Close Window. Close Window. Thank you for choosing to subscribe to the eTOC for Medicine & Sc... more Close Window. Close Window. Thank you for choosing to subscribe to the eTOC for Medicine & Science in Sports & Exercise. Enter your Email address: Wolters Kluwer Health may email you for journal alerts and information, but ...
Lateral ankle sprains (LAS) are common injuries in athletics and daily activity. Although most ar... more Lateral ankle sprains (LAS) are common injuries in athletics and daily activity. Although most are resolved with conservative treatment, others develop chronic ankle instability (AI)—a condition associated with persistent pain, weakness, and instability—both mechanical (such as ligamentous laxity) and functional (neuromuscular impairment with or without mechanical laxity). The predominant theory in AI is one of articular deafferentation from the injury, affecting closed-loop (feedback/reflexive) neuromuscular control, but recent research has called that theory into question. A considerable amount of attention has been directed toward understanding the underlying causes of this pathology; however, little is known concerning the neuromuscular mechanisms behind the development of AI. The purpose of this review is to summarize the available literature on neuromuscular control in uninjured individuals and individuals with AI. Based on available research and reasonable speculation, it seems that open-loop (feedforward/anticipatory) neuromuscular control may be more important for the maintenance of dynamic joint stability than closed-loop control systems that rely primarily on proprioception. Therefore, incorporating perturbation activities into patient rehabilitation schemes may be of some benefit in enhancing these open-loop control mechanisms. Despite the amount of research conducted in this area, analysis of individuals with AI during dynamic conditions is limited. Future work should aim to evaluate dynamic perturbations in individuals with AI, as well as subjects who have a history of at least one LAS and never experienced recurrent symptoms. These potential findings may help elucidate some compensatory mechanisms, or more appropriate neuromuscular control strategies after an LAS event, thus laying the groundwork for future intervention studies that can attempt to reduce the incidence and severity of acute and chronic lateral ankle injury.
Close Window. Close Window. Thank you for choosing to subscribe to the eTOC for Medicine & Sc... more Close Window. Close Window. Thank you for choosing to subscribe to the eTOC for Medicine & Science in Sports & Exercise. Enter your Email address: Wolters Kluwer Health may email you for journal alerts and information, but ...
Lateral ankle sprains (LAS) are common injuries in athletics and daily activity. Although most ar... more Lateral ankle sprains (LAS) are common injuries in athletics and daily activity. Although most are resolved with conservative treatment, others develop chronic ankle instability (AI)—a condition associated with persistent pain, weakness, and instability—both mechanical (such as ligamentous laxity) and functional (neuromuscular impairment with or without mechanical laxity). The predominant theory in AI is one of articular deafferentation from the injury, affecting closed-loop (feedback/reflexive) neuromuscular control, but recent research has called that theory into question. A considerable amount of attention has been directed toward understanding the underlying causes of this pathology; however, little is known concerning the neuromuscular mechanisms behind the development of AI. The purpose of this review is to summarize the available literature on neuromuscular control in uninjured individuals and individuals with AI. Based on available research and reasonable speculation, it seems that open-loop (feedforward/anticipatory) neuromuscular control may be more important for the maintenance of dynamic joint stability than closed-loop control systems that rely primarily on proprioception. Therefore, incorporating perturbation activities into patient rehabilitation schemes may be of some benefit in enhancing these open-loop control mechanisms. Despite the amount of research conducted in this area, analysis of individuals with AI during dynamic conditions is limited. Future work should aim to evaluate dynamic perturbations in individuals with AI, as well as subjects who have a history of at least one LAS and never experienced recurrent symptoms. These potential findings may help elucidate some compensatory mechanisms, or more appropriate neuromuscular control strategies after an LAS event, thus laying the groundwork for future intervention studies that can attempt to reduce the incidence and severity of acute and chronic lateral ankle injury.
Uploads
Papers by Gregory Gutierrez