A Heat Method for Generalized Signed Distance

For different diffusion times, our method effectively interpolates between the "linear" prior used by the pseudonormal test (as $t\rightarrow 0$) and the "harmonic" prior used by generalized winding numbers (as $t\rightarrow \infty$).

Left: Methods based on convex optimization yield more accurate distances, but compute only unsigned distance. Right: Using our method as a warm start, we can "sharpen" distance while preserving the inside-outside classification. Here we start with a large diffusion time ($t = 100h^2$) to visually emphasize the effect.

Nicole Feng, Keenan Crane Carnegie Mellon University

In Step 1, we use the edge-based Crouzeix-Raviart basis functions, which makes it straightforward to discretize curve sources, and enables a purely intrinsic formulation. We identify tangent vectors with complex numbers. In Step 3, we use basis functions at vertices, so we obtain distance values at vertices.

Our algorithm works out-of-the-box on non-manifold, non-orientable, and self-intersecting domains; and fails gracefully in the presence of significant topological, geometric, or orientation errors in the source geometry. Errors ε in geodesic distance are displayed relative to the exact polyhedral SDF of a finely sampled version of the original curve.

simultaneous fitting of multiple level sets soft level set constraints

Theory

Discretization

Optional extensions

before sharpening after sharpening convex solve convex formulation signed heat method

aligns with the vector obtained via parallel transport along a minimal As diffusion time $t\rightarrow 0$, the diffused vector $X_t(x)$ at each point $x \in M$ geodesic γ of the normal $N(\overline{x})$ at the closest point $\overline{x} \in \Omega$. [Berline et al. 1992, Theorem 2.30].

Since parallel transport along geodesics preserves tangency, this vector will be tangent to y – and since traveling along y is the quickest way back to Ω , it is parallel to the unsigned distance gradient. Since we transport oriented normals, we get the correct sign. We can hence normalize X_t to obtain an approximation $Y_t := X_t / ||X_t||$ of the signed distance gradient.

