a secret-shared 

element, which is more complicated and inefficient to perform in a distributed manner. The 

non-linear operation requires interaction and may be based on a different type of secret 

sharing (e.g., multiplicative) and a corresponding final conversion to linear secret sharing.

This simplicity is captured well in a semi-honest threshold implementation (i.e., where every 

party behaves according to the protocol specification), as summarized in Table 7. In this 

case, the distributed computation only involves the secret-sharing and corresponding recon-

struction of secret elements, as well as simple homomorphic operations. The description 
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is for n-of-n signatures. The k-out-of-n case is resolved by Lagrange interpolation in the 

exponent, which can also be done with (homomorphically) linear operations.

Table 7. Conventional Schnorr vs. baseline semi-honest threshold Schnorr

  Phase  Conventional Semi-honest threshold baseline

  Key-Gen Q = s • G [Q] = [s] • G; then open Q
  Commit nonce R = r • G [R] = [r] • G; then open R
  Compute challenge χ = H(R,Q,M) Same as in conventional
  Produce signature S = r+χ · s(mod n) [S] = [r]+χ · [s] (mod n); then open S
  Verify signature S • G =? R✚χ • Q Same as in conventional

To “open” a public value (Q, R and S) means that every party reveals their corresponding share (Qi, 
Ri and Si, respectively), so that everyone can reconstruct the corresponding public value.

 
 

For each row involving secret material, the baseline threshold version simply computes 

the needed public element shares (Qi, Ri and Si) by homomorphic computations over 

the secret-shared secret values (si and ri). Some additional care is required to deal with 

active/malicious adversaries, which in practice leads to some variations (e.g., how the nonce, 

or signature shares are produced), while leaving the compute challenge and verify signature 

steps identical to the conventional scheme.

On regular threshold signatures vs. multi-signatures. Sometimes it is useful to clearly 

distinguish between two types of distributed signature schemes:

• (Regular) Threshold Schemes: there is a fixed public key Q, whose corresponding 

private signing key s is secret-shared across various parties.

• Multi-Signature schemes: there is a setting where each party Pi has a public key Qi, 

and a corresponding private signing key si, and any subset of them can come together 

to produce a multi-signature, which can only have been produced by a collaboration of 

all corresponding private keys, and whose verification is based on either (i) a list of the 

Qi’s of all signatories, or (ii) an aggregate public key Q that is derived from them.

The case of n-out-of-n (regular) threshold signatures has some similarities to a multi-sig-

nature from n parties. In particular, overlooking the Keygen phase, the Sign and Verify 

phases of a multi-signature scheme can be transformed into those of a n-out-of-n regular 

threshold scheme, by fixing the public key Q and the set of n parties. In both types, there 

is a threshold security property: an adversary must corrupt all n cosigners in order to forge 

a signature. Furthermore, Schnorr multi-signatures can be interchangeable w.r.t. the EdDSA 

verification algorithm, provided that the aggregate public key is given. For the most part, 

the discussion in this report considers threshold schemes in the regular sense. However, 

considering the above, it is sometimes useful to consider “threshold schemes” in a broad 

sense that also includes multi-signatures.
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4.2. A template threshold Schnorr/EdDSA signature

A conventional signature scheme is composed of three procedures: Keygen, Sign, and 

Verify. A threshold implementation of it alters only the Keygen and Sign operations, 

which relate to private key. The verification operation (Verify) remains unchanged. Here-

after, the focus is on actively secure protocols (i.e., against malicious adversaries).

4.2.1. Key Generation

In the Keygen phase, each party obtains a share si of the private signing key s. During this 

process, every party also learns all “public” keys Qi associated to the private keys of each 

other party, from which anyone can derive the global public key Q. The secret sharing 

(SS) can be one from several kinds, including verifiable SS (VSS) or publicly verifiable 

SS (PVSS), where each party learns additional information that enables verifying that their 

share is correctly related to the global public key.

The generation of these keys typically follows one of two main approaches:

• centralized (by a dealer): a dealer (trusted or untrusted) determines the private 

signing key s, then produces a secret sharing [d] of the private signing key, and sends 

a different secret share di to each party i. The public key Q = s • G, as well as its 

shares Qi = si • G, are sent to every party.

• distributed (by the signatories): the parties interact in a distributed key-generation 

protocol, such that no party knows the global secret key d. Typically, each party 

generates their own secret key share and corresponding public key share, which are 

then combined to generate the global public key.

Note: In the actual (deterministic) EdDSA there is also a nonce-derivation key ν . In a 

threshold (deterministic) EdDSA scheme, functionally equivalent to EdDSA, the parties also 

obtain corresponding secret shares ν i. There is nonetheless an essential difference across 

the two private keys, w.r.t. the distributed signature process: for the signing key s, there are 

homomorphic properties that facilitate the group operations to be carried out in secret-shared 

mode; the same does note apply for the SHA-based hash-related operations performed on 

ν . There are other threshold schemes interchangeable w.r.t. EdDSA verification that avoid 

the latter problem by deriving independent local nonce derivation keys per party, or even 

simply assuming access to good randomness.

Distributed key generation (DKG) approach. A DKG for public keys has a basic goal of 

letting each party obtain a secret-share of a random private key s. For typical discrete-log 

based schemes, the homomorphic properties of the group are such that an additive secret 

sharing si • G of the private key allows the calculation of (now in additive notation) a share 

Qi = si • G of the public key Q. A useful gadget for DKG is a VSS scheme [CGMA85]. 

In particular, Feldman’s scheme [Fel87] allows for non-interactive verifiability. After an 

interactive (e.g., 2 rounds of communication) secret-sharing, each share si “proves its own 

validity” via a verification algorithm that checks it against a commitment of the secret s. An 
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initial DKG scheme [Ped91] based on Feldman’s VSS allowed a malicious party to bias 

the public key. While such a public key may still be sufficient for some purposes, it does 

not emulate the case of a random public key selected by a trusted dealer. A later protocol 

[GJKR99] solves that issue, by ensuring that any party must propose their contribution 

before they can learn the resulting public key. This can be achieved by adding an initial 

communication round where parties commit to their contributions, e.g., using Pedersen 

commitments [Ped92]. The mentioned DKG, for an honest majority setting and assuming 

broadcast channels, can be used as a basis for subsequent threshold Schnorr-style signing 

[SS01]. Other alternatives may be possible with a different number of rounds, depending on 

the system model.

Rogue-key attack. Some restrictions need to be enforced w.r.t. the key shares, in order to 

protect against “rogue key” attacks, where a malicious party sets their public key share Qi

to some function of the honest parties’ public keys. For example, consider a 2-of-2 multi-

signature scheme intended to prove that both Alice and Bob have participated in creating 

a signature. Let honest Alice have private key sA and public key QA = sA • G. Bob, who is 

malicious, has private key sB and public key QB = sB • G. Alice says her public key is QA, 

while Bob says his public key is Q′ = QB−QA (instead of the correct QB), even though Bob 

is unaware of the discrete log of Q′. The resulting shared public key is QB, so Bob can sign 

for the group without Alice’s consent.

To prevent such attacks, each party may be required to prove knowledge of their secret key 

(KOSK), using a NIZKPoK of DL (base G) of Qi, essentially equivalent to producing a 

signature with their private key. Some multi-signature schemes operate in the plain public 

key model, where parties are not required to prove knowledge of their secret keys in order to 

thwart rogue key attacks. This involves tweaking the procedure for generating an aggregated 

public key, as well as modifying the process for generating signature shares.

4.2.2. Signing

In each threshold signing session, the parties need to obtain agreement on several parameters: 

the message M to be signed; the set P ′ of cosigners actively participating in the signing 

session; and a session identifier sid used to distinguish between concurrent executions. 

Unless otherwise noted, the remainder of this section assumes there is a mechanism whereby 

parties agree on the tuple (sid,P ′,M). In practice, however, threshold implementations 

must explicitly consider this agreement.

In an actively secure threshold Schnorr signature, some variations or extra steps are required 

as compared to the semi-honest setting (Section 4.1). A simple template for threshold proba-

bilistic signing [SS01] is to perform a DKG to obtain a secret-shared secret nonce r, along 

with each party receiving the nonce-contribution commitment Ri of everyone, and then let 

each party locally compute and broadcast their corresponding signature share. Some tricks 

can reduce the number of rounds, but special care is required to prevent the challenge χ from 

being maliciously manipulated in a way that could break unforgeability.
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1. Nonce commit. Each party computes a random nonce share ri and then the corre-

sponding commitment Ri = ri • G. The details of this computation define whether the 

overall EdDSA implementation is deterministic (see Section 4.3), or probabilistic 

(see Section 4.4). Due to homomorphism, the commitment Ri is also a share of 

the commitment R of the random secret nonce r (of which no party is aware). In 

other words, the distributed system produces secret-sharings [r] and [R] = [r] • G. 

The shares of [R] are then revealed between all parties, which allows each party to 

locally reconstruct the public commitment R. Special care is required to thwart attacks 

where an adversary tries to manipulate the challenge χ (dependent on M, R, and 

Q), possibly in a concurrent setting with many distributed signing operations taking 

place [DEFKLNS19]. This manipulation can be prevented by having a round of 

communication where parties, when committing to their nonce contribution (e.g., ri), 

do not immediately reveal a share (e.g., Ri = ri • G) of the nonce commitment, or with 

more advanced techniques that can eliminate a round of communication. For example, 

the nonce commitment R may be a more complex linear combination of the shares Ri, 

using additional coefficients to avoid some malleability attacks. The revealing of the 

shares Ri of the public value R follows after a corresponding commitment phase, to 

ensure independence of values. A secret-sharing [r] of a SHA-based pseudorandom 

nonce r would require a more generic (secure) multiparty computation (MPC).

2. Compute challenge. In the simplest (and EdDSA-interchangeable) case, the chal-

lenge χ is locally computed by each party, as a hash of the nonce commitment R, the 

public key Q, and the message M. Some modes also include a context component ctx

(see Table 5), or other small tweaks.

3. Signature shares. Based on the linear properties of the secret-sharing scheme, each 

party can locally compute a share of the output signature This can be as simple as 

[S] = [r]+χ · [s] (in Zn). However, some protocols use sophisticated techniques where 

some of the elements may be tweaked. The final signature can then be computed by 

anyone collecting all signature shares. 

The above description is for n-out-of-n signatures. The k-out-of-n case is resolved by 

additionally using Lagrange coefficients.

4.3. Deterministic threshold Schnorr

In a deterministic threshold Schnorr signature scheme, each message leads to a single 

possible signature, once the public key and/or the subset of signatories is fixed. In particular, 

the secret nonce r (i.e., the discrete-log of the nonce commitment R) is deterministic, even 

through never computed by a single party. It could seem that this can be trivially achieved 

by having each party provide a deterministic contribution Ri = ri • G, for a locally computed 

deterministic ri. However, a careless protocol could result in a key-recovery vulnerability 

against internal adversaries (see §4.3.1). Therefore, a protocol needs to be carefully crafted, 

possibly using an MPC (see §4.3.2) or ZKP (see §4.3.3) that ensures correct behavior from 

the signatories. Table 8 compares various aspects of different deterministic approaches.
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Table 8. Threshold approaches for deterministic signatures



 Reference
 Function-
 ally equi
valent?

 EdDSA
 Interchan-
 geable?

 Same signature per message?
Some gadgets


 Per/across
 quorums

 Across re
 sharings

  [BST21, §5] Yes Yes Yes/ Yes Yes  MPC gadgets
  [BST21, §6]  No Yes Yes/ Yes Yes  MPC-friendly hash
  [GKMN21]  No Yes Yes/ No  No  ZKGC, COT
  [NRSW20]  No Yes Yes/ No  N/A  ZKP-friendly PRF

Some schemes implement the HashEdDSA mode (see Table 5). The last row [NRSW20] corresponds 
to a multi-signature scheme, for which the resharing does not apply (N/A), since that would imply a 
change in public key. COT = committed oblivious transfer. ZKGC = ZKPs from garbled circuits. The 
approaches also differ in efficiency, allowed thresholds, and cryptographic assumptions.









4.3.1. A key-recovery pitfall

Suppose the secret nonce r is a naive combination of “deterministic” nonce contributions 

from the various parties. Consider now two executions to sign the same message M. Since 

the determinism is not verifiable, a malicious party can provide different nonce contributions 

in both, whereas the honest participants supply the same deterministic nonce each time 

[MPSW19].  This allows the adversary to learn:

• two different challenges (χ,χ ′), since they respectively depend on the two different 

nonce contributions from the malicious party;

• two different signature shares (Si,S′i) from each honest party, since they depend on 

the two different challenges,

The above pairs from honest parties will both have been derived using the the same secret 

nonce ri (prescribed to be deterministic) and the same secret signing share si. This enables 

the malicious party to obtain the secret key share of each honest party, by solving a simple 

pair of linear equations, leading to: si = (χ−χ ′)−1 · (Si−S′i)(mod n).

Secure versions of deterministic threshold EdDSA/Schnorr need to resolve the above men-

tioned problem. Two such approaches are described below.

4.3.2. MPC-based threshold (deterministic) EdDSA

The above described pitfall (§4.3.1) can be avoided by directly using generic MPC to ensure 

that the secret nonce r is a hash whose pre-image includes the nonce-derivation key ν

[BST21], exactly as prescribed for (deterministic) EdDSA.

1. KeyGen: use a dealer or a dealerless keygen, such that each party has a secret share 

si of the signing key, and a secret share ν i of the nonce-derivation key.
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2. Nonce commit: use generic MPC to compute a nonce-commitment R = r ·G, with-

out anyone learning the corresponding discrete-log r (the nonce), and yet be assured 

that the nonce satisfies the prescribed relation, i.e., r = Hash(ν ,Hash(M)) in case 

of HashEdDSA. Considering the original SHA-based hash as a Boolean circuit, the 

techniques used to perform its distributed computation can be based on MPC gadgets, 

say, to obtain a secret-sharing [r] of the nonce, which can then be homomorphically 

converted to the corresponding commitment shares [R]. The distributed hashing can be 

based on garbled circuits, and using oblivious transfer to handle the secret inputs of the 

circuit evaluator. Alternatively, the circuit evaluation can proceed by computing over 

bits that are secret-shared using a LSS scheme and a mechanism for authentication 

of shares. To convert between shares (of the nonce-derivation key or of the nonce) 

in Fn, and the bits (i.e., in F2) used in the distributed hash computation, a modular 

conversion mechanism can also be used. In some cases it can be easier to use a Q2 

access structure, to handle multiplicative shares [BST21].

3. Challenge: compute the challenge χ as prescribed (see Table 5).

4. Signature shares: locally compute the signature share Si = ri + χ · si (mod n) and 

send it to a combiner (anyone receiving all signature shares), who can then trivially 

obtain the final signature.

The main challenge above is the distributed SHA-based hashing needed to obtain the secret-

shared nonce r, depending on the secret shares ν i of the nonce-derivation key ν . The generic 

feasibility of MPC guarantees this is possible (e.g., see [BST21] for an implementation 

in an honest majority setting), albeit contrived when compared with what is needed for 

probabilistic Schnorr.

As an alternative, substantial efficiency improvements can be obtained by using an MPC-

friendly hash (not the case of SHA-512 or SHAKE256) to distributively compute the nonce. 

This will no longer yield a functionally equivalent signature, but it will still be interchange-

able w.r.t. EdDSA verification. Note that the hashing used to generate the challenge χ

remains the original (SHA-based) one [BST21, §6].

4.3.3. Threshold signing with local deterministic contributions

An alternative solution to the key recovery pitfall (§4.3.1) is to have parties generate their 

nonce contributions deterministically and supply an accompanying proof that they were 

generated correctly [GKMN21; NRSW20].

1. KeyGen: Either a dealer or dealerless keygen protocol provides to each party a 

secret share si of the signing key. Each party i can locally select, independently, a 

nonce-derivation key ν i and send a commitment of it to all other parties. The parties 

may also generate some additional random state to be used for the proof of correct 

nonce derivation during the signing process. [GKMN21]

2. Nonce commit: Each party locally derives their deterministic contribution ri for the 
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nonce, which depends on the secret ν i and on the public message M. Then the party 

commits as usual by sending Ri = ri • G to everyone, but now also sends a ZKP that 

this is correctly related to the commitment of the nonce-derivation key. If all the 

proofs are valid, the honest parties combine the various contributions to obtain the 

global nonce commitment R = ∑Ri; otherwise, the parties abort. The specifics of the 

ZKP and deterministic function depend on the scheme.

3. Challenge: The challenge χ is computed as usual (see Table 5).

4. Signature shares: Generate, broadcast, and aggregate (partial) Schnorr signature 

shares. The actual techniques may be more sophisticated, such as by masking the typi-

cal signature share such that the masks are cancelled out when combined across parties 

[GKMN21], or including multiplicative coefficients that allows for key aggregation 

(in case of multi-signature) [NRSW20].

What distinguishes schemes with local deterministic nonces from each other is the pseudo-

random function (PRF) used to generate the nonce, and the ZKP method for proving it was 

properly generated. In MuSig-DN [NRSW20] (a multi-signature scheme), the nonce is a 

specially designed PRF. It is keyed with the nonce derivation key, and takes as input the 

message M, the set of signers’ public keys Qi, and the commitments of the nonce derivation 

keys. The corresponding ZKP is computationally heavy, but signing takes only two rounds and 

is very efficient bandwidth wise. In [GKMN21], the PRF is the NIST-standardized advanced

encryption standard (AES) cipher, and the ZKP is based on garbled circuits. This is computa-

tionally lighter, at the expense of higher bandwidth and three rounds of communication.

4.4. Probabilistic threshold Schnorr

The probabilistic approach for threshold Schnorr/EdDSA signing allows the distributed 

nonce generation to take advantage of homomorphic properties innate to the signature 

scheme elements. As mentioned (§4.2.1), the secret-sharing of a random secret nonce can 

be performed by a DKG protocol, then to be followed by a simple local generation of 

signature shares [SS01]. Some schemes can be tailored for a small number of parties, e.g., 

two [NKDM03]. More recent works have focused on a reduced number of communication 

rounds (though still making use of a broadcast channel, whose real implementation may 

require multiple rounds, depending on the system model). The protocol design can be 

framed within a simulatable (§4.4.1) or a game-based (§4.4.2) security formulation.

4.4.1. Simulatable threshold Schnorr in three rounds

In the ideal/real simulation paradigm of MPC, which allows for composability of ideal 

components, a threshold Schnorr protocol is relatively straightforward when considering 

as available gadgets an ideal commitment scheme, an ideal non-interactive zero-knowledge 

proof of knowledge (NIZKPoK), and assuming authenticated communication [Lin22]. The 

protocol follows from the intuitive semi-honest threshold Schnorr. A coordinator can be 





 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

employed to decide the message to be signed and the signatory-subset (P ′), who collab-

oratively determine a session id (sid) for each signing execution. The signature format uses 

as first component the challenge χ , instead of the nonce commitment R, which technically 

makes the scheme not interchangeable w.r.t. EdDSA. However, the scheme could be adapted 

to become interchangeable.

1. Keygen: Based on a PKI, the parties are either given shares of the secret signing key 

or perform a Feldman VSS.

2. Nonce commit: Each party is invoked with the same message M to be signed.

• Agree on session identifier (sid). Initially, each party Pi commits (in a hiding 

manner) to a share Ri of the usual Schnorr nonce commitment R [notice the dou-

ble “commit”], at the same time that it proposes a contribution sidi to a session id. 

Essentially, the double commitment prevents the nonce commitment itself from 

being biased/manipulated even by the last party to propose their contribution. 

The signatory-subset S is either assumed known or proposed by the central 

coordinator once hearing from the several parties. Each party calculates the 

session id sid for the ongoing signature protocol based on the signatory subset.

• Reveal the nonce commitment contributions Ri. The nonce commitment 

contribution Ri = ri • G (not the actual nonce contribution ri) is then opened 

(verifiable w.r.t. its corresponding commitment) to the coordinator, along with 

a ZKPoK of the secret nonce contribution ri, and a signature bound to the sid. 

The parties then homomorphically build the global nonce commitment R, by 

simple group sum of all corresponding shares.

3. Challenge: χ is computed as usual, based on R, Q and M (see Table 5).

4. Signature shares: The signature shares si are generated locally by each party, based 

on the calculated challenge, the signing key-share and the nonce-share ri. The central 

coordinator (or anyone with access to the signature shares) can build the final signature 

and check its correctness.

The proof, in the static corruption model, relies on the simulation of ideal components, 

which allows extracting the hidden elements (e.g., nonce shares and signing-key shares) that 

enable ensuring the ideal execution is indistinguishable from a real one. 

4.4.2. Probabilistic Two-Round Schnorr

A class of two-round threshold probabilistic Schnorr schemes [KG21; NRS21; AB21; 

CKM21] protects against the k-sum attack [DEFKLNS19] by using multiple nonce contri-

butions per participant, and employing a “nonce binding” technique where each share of the 

nonce becomes dependent on the message, the set of cosigners, and the nonce contributions 

of all the cosigners.
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These two-round protocols can precompute the first round, deferring for later a single 

round of communication for signing. The description below corresponds to FROST without 

preprocessing [KG21]. Other schemes operate in a similar manner.

1. KeyGen: Each party receives their signing key share si either from a dealer or via 

distributed key generation.

2. Nonce commit: The most distinctive aspect of this class of protocols is that each party 

generates two or more nonce contributions (ri,1,ri,2), instead of just one (usually two, 

but possibly more, depending on the scheme and security model). The contribution of 

each party to the final nonce commitment R is “bound” to the message M, the set P ′

of cosigners, and each of their own nonce commitments Ri supplied during a given 

signing operation.

Specifically, party Pi chooses two random nonces (ri,1,ri,2), and generates their 

corresponding commitments (Ri,1 = ri,1 • G,Ri,2 = ri,2 • G). Let B be an ordered 

list of the participants involved in the signing operation, P ′  and their commit-

ments: B = {(i,Ri,1,Ri,2) : i ∈P ′}. All parties compute a set of “binding values” 

ρi = H(i,M,B), for i ∈P ′. The final nonce commitment R, common to all parties, 

is then R = ∑i Ri,1✚ρi • Ri,2. Given the linearity of the secret-sharing scheme, the 

corresponding implied secret share of the nonce for each party Pi is ri = ri,1 +ρi · ri,2.

3. Challenge: χ is computed as usual, based on R, Q and M (see Table 5).

4. Signature shares: Each party’s signature share Si is computed as Si = ri,1 +ρi · ri,2 +

χ ·λi · si, where λi is the Lagrange coefficient for the i-th cosigner in P ′.

The elaborate nonce commitment procedure is needed in order to thwart the k-sum attack 

[DEFKLNS19], which some two-round Schnorr multisignature schemes were susceptible to 

when an adversary could open multiple concurrent signing sessions. The attack involves 

finding a challenge value χ∗ = H(R∗,Q∗,M∗) that is the sum of several other challenge 

values that differ in either the group’s nonce commitment R or the message M. The attack 

is possible when the adversary has control over the nonce commitment R, by choosing the 

contribution of a corrupted party adaptively after seeing the contributions of all other parties. 

Exploiting the attack involves solving the Generalized Birthday Problem, which can be done 

with subexponential complexity using Wagner’s algorithm [Wag02].

To turn the above scheme into a single round signing protocol, parties can locally generate a 

list of their nonce contributions and corresponding commitments, securely save them, and 

publish a list of commitments to a common location (or provide them to a party acting as 

the coordinator or signature aggregator). When a new signing session is initiated, the next 

set of commitments for each party can be sent to the parties along with the message.

The FROST scheme [KG21] is full threshold, meaning it can be instantiated with any secret-

sharing recovery threshold t (out of n). MuSig2 [NRS21] and the delinearized witness 

multi-signatures (DWMS) [AB21] are multisignature schemes that operate in the plain public 

key model. SpeedyMuSig is similar to MuSig2 but operates in the KOSK model, which 

enables faster key aggregation [CKM21]. 
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5. Further considerations

Section 4 has described various approaches for producing threshold Schnorr-style signatures. 

The present section proposes complementary aspects relevant for when preparing future 

related guidance and recommendations. These considerations are also relevant for any 

upcoming call for contributions and/or when analysing corresponding proposals of threshold 

schemes interchangeable w.r.t. EdDSA verification.

• Section 5.1 enumerates aspects of the threshold setting that make the case of a 

corrupted signer more complex and inherently more pertinent.

• Section 5.2 points out the diversity of security formulations, and how some security 

notions (e.g., strong unforgeability) are generalized in the threshold setting. 

• Section 5.3 considers characteristics of the system model, namely assumptions about 

underlying communication functionalities.

• Section 5.4 revisits the issue of bad randomness, and how the threshold setting enabled 

new ways of resolving it.

• Section 5.5 motivates modularity and composability, and recalls useful phases (e.g., 

key-resharing, and replacement of faulty-parties).

5.1. “Thresholdized” signer

In the conventional setting, the security formulation of digital signatures is classically 

established by an unforgeability game (Section 3.3). There, the adversary does not know 

the private signing key but controls a client, who can request signatures from a signing 

oracle that knows the private key. The case of a corrupted signer is typically less considered, 

although it is the basis for the message binding property (Section 3.4). In the threshold 

setting, the signer becomes distributed, due to the secret sharing of the private key across 

multiple parties. The adversary can then also control some of the key-share holders. It thus 

becomes relevant to consider the case of a corrupted signer (i.e., in the threshold sense). The 

more complex adversarial model raises new considerations about adversarial capabilities 

and goals. For example:

1. Corruption threshold: the adversary can control up to a corruption threshold f  of the 

key-share holders. Which ranges of f  are acceptable? Some functionalities/protocols 

will only work for certain intervals of the proportion f/n (corruption threshold over 

number of parties).

2. Agreement: the decision to sign a message becomes distributed across a set of 

cosigners, including corrupted parties. Whether the agreement is assumed as implicit, 

or follows explicitly from a verifiable request from an external client or coordinator, it 

needs to actually be implemented when the system is deployed.

3. Number of signatures: if the participation threshold (i.e., the needed quorum) is not 

higher than (n+ f )/2, how many signatures should it be possible to create from a 

single authorized request that is broadcast to all parties? Consider an adversary who 

— besides compromising f  parties — has some control over the network, and can 





 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

partition the honest parties into two separate networks, causing them to participate in 

two distinct Schnorr signings of the same message.

4. Concurrent signing: the adversary can corrupt some of the parties and thus observe 

and interfere with the intermediate steps of the concurrent generation of multiple 

signatures. This is not possible in the conventional unforgeability game, where 

each signature is produced by an oracle who processes each request independently. 

Without proper safeguards, some protocols secure in a threshold standalone setting 

(without concurrency) may enable forgeries in the threshold concurrent setting. For 

example, if the signature scheme allows the adversary to maliciously influence the 

nonce commitment R, then a forgery may be obtained upon solving a k-sum problem 

[DEFKLNS19; BLLOR21].

5. Messages adapted to the nonce commitment: depending on the threshold protocol, 

an adversary may be able to select a message with a noticeable relation to M (e.g., 

M=R). This would not be possible in the conventional SUF game, since there the 

oracle signer produces a (pseudo)random R. However, actual unforgeability may 

follow even though the adversary is able to learn R before selecting the message M. 

(Note that such capability is not considered in usual conventional proofs of security.) 

Other security formulations may specifically disallow this.

Being aware of the possible options and their differences is relevant to enable a security 

formulation that captures the intended functionality and/or desired properties. 

5.2. Threshold security formulation

There is room for nuances in security formulations for threshold signatures. For example, an 

ideal threshold signature functionality — in the universal composability (UC) framework 

— may define that a signature is produced only when all parties request the signature of a 

given message M. In a security-with-abort formulation, the adversary is allowed to see the 

signature first and decide whether or not the honest parties can receive it [BST21, Fig. 8].

The functionality may also require that all parties agree on a proposed nonce commitment R, 

before proceeding to release the remainder (S) of the signature [GKMN21, Func. 9.1]. The 

quorum (participation threshold) t ′ and session identifier sid may be explicitly encoded, so 

that the signature is produced once t ′ parties request it, with an agreeing sid [Lin22, Fig. 4.2].

Security formulations can be described via an ideal functionality or via games for each 

intended property. These may also encode whether or not, for example, a coordinator/aggre-

gator facilitates the communication between the remaining parties, and is responsible for 

outputting the final signature upon obtaining signature shares from the other parties [KG21; 

Lin22]. In the case of multi-signatures, the UF game also considers the set of public keys 

used to generate a signature. Then, an adversarial win requires generating a signature for a 

message M and a cosigners set P ′ (i.e., set of their public keys) that includes at least one 

honest party that never agreed to sign the message within that cosigners set ([BN06, Sec. 4]; 

[NRS21, Fig. 3]). This can be generalized to a SUF sense, by considering as forgery any 
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new signature for the same pair (P ′, M). Various levels of unforgeability strength can be 

defined based on the goal and capabilities of the adversary (see Sections 3.3 and 5.2.1), 

namely what is considered a valid forgery and which contributions an adversary can obtain 

from honest parties [BTZ22; BCKMTZ22]. Security formulations can also cover additional 

modules/features, such as robustness [RRJSS22].

The suitability of each formulation can vary with the intended system model and/or the 

presence of features of interest to envisioned application settings. It is nonetheless important 

to check whether the adversary in the threshold setting is prevented from gaining an ability 

that exceeds that of the adversary in the conventional scheme.

The simulatability setting provides a natural way of going beyond unforgeability. For 

example, it inherently requires an unbiased nonce commitment, whereas in the case of a 

game-based definition for UF, that property only tends to appear as a protection against a 

concrete attack. Still, one can also define games for other threshold properties. As another 

example, when an ideal functionality directly selects the nonce commitment, after the 

message to be signed has been determined, the formulation inherently requires protects 

against subliminal channels (see §5.2.4).

5.2.1. Strong threshold unforgeability

Since EdDSA is not verifiably deterministic, unforgeability should be considered in the 

“strong” sense: SUF (see Section 3.3). This notion becomes generalized in the threshold 

setting, where the adversary can corrupt up to f  parties, besides possibly controlling a client 

able to issue valid requests for message signing, and also possibly controlling the message 

delivery in some channels. Thus, with EdDSA being SUF in the conventional setting, it is 

useful that a threshold scheme interchangeable w.r.t. EdDSA considers a threshold notion of 

SUF within the claimed corruption threshold.

Recent work has formalized game-based definitions for various levels of strong unforge-

ability in the threshold setting [BTZ22; BCKMTZ22]. The different levels consider, for 

example, the number of honest parties providing contributions (e.g., signature shares, if in a 

non-interactive setting) upon receiving a signing request. Also of interest are simulatability 

formulations, where an intended notion of unforgeability (as well as other properties) may 

be derived from the specification of an ideal functionality.

A SUF notion should clarify the conditions under which an adversary is expected to be able 

to generate a new signature (see §5.2.2). Also, unforgeability should remain even when the 

adversary is able to adaptively corrupt parties (see §5.2.3).

5.2.2. Number of signatures per request

The conventional unforgeability notion asks that an adversary be unable to obtain more 

signatures than those that have been properly “requested”. In the threshold setting, the 

notion of “request” can depend on the system model. For example, it can vary between (i) 
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being any request signed by an authorized client (including one controlled by the adversary), 

and (ii) being the result of an agreement (i.e, decided by an external protocol) between 

the parties. There are diverse options for the threshold security formulation to encode the 

meaning of valid signing request.

A security formulation for a threshold signature scheme should enable a clear understanding 

of what would be considered generating too many signatures, as compared to the number 

of legitimate requests. It should consider that some malicious requests (say, in the model 

where a client directly sends valid signed requests to each separate party) may lead to 

partial executions that do not end with a valid signature. These partially fulfilled requests (a 

notion not present in the conventional setting) should not give the adversary an additional 

advantage in producing non-requested signatures. Several techniques may be considered 

to protect against the generation of extra signatures. These may include, for example, a 

requirement for starting with a collective agreement on which messages to sign, and in 

which order, and/or the use of clocks, timestamps, counters and session identifiers.

The notion of a participation threshold t ′ is also relevant. Consider a protocol with a 

small corruption threshold f  (with f < bn/2c), and an underlying secret-sharing whose 

reconstruction threshold t is equal to just one more party (i.e., t = f +1). If a request does 

not identify the cosigner subset P ′, then an adversary controlling the network channels 

can partition the set of parties into two independent quorums. Could this lead the same 

request to generate two different signatures? Despite the low corruption threshold f , by 

requiring that the participation threshold t ′ is higher than n/2+ f  (the exact minimum may 

vary with the type of synchrony and other assumptions), then any two signing executions 

will have at least one common honest party. Note that this is exemplifying a participation

threshold t ′ higher than the reconstruction threshold t. Alternatively, a protocol may require 

that each signing request explicitly identifies the subset P ′ of allowed cosigners, to prevent 

non-included honest parties from giving a contribution to the adversary.

Example of multiple uncontextualized requests. Consider an application that composes a 

threshold signature scheme with an external decision algorithm used by each honest party 

to decide whether (i) to participate honestly in the signing, or (ii) to declare not being 

available to participate. What happens then if a request to sign the same message appears 

several times, while the parties’ participation decisions (whether or not to sign that message) 

alternate across requests and across parties?

Consider a threshold scheme with participation threshold t = 3, and only n = 3 parties: 

A and B are honest; C is malicious. Suppose there are two certified requests to sign the 

same message M. Suppose that upon the first request only parties A and C are willing to 

participate, and upon the second request only parties B and C are willing to participate. 

Suppose the adversary is able to replay messages, judiciously selecting which messages to 

send to which honest parties. Can the adversary induce the creation of a signature, even 

though the number of “honest” parties available to participate for each request has never 

reached the participation threshold?
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A proposed security formulation and system model for a threshold signature scheme should 

include details that enable answering this type of question. Special care is required for 

the case of concurrent signing requests, where parties may receive requests in inconsistent 

orderings, or even with inconsistent content produced by malicious participants. The use of 

(and agreement on) session identifiers is often a necessary element to handle concurrency.

5.2.3. Safety against adaptive corruptions

Unforgeability should be guaranteed against adversaries that can adaptively choose, based 

on an observation of the protocol execution, which parties to corrupt (up to the threshold f ). 

As compared to static corruptions, which must occur at the onset of a protocol execution, 

adaptive corruptions introduce a new degree of freedom.

The following is a classical example (slightly adapted in the parameters) of a statically-secure 

but adaptively-insecure protocol [CFGN96], w.r.t. confidentiality for secret storage: an 

incorruptible dealer distributes secret-shares of a key across a relatively small random subset 

with f  parties ( f ≈
√

n), using an f -out-of- f  secret-sharing scheme, and then advertises 

the subset. A static adversary has a negligible probability — asymptotically in n — of 

having corrupted the needed subset of f  parties before said set is advertised. Concretely, 

the probability is the inverse of the number (“n choose f ”) of possible subsets of f  parties 

from within the set of n parties. Conversely, an adaptive adversary can wait to hear the 

advertisement and only then corrupt exactly the f  key-share holders, thereby finding the 

secret. The example can be adapted to other safety properties, such as unforgeability.

Despite the gap between static and adaptive security, many protocols that in practice are 

proven statically-secure also retain some desirable properties (though not necessarily all) in 

the adaptive corruption setting. W.r.t. a game-based security property, a proof of security 

for a given protocol may happen to be independent of the difference between static vs. 

adaptive corruptions, and imply security against both types of adversaries. In the UC 

simulatability setting (ideal/real simulation paradigm) [Can01], security against adaptive-

active corruptions is in general more challenging to achieve, compared to the case of 

static-active corruptions [CDDIM01]. However, this difficulty is often because the security 

formulation comprises not just one safety property (such as unforgeability), but rather defines 

a whole functionality encompassing properties of a different nature, such as  deniability of 

execution and composability (which are not captured by the unforgeability game).

Because of the technical difficulties with adaptive security in a simulatability setting in the 

UC framework, it is common to see protocols proven secure only in the static setting, often 

with an implicit understanding that the lack of adaptive security does not mean a complete 

breakdown of safety properties in case of adaptive corruptions. In fact, a loss of deniability 

of execution and/or of some types of composability is something that may already happen 

when a protocol deployed in practice uses real (non-ideal) components to instantiate ideal 

components used in the proof of security (e.g., replacing a programmable random oracle by 

a cryptographic hash function).
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Given the possibility of adaptive corruptions in the real world, it is important to consider for 

any proposed threshold signature scheme whether the major safety properties of interest (such 

as unforgeability) are safeguarded against such an adversary. It is acceptable that this comes 

at the expense of some adjustment of the ideal functionality. It can also come in the form of a 

different argument, such as the case of adaptive security in the constructive cryptography (CC) 

setting [HLM21]. The latter provides an approach to explore another flavor of simulatable 

adaptive security, while avoiding the mentioned difficulties. 

5.2.4. Preventing subliminal exfiltration

A (stateless) probabilistic signature scheme provides an avenue for exfiltration of secret 

information, using the randomized component (e.g., a nonce commitment) as a subliminal 

channel [Sim94; AMV15]. This also applies to deterministic signatures (such as EdDSA and 

deterministic ECDSA) that can be undetectably made probabilistic by a malicious signer. For 

example, consider the case of a client who requests EdDSA signatures from a cryptographic 

security module (CSM) that holds the signing key. If the CSM has been corrupted, then it 

can maliciously influence the nonce commitment R to exfiltrate secrets via signatures.

The threat of subliminal channels can be mitigated with suitable threshold schemes, for both 

probabilistic and deterministic schemes. Suppose the administrator establishes a threshold 

signature scheme across various CSMs. A protocol can be such that no isolated CSM (nor 

any coalition up to the corruption threshold) is able to bias the bits in the final signature. A 

limitation exists in the case of security-with-abort formulations, where the the adversary has 

a chance to prevent undesired outputs, which provides a low capacity channel.

Since unforgeability does not imply unbiased signatures, the threshold assurance of the latter 

in  Schnorr/EdDSA signatures depends on the actual threshold scheme / security formulation. 

In particular, the malicious manipulation is allowed in some 2-round protocols (§4.4.2) where 

a malicious party (possibly the coordinator) is able to wait to be the last to propose a nonce 

commitment contribution, while already knowing the nonce commitment contributions of the 

other parties. Conversely, threshold schemes arising from a simulatability formulation tend to 

automatically ensure an unbiased nonce commitment. This is because their ideal functionality, 

which the protocol needs to emulate, selects the nonce r (uniformly or pseudorandomly) and 

calculates the nonce commitment R without interference from any party. This applies to both 

probabilistic (§4.4.1) and deterministic cases (§4.3). Naturally, this is also possible from 

protocols proven unforgeable with respect to a game-based definition, such as usual in those 

with three or more rounds [SS01; MPSW19].

5.3. System model

Several elements of the system model affect the suitability of protocols, approaches and 

realizable functionalities for threshold signatures. The following are relevant considerations: 

how authenticated channels are implemented (§5.3.2); whether parties have access to a reli-

able broadcast channel (§5.3.3); which timing assumptions the protocol can rely on (§5.3.4); 
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whether the deployment allows for a precomputation (offline) phase, before learning the 

message to sign (§5.3.5); what happens when system model assumptions are broken (§5.3.6).

5.3.1. Interface for signature request and delivery

Use of a coordinator or aggregator. Important safety properties, such as unforgeability, 

must hold even if the coordinator is malicious and sends inconsistent messages across 

different cosigners, so long as the number of corrupted cosigners is within the corruption 

threshold. As a tradeoff, some availability properties may be sacrificed, as happens with 

security-with-abort formulations, where an adversary can decide to not let the protocol 

produce a valid signature. 

Shared-I/O modes. In a threshold scheme where the operation request comes from an 

external party, it is possible to have none of the internal parties (i.e., the key-share holders, 

including corrupted ones) see the final signature value. This shared-output (shared-O) mode 

can result from a formulation where the ideal functionality sends the signature (or set of 

signature shares) only to the client that requested it. The ideal functionality also interacts 

with the various parties to ask their agreement about signing the message. However, besides 

seeing the message, each party sees at most a few shares of the signature (not enough to 

reconstruct it). A shared-Input (shared-I) mode is also conceivable, with the input arriving 

secret-shared (e.g., possibly with a VSS to enable verifying consistency of the shares). This 

is less practical since it requires a distributed computation of the SHA-based challenge χ . 

The shared-I/O modes [NISTIR 8214A, §2.3] are not meant to include the special case of an 

MPC where the message remains secret for the entire threshold entity (even if all parties 

collude). The current scope is to consider an outsourced signature, performed by a threshold 

entity, where the client (the signature requester) may at most perform secret-sharing and/or 

reconstruction. Naturally, one can combine both shared-O and shared-I features into a 

shared-IO mode.

Threshold auditability.  Threshold schemes may have additional features beyond their 

functional output. For example, public auditability may be useful for some applications. This 

verifiability can be embedded into secret sharing [Sch99] as well as into more general MPC 

[BDO14]. Besides the original intended output, a publicly auditable MPC would produce 

a proof of correct execution. For a threshold signature scheme this could mean a proof 

that a signature was produced via a threshold interaction ([NISTIR 8214A, §2.5]), with the 

agreement and collaboration of a particular subset of parties. This makes sense if the client 

or the public has access to a PKI with the public keys of the cosigners, or to something that 

verifies the underlying secret sharing. To be clear, an auditability transcript would not be 

considered part of the signature to be parsed by the client, but rather an auxiliary output of 

the protocol execution, to possibly be consumed by a separate audit application.
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5.3.2. Authenticated channels

It is customary in MPC protocols to assume the existence of authenticated channels. In 

a practical deployment, the channels have to somehow be instantiated. In the real world, 

authentication may depend on physical assumptions (such as a communication wire con-

necting two parties) and/or cryptography. Such a setup may be prepared by an administrator 

(e.g., if all parties belong to the same administrative domain), or in some ad-hoc manner 

(perhaps based on a PKI, a distributed protocol, or other means). Practical implementations 

can, for example, be based on:

• public-key cryptography: e.g., based on digital signatures with one public-key associ-

ated to each party; or

• symmetric-key cryptography: e.g., using a hash-based message authentication code 

(HMAC), with a different key for each pair of parties.

The type of authentication affects the security and capabilities of protocols. For example, a 

PKI can support transferable authentication based on signatures, so that party A can prove 

to party B that party C sent something to A. Conversely, an HMAC-based authentication 

is typically non-transferable (deniable). Typical ideal authenticated channels are deniable. 

A transferable instantiation may be considered a feature or a handicap, depending on the 

context. Authentication is also relevant between a client that requests a message and the 

parties that receive such request. 

The actual (real) authenticated channels available in the signing phase may be different 

from those in a preceding distributed keygen. In fact, the state obtained from a keygen 

(distributed or dealer-based) may be designed to enable new authenticated channels (even 

private, if need be, to support secrecy of transmitted content) in the subsequent signing 

phase. This requires proper care, or else possibly result in a security failure. In practice, 

a popular instantiation of authenticated and/or private channels is based on the transport

layer security (TLS) protocol. However, its composability with (i.e., replacing the ideal 

authenticated channels of) a threshold scheme should be carefully considered. For example, 

a careless instantiation of authenticated channels by using the actual key-shares obtained in 

the keygen phase could help the adversary produce a forgery. Conversely, it is an interesting 

consideration to think how to enable, in the signing phase of a threshold signature scheme, 

an instantiation of authenticated channels based on the material obtained during the keygen 

phase. Conceivably, this may be based on signatures that rely on the actual key-shares of the 

signing key, or derived therefrom.

As part of the communication setup, a threshold scheme specification can assume that every 

party knows the set of possible cosigners (and each other’s public key, or pairwise symmetric-

key). In practice this may be bootstrapped by an administrator, or by an ad-hoc agreement 

between parties with the help of a PKI. Some system models may allow a dynamic set of 

participants, establishing rules for deciding when and how to onboard new cosigners (and 

their keys), and/or remove old cosigners. 
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5.3.3. Broadcast

As a primitive to facilitate obtaining agreement, some protocols make use of reliable broad-

cast, where an honest receiving party is ensured that other honest parties have also received 

the same message. In some cases, reliable broadcast may be woven into the communication 

steps of the signing protocol, to reduce the overall number of communication rounds. Its 

realization depends on the communication model, e.g., whether or not there is a PKI to enable 

transferable authentication of messages (i.e., party A can prove to party B that party C has 

signed a message), a coordinator facilitating the message delivery (possibly also signing the 

delivered messages) vs. only point-to-point channels. The notion of reliable broadcast is 

stronger than a simple multicast where a party sends a message to every other party. In other 

words, it matters that each receiving party gains assurance that a particular message claimed 

to have been broadcast/multicast has also been received by every other honest party.

5.3.4. Timing assumptions

The performance and security of threshold signature schemes depends on the underlying 

communication model, particularly the timing for message delivery across participants. In 

the synchronous model, there is a known upper bound on the delay before messages are 

delivered. The asynchronous model, on the other hand, has no upper bound on the message 

delay, only requiring that messages be delivered eventually. A variety of other models 

exist, such as partial synchrony, where a period of asynchrony is followed by a period of 

synchronous communication.

More conservative timing assumptions can make a protocol more resilient to problems with 

the underlying communication network. However, this can come at the cost of stricter re-

quirements on the protocol’s design, performance penalties, and lower corruption thresholds. 

For example, the asynchronous setting does not allow parties to distinguish between the 

following scenarios: (i) a malicious party did not send a message, and (ii) an honest party 

sent a message, but is experiencing delays in its delivery over the network. As a result, more 

honest parties may be required to achieve the protocol’s security goals.

5.3.5. Offline/online phases

Efficiency goals usually aim for low latency (low round-complexity), low communication 

complexity (number of communicated bytes) and/or high throughput (number of signatures 

per unit of time). In threshold settings, there are so-called offline/online models that allow pre-

processing a significant amount of computation and communication in an offline phase, before 

the actual arrival of a message signing request. This allows for a subsequent lighter/faster 

online phase. For example, the selection of elements necessary for a later determination 

of the nonce commitment R and the nonce secret-sharing [r] can be performed before the 

message is known. (Note that even the contributions Ri to the “nonce commitment” R may 

be initially “committed”, when a security formulation requires preventing the adversary from 

maliciously affecting R.) The generation of correlated randomness (and pseudorandomness) 
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can be particularly useful [Bea96; IKMOP13; BCGIKS19]. An offline phase may also 

prepare some aspects of agreement, such as possibly a coordinator.

5.3.6. Beyond covered assumptions

A threshold scheme may be designed and have provable security for a particular system 

model and adversarial capabilities. What happens, however, if those assumptions are not 

met? For example, what happens if (i) an assumed synchronous communication network 

turns out to be asynchronous (see §5.3.4), or if (ii) an assumed reliable broadcast channel 

(see §5.3.3) does not actually reach every party, or if (iii) the number of corrupted parties 

(see Section 5.1) exceeds the corruption threshold by 1 or more? It is useful that the security 

analysis of a threshold scheme considers these questions, identifying possible ranges of 

graceful degradation, vs. others of complete security breakdown. In the case of a signature 

scheme, allowing forgeries would be a complete security breakdown, whereas losing fairness 

could be acceptable. Thus, if a protocol enables a given security formulation with up to f

corruptions, it may still enable another security formulation with up to f + ε corruptions, 

possibly with mixed types of corruptions (some active, others fail-stop, others semi-honest) 

[FHM98; HM20; DER21]. Graceful degradation w.r.t. to continued corruptions can also be 

promoted by abort-recovery subprotocols, for example if identifying the parties that have 

misbehaved and then being able to remove them. 

5.4. Good vs. bad randomness

The issue of good vs. bad randomness is central to implementation security, as already 

discussed in Section 3.5. In the threshold setting, each party may be subject to the causes 

of bad randomness that affect the conventional (non-threshold) setting, such as insufficient 

entropy, or rewinding/snapshot susceptibility (see §3.5.1). In the conventional setting, these 

concerns have motivated the use of pseudorandomness when generating the secret nonce in 

EdDSA. The use of randomness is more complex in the threshold setting, with both more 

opportunities and challenges for security.

A naive recourse to a purely pseudorandom mode may be vulnerable to the malicious 

introduction of randomness (see §4.3.1). Conversely, the threshold setting can provide 

some protection against bad randomness in probabilistic signature schemes. For example, a 

threshold protocol can combine various random contributions in such a way that the good 

randomness from a single honest party results in a signature without bias. Probabilistic 

threshold signature schemes nevertheless have various randomness-related concerns, such as: 

inadvertent correlated randomness across parties (§5.4.1), attempts to maliciously influence 

the value of the secret nonce r or its commitment R (§5.4.2), and internal attacks against 

internal “well behaved” parties that have bad randomness (§5.4.3).

Issues of bad randomness can affect even threshold protocols for deterministic signing. 

This is because multi-party protocols often resort to randomness for internal gadgets (e.g., 

garbled circuits and oblivious transfer). In fact, even secret sharing of a key most often 
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relies on randomness. Therefore, the issue of good vs. bad randomness needs to be carefully 

considered in the specification of a threshold scheme, including the phases of keygen and 

signing (both deterministic and probabilistic).

5.4.1. Inadvertent correlated randomness

The threshold setting brings in the issue of inadvertent “correlated randomness”. When 

various signers operate in a similar environment (e.g., same software bootstrapped in equal 

conditions, and/or using a common pool of entropy), their resulting local randomness may 

be inadvertently correlated.

One mitigation to address this unwanted correlation is to have each party transform their 

randomness by applying a pseudorandom transformation relying on a local secret. This 

ensures that the randomness of each party is unpredictable, as long as their secret remains 

unpredictable to the other parties. For better resistance against side-channel attacks that may 

try to exfiltrate such a secret, the secret can be updated in each use (to the extent that that 

party is able to maintain that extra state).

The issue of inadvertent “correlated randomness” discussed here should not be confused 

with the use of securely generated “correlated randomness” in MPC [IKMOP13], which can 

be useful to reduce communication complexity.

5.4.2. Manipulating the nonce commitment

It is well known that the biasing of the secret nonce r used to produce an EdDSA signature 

allows extracting the signing key (§3.5.2). More subtly, the possibility of malicious influence 

of the nonce commitment R is also problematic. If a cosigner is able to present their 

contribution Ri once already able to compute the final nonce commitment R, then it can 

use the nonce commitment as a subliminal channel to exfiltrate information. Perhaps more 

importantly, in the threshold setting, the manipulation of the nonce commitment can in some 

cases enable forgeries, in the case of concurrent signing [DEFKLNS19].  The malicious 

influence can be avoided by requiring that every participant commits to their contribution 

before anyone reveals it [SS01; MPSW19] (see also §5.2.4). These challenges should be 

limited within the indicated corruption threshold (see Section 5.2.4), since the R is supposed 

to be indistinguishable from random.

5.4.3. “Well-behaved” parties with bad randomness

The threshold setting can easily leverage the local good randomness from a single participant 

to ensure an unbiased secret nonce r, and thus mitigate the risk of leaking information about 

the signing key.  The tolerance to malicious corruptions already handles the case of (up to a 

threshold f ) parties with bad randomness. Yet, there is benefit in focusing attention in the 

specific case of “well-behaved but with bad local randomness” (WBBR) parties.

Corruption escalation. The key-recovery pitfall described earlier (§4.3.1), for a (careless) 
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threshold deterministic scheme can be reconsidered for a probabilistic scheme. The former 

had an honest deterministic party interacting with a maliciously randomized party. By 

analogy, the same issue may occur in a (careless) probabilistic scheme where a well-behaved 

(colloquially called “honest”) party only has access to “bad randomness” (such as from 

a repeating seed). Then, the well-behaved party may leak their secret key-share to an 

internal malicious party, becoming itself corrupted to a higher degree. A threshold protocol 

should protect WBBR parties from having their corruption escalate to an exfiltration of their 

key-shares when interacting with (other) malicious parties.

Tolerance to more corruptions. If handled properly, the attention to the WBBR case allows 

for a possible increase in the tolerance to corruptions. Once fixing the main corruption 

threshold f  for malicious compromises, the requirement for “good randomness” may be 

sufficient to apply to a threshold of the remaining honest parties, rather than to all of them. 

This can mean more suitability for deployment in settings where some “bad randomness” is 

expected. The WBBR parties would then leverage good randomness from the other honest 

parties. The advantage is resistance to not only up to f  (the original threshold of) arbitrarily 

malicious parties, but potentially to the participation of additional WBBR parties. The 

presence of at least one honest party (with good randomness) requires the number of WBBR 

parties to not be higher than t ′− f −1, where t ′ is the quorum required by for signing. In the 

optimistic case where every party follows the protocol specification, the good randomness 

from a single honest party, is sufficient to ensure an unbiased nonce, despite the possible 

presence of up to t ′− 1 WBBR parties. Lower thresholds for WBBR may be required, 

depending on the approach, and a formal security claim requires careful analysis.

5.5. Modularity and composability

A threshold scheme proposal can benefit from a modular description and implementation. 

This applies both to protocol phases and to building blocks (gadgets).

5.5.1. Phases

Some modularity naturally follows from the structure of a signature scheme. The keygen 

and the signing phases should be defined separately, albeit in an interoperable manner. That 

is, the signing protocol should make sense regardless of whether the keygen is achieved via 

a dealer or a distributed protocol (§4.2.1).

Modularity also makes sense w.r.t. possible additional sub-protocols, such as:

• secret-resharing, for proactive security, to render useless any key-share that may have 

already leaked to the adversary (assuming fewer than f  shares have leaked since the 

most recent resharing);

• dynamic change of participants, such as altering the set of potential cosigners (and thus, 

when applicable, their keys) and possibly the change of corruption and participation 

thresholds.
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The above examples require deletion of old shares, in order to retain security in the face of 

mobile adversaries that continue corrupting parties after a resharing phase.

Some phases may be the result of a certified administrative request built in to the implemen-

tation, such as to increase n and f , requiring a resharing of the private key.Some phases may 

be activated when special internal conditions are met, such as those foreseen in threshold 

schemes with identifiable abort, where a party may be identified as malicious. A protocol 

may have a special provision to retry a signing operation after getting rid of an identified 

malicious party, in order to provide robustness, i.e., successfully producing a signature 

despite the malicious parties.

Each phase may come with tradeoffs, such as possibly imposing a more restrictive set of 

security parameters (e.g., thresholds) or setup conditions (e.g., communication network). 

For example, the phases may be more difficult to complete in an asynchronous network or 

against adaptive adversaries, and may bring other operational concerns related to agreement. 

Some changes in the system need to be agreed upon by all (or a qualified majority of the) 

honest parties, to avoid a partitioning where a qualified set of parties (able to produce 

signatures) retains a vision of the past shares.

Even within the signing phase, there may be a partition between precomputation and online 

sub-phases. There may also be a modular description of possible consensus mechanisms 

used to decide which message is to be signed, the session identifier sid and the subset of 

cosigners to participate in the session. Despite modular descriptions of some aspects of the 

signing phase, it may be possible to superpose them in order to reduce the number of rounds 

of communication. For example, the parties may both commit to their nonces and agree on 

an sid in the same round.

5.5.2. Gadgets

Ideally, various building blocks (gadgets) can be identified and used in a way that allows 

replacement with other instantiations, and/or which can be reused in other threshold schemes. 

This document has mentioned several examples of gadgets: secret sharing, garbled circuits, 

oblivious transfer, commitment schemes, secret resharing, Lagrange interpolation, zero-

knowledge proofs, etc. The security upon replacement of a gadget instantiation by another 

one may depend on the composability of the scheme, as well as variations in the setup 

assumptions. Some replacements are safeguarded by some type of security proof (e.g., 

universal composability, where an ideal component can be replaced by a corresponding 

UC-secure one), while others may require a closer look (e.g., because of a somewhat distinct 

interface) but still provide a conceptual simplification that eases the analysis.
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6. Conclusions

This document has discussed  threshold signature schemes interchangeable w.r.t. the Ed-

DSA verification specified in Draft FIPS 186-5. These threshold signatures allow for a 

drop-in replacement of conventional (non-threshold) EdDSA signatures, being compatible 

with legacy code for signature verification. Compared to conventional implementations, a 

threshold signature scheme enables a distribution of trust regarding the secrecy of the private 

signing key. The threshold setting additionally allows for better implementation security 

w.r.t. concerns of bad randomness and side-channel attacks (see Table 9).

Table 9. Types of signature vs. concern — informal assessment

  Signature
 mode

 Nonce
 generation

 Attack of
 Concern

 Informal assessment

  Conventional  Threshold


 Deterministic  Pseudorandom

 Bias Not applicable Not applicable

  Side channel More vulnerable Safer


 Probabilistic  Randomized

 Bias Vulnerable Safer

  Side channel Less vulnerable Safer


 Hybrid

 Bias Not applicable Not applicable

  Side channel Less vulnerable Safer

The use of “Less” and “More” preceding “vulnerable” is only for comparison within the side-channel attack 
concern. Each “Safer” is meant in comparison with the assessment of the conventional setting in the same row. 
In the threshold setting, the assessment does not relate to the corruptibility of individual parties, but rather to 
unforgeability property when assumed that the number of corrupted parties is within the allowed threshold. This 
informal table is meant only to provide intuition; more context is needed for formal conclusions about each 
concrete signature scheme. 













6.1. Comparing probabilistic and deterministic threshold EdDSA

There is a wide design space for threshold signature schemes interchangeable w.r.t. FIPS-

specified EdDSA verification. This includes schemes that produce deterministic signatures 

(though not verifiably-deterministic) and also probabilistic schemes. Considering the di-

versity of approaches and tradeoffs, it would be beneficial to devise recommendations or 

guidance, to facilitate the secure deployment of threshold signatures. This should involve 

a more thorough analysis and refined characterization of the potential space, aided by the 

broader community of cryptography experts.

Threshold deterministic EdDSA signatures may be useful in some niche cases, but they tend 

to be considerably less efficient than threshold probabilistic schemes. If an application re-

quires ECC-based deterministic signatures interchangeable w.r.t. FIPS-specified verification, 
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then the threshold setting provides an interesting mitigation against the lack of verifiable 

determinism. A protocol can be devised so that determinism stems from the coverage of the 

threshold corruption assumption, though this determinism remains unverifiable.

Deterministic threshold schemes that require a distributed SHA-based nonce computation 

are prone to an inefficient protocol. Other approaches that calculate a deterministic secret 

nonce using MPC/ZKP-friendly hashes can reduce the cost. In the setting of threshold 

signature schemes interchangeable w.r.t. EdDSA-verification, the probabilistic approach 

enables schemes that may be simpler and more efficient than deterministic ones. Intuitively, 

the probabilistic approach is natural for threshold Schnorr-style schemes, taking advantage 

of homomorphic properties already innate to the signature scheme elements.

Compared to probabilistic Schnorr/EdDSA schemes in the conventional setting, the threshold 

setting enables schemes that may be less vulnerable to biased random number generators. 

Additional assurance can come from utilizing a hybrid mode of nonce generation (see 

Section 3.5), which is possible in both conventional and threshold settings. It can be 

straightforwardly employed to enhance a prior use of pure randomness, by additionally 

applying a pseudorandom transformation, while retaining high efficiency.

The comparison between probabilistic and deterministic approaches can further depend 

on the application setting and intended features. For example, the resharing of a secret-

shared private nonce-derivation key (only needed for the deterministic approach) may be 

substantially more difficult than that of the private signing key.

The mentioned features make probabilistic EdDSA well aligned for consideration by NIST, 

as framed in Draft FIPS 186-5 when expressing (page 5, end of item 3) that “additional digital 

signature schemes may be specified and approved in FIPS publications or in NIST Special 

Publications.” Interestingly, Draft FIPS 186-5 already specifies probabilistic ECC-based 

signatures in the form of probabilistic ECDSA (which is more difficult to thresholdize). The 

consideration of probabilistic EdDSA for the threshold setting warrants a thorough analysis, 

as can take place based on a public call for threshold signature schemes interchangeable 

with EdDSA verification. The resulting analysis may clarify the potential and feasibility for 

adoption of threshold schemes for EdDSA.

6.2. State of the art and beyond

The state of the art in threshold schemes has come a long way, including progress in recent 

years with newly proposed schemes, and a better understanding of security (namely in the 

concurrent setting). At the same time, there remain worthwhile directions for future work. 

The following list summarizes possible features that could benefit from further attention 

from the community. While these are not necessary in order to have useful threshold 

signatures, they may have utility for some applications.

1. Leveraging good randomness. Schemes that leverage the good randomness from 

some participating honest parties, being secure even if other “well behaved” parties 
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(beyond the corruption threshold) have bad randomness (see §5.4).

2. Authenticated channels with real keys. A threshold scheme whose authenticated 

channels during the signing phase are based on signatures (possibly EdDSA/Schnorr) 

whose keys are determined in the (possibly augmented) keygen phase (see §5.3.2). 

Such a composition requires careful security analysis.

3. Shared I/O. Threshold signing where the parties do not get to learn the message 

being signed or/nor the produced signature (see §5.3.1).

4. Adaptive simulatability. An efficient/practical simulatable threshold scheme with 

proven strong unforgeability against adaptive corruptions, possibly in the constructive 

cryptography sense (see §5.2.3).

5. Auditability. Protocols that generate an auditable proof that the signature was indeed 

produced by a valid threshold interaction (see §5.3.1).

6.3. Recommendation for a public call for threshold EdDSA schemes

A public call for threshold signature schemes interchangeable with the standardized Draft 

FIPS 186-5 EdDSA verification could be of great benefit. It would seek to collect reference 

implementations, accompanied by technical explanation and security analysis. The scope 

would include threshold schemes for probabilistic signatures, as well as those with pseudoran-

dom nonce generation. Such a call would need to provide baseline criteria [Call2021a], such 

as requiring a proof of active security with a minimum requirement of strong unforgeability. 

It should also be flexible to allow submissions across various ranges of number of parties 

and thresholds, security formulations (see Section 5.2), and system models (see Section 5.3). 

Ideally, the distributed computation would be based on cryptographic assumptions close to 

those required for EdDSA security, such as discrete-log and hash-related assumptions. Natu-

rally, the interest on threshold schemes includes those for other NIST-approved key-based 

cryptographic primitives, including RSA, ECDSA and AES.

Besides the keygen and signing phases, it is useful to consider secret-resharing for proactive 

security, possibly also allowing dynamic change of the threshold parameters and number 

of parties. The envisioned call should recommend submissions to be described and imple-

mented with modularity w.r.t. building blocks (gadgets) that are likely reusable by other 

schemes, or that can have different internal instantiations while having a similar interface. 

The security analysis should describe the security fall-back guarantees or breakdown when 

some of the operational requirements are not met (e.g., exceeded corruption threshold, 

asynchrony or non-reliable message transmission).
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