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Abstract: Inspired by the adaptation phenomenon of neuronal firing, we propose the regularity
normalization (RN) as an unsupervised attention mechanism (UAM) which computes the statistical
regularity in the implicit space of neural networks under the Minimum Description Length (MDL)
principle. Treating the neural network optimization process as a partially observable model selection
problem, the regularity normalization constrains the implicit space by a normalization factor, the
universal code length. We compute this universal code incrementally across neural network layers
and demonstrate the flexibility to include data priors such as top-down attention and other oracle
information. Empirically, our approach outperforms existing normalization methods in tackling
limited, imbalanced and non-stationary input distribution in image classification, classic control,
procedurally-generated reinforcement learning, generative modeling, handwriting generation and
question answering tasks with various neural network architectures. Lastly, the unsupervised
attention mechanisms is a useful probing tool for neural networks by tracking the dependency and
critical learning stages across layers and recurrent time steps of deep networks.

Keywords: neuronal coding; biologically plausible models; minimum description length; deep neural
networks; normalization methods

1. Introduction

The Minimum Description Length (MDL) principle asserts that the best model given
some data is the one that minimizes the combined cost of describing the model and de-
scribes the misfit between the model and data [1] with a goal to maximize regularity
extraction for optimal data compression, prediction and communication [2]. Most unsu-
pervised learning algorithms can be understood using the MDL principle [3], treating the
neural net (NN) as a system communicating the input to a receiver.

If we consider the neural network training as the optimization process of a commu-
nication system, each input at each layer of the system can be described as a point in a
low-dimensional continuous constraint space [4]. If we consider the activations from each
layer of a neural network as the population codes, the constraint space can be subdivided into
the input-vector space, the hidden-vector space, and the implicit space, which represents the
underlying dimensions of variability in the other two spaces, i.e., a reduced representation of
the constraint space. For instance, if we are given an image of an object, the rotated or scaled
version of the same image still refers to the same objects, then each instance of the object can
be represented by a code assigned position on a 2D implicit space with one dimension as
orientation and the other as size of the shape [4]. The relevant information about the implicit
space can be constrained to ensure a minimized description length of the networks.

In this paper, we adopt a similar definition of implicit space as in [4], but extend it
beyond unsupervised learning, into a generic neural network optimization problem in
both supervised and unsupervised settings [5]. In addition, we consider the formulation
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and computation of description length differently. Instead of considering neural networks
as population codes, we formulate each layer of neural networks during training a state
of model selection. In our setup, the description length is computed not in the scale of
the entire neural networks, but by the unit of each layer of the network. In addition,
the optimization objective is not to minimize the description length, but instead, to take
into account the minimum description length as part of the normalization procedure
to reparameterize the activation of each neurons in each layer. The computation of the
description length (or model cost as in [4]) aims to minimize it, while we directly compute
the minimum description length in each layer not to minimize anything, but to reassign the
weights based on statistical regularities. Finally, we compute the description length by an
optimal universal code obtained by the batch input distribution in an online incremental
fashion. This model description serves both as a normalization factor to speed up training
and as a useful lens to analyze the information propagation in deep networks. As this
approach offers internal regularization across layers to emphasize the gradients of a subset
of activating units, acting as a saliency filter over activations, we call this framework the
Unsupervised Attention Mechanism (UAM, see Figure 1).

Our main contribution is two-fold: (1) From the engineering perspective, the work
offers a performance improvement of numerical regularization in a imbalanced input
data distribution; (2) More importantly, from the analytical perspective, we consider the
proposed method a novel way of analyzing and understanding the deep networks during
training, learning and failing, beyond its empirical advantages on the non-stationary task
setting in the result section. The main point is not simply about beating the state-of-the-art
normalization method with another normalization, but more to offer a new perspective
where people can gain insights of the deep network in action—through the lens of model
complexity characterized by this normalization factor the model computes along the way.
On the subsidiary numerical advantage of the proposed method, the results suggest that
combining regularity normalizations with traditional normalization methods can be much
stronger than any method by itself, as their regularization priors are in different dimensions
and subspaces.

raw activation

unsupervised attention

Cc (cpannels or fegtures)

Layer 1 Layer 2 Layer 3 Layer n
L (layers or recurrent time depth)

Figure 1. Unsupervised attention mechanism computes and normalizes regularity sequentially
across layers.

2. Related Work
2.1. Neuroscience Inspirations

In the biological brains of primates, high-level brain areas are known to send top-down
feedback connections to lower-level areas to encourage the selection of the most relevant
information in the current input given the current task [6], similar to the communication
system above. This type of modulation is performed by collecting statistical regularity
in a hierarchical encoding process between these brain areas. One feature of the neural
coding during the hierarchical processing is the adaptation: in vision neuroscience, vertical
orientation reduce their firing rates to that orientation after adaptation [7], while the cell
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responses to other orientations may increase [8]. These behaviors contradict to the Bayesian
assumption that the more probable the input, the larger firing rate should be, but instead,
well match the information theoretical point-of-view that the most relevant information
(the saliency), which depends on the statistical regularity, have higher “information”, just
as the firing of the neurons. As [9] hypothesizes that the firing rate represents the code
length instead of probability, similarly, the more regular the input features are (e.g., after
adaption), the lower it should yield the activation, thus a shorter code length of the model
(a neuron or a population).

One distinction should be noted between developing computational models to infer
neurobiological functions and developing neuroscience-inspired algorithms for engineering
problems. This study is an example of the latter. It is known that the working manner
of the neuroscience in human brain is not unsupervised in most cases, especially in the
events of top-down control and task-driven behaviors. For instance, supervised learning
models, such as pretrained deep neural networks, are considered a candidate model in
various behavioral tasks, such as recognizing images [10,11]. The evolutionary and learning
processes of biological brains are also commonly studied in the reinforcement learning
domain [12,13]. The inspiration we primarily draw from neuroscience to this work, is the
bottom-up neuronal firing patterns driven by regularity. As a result, the proposed method
consists of an unsupervised attention mechanism. Despite this distinction, in later section
we will introduce the flexibility for the proposed methods to include supervised signals
and feedbacks, as a data prior for saliency extraction and top-down attention.

2.2. Normalization Methods in Neural Networks

The batch normalization (BN) performs a global normalization along the batch dimen-
sion such that for each neuron in a layer, the activation over all the mini-batch training
cases follows standard normal distribution, reducing the internal covariate shift [14]. Simi-
larly, the layer normalization (LN) performs a global normalization over all the neurons
in a layer, and have shown effective stabilizing effect in the hidden state dynamics in
recurrent networks [15]. The weight normalization (WN) applies the normalization over
the incoming weights, offering computational advantages for reinforcement learning and
generative modeling [16]. Like batch normalization and layer normalization, we apply the
normalization on the activation of the neurons, but as an element-wise reparameterization
(over both the layer and batch dimension), which we term the regularity normalization
(RN). In Section 5.2, we also propose several variants of our approach with batch-wise and
layer-wise reparameterization, such as the regularity batch normalization (RBN) and the
regularity layer normalization (RLN).

2.3. Description Length in Neural Networks

Ref. [17] first introduces the description length to quantify the simplicity of neural
networks and develop an optimization method to minimize the amount of information
required to communicate the weights of the neural network. Ref. [4] considers the neural
networks as population codes and uses the MDL to develop highly redundant population
code. They show that by assuming the hidden units reside in low-dimensional implicit
spaces, optimization process can be applied to minimize the model cost under MDL
principle. Our proposed method adopts a similar definition of implicit space, but considers
the implicit space as the data-dependent encoding statistical regularities. Unlike [4,17],
we consider the description length as a indicator of the data input and assume that the
implicit space is constrained when we normalize the activation of each neurons given
its statistical regularity. Ref. [18] computes the codelength of the entire network and
showed that variational methods are ineffective to compute network complexity. Unlike
[18], we approximate the codelength across each pairs of the neural network layers with an
incremental formulation.
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2.4. Attention Maps

One of the main question addressed in this paper is how to create an attention map
to obtain an optimal and efficient model. Previous work have proposed useful methods
like the self-attention [19] or pruning [20,21], where the attention maps are usually learned
given an objective function. Our work is related to the residual attention network [22]
which stacks attention modules to create an interaction between features and attention masks.
Similar to this motivation, we instead propose to use layer-specific activation regularity to
create residual attention. Likewise, these layer-specific attention maps change adaptively as
the layers go deeper. Dual attention network is another related model architecture which
computes attention on both the spatial and channel dimensions [23]. Similar to their work, the
attention (in our case, the regularity) can be computed element-wise, batch-wise or layer-wise
depending on the tasks. The attention can also be utilized in temporal dimension. For instance,
ref. [24] and its followup work [25,26] introduce a spatiotemporal attention mechanism in
recurrent neural networks that can dynamically refine the observed motion information
in group activity recognition and skeleton joint modeling. In Section 6.2, we demonstrate
the flexibility to also apply the regularity attention to the unfolded time steps in recurrent
networks. Unlike these related works, in this work we compute the unsupervised attention
maps by directly estimating the minimum description length given the network states without
post hoc optimization from the loss, in a process driven only by the law of parsimony. Self-
attention is also effectively studied in unsupervised regimes in natural language domain (e.g.,
masked language model). This unsupervised property distinguishes our method with most
attention mechanisms in many other machine learning domains.

3. Background
3.1. Minimum Description Length

Given a model class @ consisting of a finite number of models parameterized by
the parameter set §. Given a data sample x, each model in the model class describes a
probability P(x|6), as the probability of observing a data sample x given the model param-
eter 6, with its code length computed as —log P(x|6). The minimum code length given
any arbitrary § would be given by L(x|6(x)) = —log P(x|d(x)) with model 8(x) which
compresses data sample x most efficiently and offers maximum likelihood P(x|6(x)) [2].
However, the compressibility of the model, computed as the minimum code length, can be
unattainable for multiple non-i.i.d. data samples as individual inputs, as the probability
distributions of most efficiently representing a certain data sample x given a certain model
class can vary from sample to sample. The solution relies on the existence of a universal
code, P(x) defined for a model class ©, such that for any data sample x, the shortest code
for x is always L(x|f(x)), as shown in [27].

3.2. Normalized Maximum Likelihood

The minimum description length problem is often addressed by trying to find the
model that is “closet” to the true distribution f(-) in some well-defined sense. To select for
a proper optimal universal code, a cautious approach would be to assume a worst-case
scenario in order to make “safe” inferences about the unknown world. Formally, the worst-

case expected regret is given by R(p||®) = max, E4[In f S‘(fj*) |, where p(-) and the “worst”

distribution g(-) is allowed to be any probability distribution [28]. Without referencing the
unknown truth, [27] formulates finding the optimal universal distribution as a mini-max

f(x\éx)

problem of computing p* = arg min, max, E4[In ) |, the coding scheme that minimizes

the worst-case expected regret. Among the universal codes, the normalized maximum
likelihood (NML) probability minimizes the worst-case regret and avoids assigning an
arbitrary distribution to ®. The minimax optimal solution is given by [29]:

P(x|6(x)

S L o 1
T P [()) @

Pnmr(x)
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where the summation is over the entire data sample space (i.e., all possible data sample,
hence x'). Figure 2 describes the optimization problem of finding optimal model P(x;|6;)
given the data sample x; among model class ®. The models in the class, P(x|6), are
parameterized by the parameter set 6. x; are data sample from data X. With this distribution,
the regret is the same for all data sample x given by [2]:

COMP(®) = regretNmL
= —log Pym(x) +log P(x6(x)) 2)
= logZP(x’I (x'))

which computes the log of the denominator in Equation (1) in its expanded form. The
COMP defines the model class complexity, as it indicates how many different data samples
can be well explained by the model class ©.

Figure 2. Normalized maximal likelihood. In this illustration, data sample x; are drawn from the
entire data distribution X and model §; is the optimal model that describes data x; with the shortest
code length. ¢; is an arbitrary model that is not 63, so P(x3 |0;) is not considered when computing
optimal universal code according to Equation (1).

4. Neural Networks as Model Selection

In the neural network setting where the optimization process is performed in batches
(as incremental data sample x; with i denoting the batch i), the model selection process is
formulated as a partially observable problem (as in Figure 3 and [5]). The generative model
P(x¥|6¥) is the function parameterized by 6 that maps from xf ! (input layer k — 1) to x¥
(the activations of layer k) at training time i. Herein to illustrate our approach, we consider a
feedforward neural network as an example, without loss of generalizability to other model
architectures (such as convolutional layers or recurrent modules). x;‘ refers to the activation

at layer k at time point i (the batch 7). 6% is the parameters that describes xf-{ (i.e., weights
for layer k — 1) optimized after i — 1 steps (seen batches 0 through i — 1). Because one
cannot exhaust the search among all possible 6, by definition of the optimization process

via gradient descent, we assume that the optimized parameter 6% at time step i (having

seen batch 0 through i — 1) is the optimal model P(x¥|6¥) for the seen data sample x¥. Take
layer k as our target of study, in later notations we will drop the superscript k to simply the
formulation, without loss of generality to other layers or computing modules. To continue,
we generalize the optimal universal code with the normalized maximum likelihood (NML)
formulation:
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P(xi|éi(xi))
P i) = - A 3
NMmL (%) j—o P(x110;(x))) )

where 8;(x;) refers to the model parameter already optimized for i — 1 steps and have seen
sequential data sample x( through x;_1. This distribution is updated every time a new data
sample is fed, and can thus be computed incrementally in batches.

normalize to be summed to 1

Batch 0,1 =0 Batch 1,t =1 Batch 2, t =2

input input input
% ; i |
) ol s b
P(x}/6}) P(ai]oh) P(x}/6})

2
@ more batches...

P(a3]63) P(a3]6?) P(a3]63)
G e %
" '
P(]6}) P(aileh)—|  Pil6})

-
- 2
- W

Figure 3. Model selection process in neural network. If we consider each time step of the optimiza-
tion (drawn here to be batch-dependent) as the process of choose the optimal model from model
class ®F for the kth layer (or the kth computing module) of the neural networks, the optimized
parameter 92‘ with subscript i as time step ¢ = 7 and superscript k as layer k can be assumed to be the
optimal model among all models in the model class @. The normalized maximum likelihood can be
computed by choosing P(xi-‘ |9Alk ), the “optimal” model with shortest code length given data xi.‘, as the
summing component in normalization.

Choice of optimization methods: The proposed framework is agnostic to the optimization
methods and feedback signals due to its unsupervised nature. Therefore, most neural
network training methods should be by default compatible to this model selection setting
and the undermentioned normalization methods within the framework. For the empirical
evaluations in the following sections, we use the stochastic gradient descent as neural net
optimization method by convention.

Disclaimer and theoretical gaps: In traditional model selection problems, the MDL can be
regarded as ensemble modeling process and usually involves multiple models. However, in
our neural network problem, we assume that the only model trained at each step is the local
“best” model learned so far, i.e., a partially observable model selection problem. This implies
that the local maximal likelihood may not be a global best solution for model combinations,
because the generation of optimized parameter set for a specific layer currently adopts
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greedy approach, such that the model selection could be optimized for each step. This
assumption loosely links the computed regularity with, (if not eventually converges to),
the MDL in theory. We don’t claim the computed universal code in our framework is an
exact MDL metric, but instead, only provide it as a useful measure of the model complexity
and code length of the network layers. Further theoretical work is worth pursuing to
demonstrate whether this greedy approach converges to the best global selection.

5. The Unsupervised Attention Mechanism
5.1. Standard Case: Regularity Normalization

We first introduce the standard formulation of the unsupervised attention mechanism,
the regularity normalization (RN). As outlined in Algorithm 1, the input is the activation of
each neurons in certain layer and batch. Parameters COMP and 0 are updated after each
batch, through the incrementation in the normalization and optimization in the training
respectively. As the numerator of Py, at this optimization step 7 of the normalization, the
term P(x;|0;(x;)) is computed to be stored as a log probability of observing sample x; in
N(pi_1,0i_1), the normal distribution with the mean and standard deviation of all past
data sample history (xg, x1, - - - , X;_1), with a prior for P(x|f(x)). For numerical evaluations,
here we select a Gaussian prior based on the assumption that each x is randomly sampled
from a Gaussian distribution, and the parameter sets from model class ©® are Gaussian
before nonlinear activation functions, but the framework can theoretically work with any
arbitrary prior. We discuss this Gaussian assumption and provided an extension with other
priors (see Appendix A for a possible extension).

As in Equation (2), COMP is the denominator of Py, taken log, so the “increment”
function takes in COMP storing Z;;é P(x; |ét(xj)) and the latest batch of P(x;|6;(x;)) to be
added in the denominator, stored as COMP;, 1. The “increment” step involves computing
the log sum of two values, which can be numerically stabilized with the log-sum-exp
(LSE, also known as RealSoftMax) numerical trick conventionally used in machine learning
optimization [30]. In continuous data streams or time series analysis, the incrementation
step can be replaced by integrating over the seen territory of the probability distribution A’
of the data. The normalization factor is then computed as the shortest code length L given
the normalized maximum likelihood, the universal code distribution in Equation (3).

Figure 4 is a flowchart outlining the training and testing pipelines with the regularity-
based methods installed. In the training phase, the data are fed in batches, and after
each layer is activated, the activations are reparameterized by the normalizations with
Algorithm 1 before feeding into the next layer. Since the regularity computation has no
trainable parameters, the optimization (e.g., stochastic gradient descent) acts on all neural
net parameters except for the ones in the regularity modules. As a result, the regularity-
based modules doesn’t require pretraining or optimization. In the testing phase, the
regularity modules are turned off.

Algorithm 1 Regularity Normalization (RN)

Input: x over a mini-batch: B = {xq,---,xu};
Parameter: COMP;, 6;

Output: y; = RN(x;) A
COMP; 1 = log(exp(COMP;) + P(x;|6¢(x;)))
Ly, = COMP,,; — log P(x;|0:(x;))

Yi = Ly, *x;
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Figure 4. Training and testing pipelines with regularity-based normalizations: The flowchart
outlines the three possible tracks with the regularity-based methods installed. In the training phase,
the data is fed in batches, and after each layer is activated, the activations are reparameterized by the
normalizations before feeding into the next layer. The optimization (e.g., stochastic gradient descent)
acts on all neural net parameters except for the ones in the regularity modules. The regularity-based
modules doesn’t require pretraining or optimization. In the testing phase, the regularity modules are
turned off. When certain priors are available, the top-down attention can serve as a useful input into
the regularity modules, as illustrated in the orange track for the saliency normalization.

5.2. Variant: Saliency Normalization

The normalized maximum likelihood distribution can be modified to also include a

data prior function, s(x), given by [31] as Pypp(x) = %’m, where the data prior

function s(x) can be anything, ranging from the emphasis of certain inputs, to the cost
of certain data, or even the top-down attention. For instance, we can introduce the prior
knowledge of the fraction of labels (say, in an imbalanced data problem where the oracle
informs the model of the distribution of each label in the training phase); or in a scenario where
we wish the model to focus specifically on certain feature of the input, say certain texture or
color (just like a convolution filter); or in the case where the definition of the regularity drifts
(such as the user preferences over years): in all these possible applications, the normalization
procedure can be more strategic given these additional information. We formulate this
additional functionality into regularity normalization, to be the saliency normalization (SN),
where Py is incorporated with a pre-specified data prior s(x). As illustrated in the orange
track of Figure 4, when data priors are available, the top-down attention can serve as a useful
input into the regularity modules for the saliency normalization.
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5.3. Variant: Beyond Elementwise Normalization

In our current setup, the normalization is computed elementwise, considering the implicit
space of the model parameters to be one-dimensional (i.e., all activations across the batch and
layer are considered to be represented by the same implicit space). Instead, the definition of
the implicit can be more than one-dimensional to increase the expressibility of the method,
and can also be user-defined. For instance, we can also perform the normalization over the
dimension of the batch, such that each neuron in the layer should have an implicit space
to compute the universal code. We term this variant the regularity batch normalization
(RBN). Similarly, we can perform regularity normalization over the layer dimension, as the
regularity layer normalization (RLN). These two variants have the potential to inherit the
innate advantages of the batch normalization and the layer normalization.

6. Demonstration: The Unsupervised Attention Mechanism as a Probing Tool

In this section, we provide a tutorial of how the unsupervised attention mechanism
can be applied to understand how neural networks route relevant information during the
learning process. We train two types of deep networks on the simple image classification
problem with MNIST. In both experiments, training, validation and testing sets are shuffled
into 55,000, 5000, and 10,000 cases. Batch size is set to 128. For optimization, stochastic
gradient decent is used with learning rate 0.01 and momentum set to be 0.9. In both cases,
we train the task to mastery (over 97%) for the vanilla feedforward and recurrent neural
networks over 10 epochs. We record the change of the approximated minimum description
length COMP (computed incrementally from the optimal universal code in Equation (3)) of
each layer over the entire training time (time stamped by batches).

6.1. Over Different Layers in the Feedforward Neural Networks (FFNN)

In this analysis, we consider the classical 784-1000-1000-10 feedforward neural network,
two hidden layers with ReLU activation functions. We compute the model code length of
each layer of the network (fc; and fcy) with respect to the last layer’s input. Figure 5A-C
demonstrate the change of model complexity over training time. We observe that the model
complexities increases smoothly and then gradually converges to a plateau, matching the
information bottleneck hypothesis of deep networks. The COMP for the later (or higher) layer
seems to be having a higher model complexity in the start, but after around 600 iterations,
the earlier (or lower) layer seems to catch up in the model complexities. Comparing COMP
curves of the neural nets with or without the proposed regularity normalization, we observe
that the regularization appeared to implicitly impose a constraint to yield a lower model
complexity in the earlier layers than the later layers. These behaviors are in need of further
theoretical understanding, but in the next section, our empirical results suggest a benefit of
this regularization on the performance across a variety of tasks.
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Figure 5. Unsupervised attention mechanism as a probing tool: In this demonstration, a classical
784-1000-1000-10 feedforward neural network (FFNN) and a vanilla recurrent neural network (RNN)
with 100 hidden units over 5 time steps are trained for the MNIST classification task. The COMP
of each layers (or unfolded layers in the recurrent time steps) are recorded throughout the training
process. (A,B) are the COMP dynamics recorded for the fully-connected layers 1 and 2 in the
feedforward networks without (A) or with (B) the regularity normalization. (C) The difference
of COMP between the fully-connected layer 1 and 2 in the neural network with or without the
regularity normalization. (D) The COMP difference between adjacent unfolded layers (time steps)
in the recurrent neural network. (E) The COMP difference between adjacent unfolded layers (time
steps) in the recurrent neural network with the regularity normalization.

6.2. Over Recurrent Time Steps in the Recurrent Neural Networks (RNN)

In this analysis, we consider a vanilla recurrent neural networks with 100 hidden units
over 5 time steps with tanh activation functions. We computed the minimum description
length of each time-unfolded layer of the recurrent network (r; to r5) with respect to the last
time-unfolded layer’s input. Similarly, we compare the COMP of each unfolded layers with
respect to their input in the two networks, one with the regularity normalization installed
at each time step (or unfolded layer), and one without the regularity normalization, i.e., the
vanilla network. Since an unfolded recurrent network can be considered equivalent to a
deep feedforward network, in this analysis, we wish to understand the effect of regularity
normalization on the recurrent network’s layer-specific model complexity beyond the effect
on a simply deeper feedforward neural net. We consider a recurrent unit to be also adapting
to the statistical regularity not only over the training time dimension, but also the recurrent
unfolded temporal dimension. In another word, we consider the recurrent units at different
recurrent time step to be the same computing module at a different state in the model selection
process (i.e., the same layer in Figure 3). Therefore, instead of keeping track of individual
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histories of the activations at each step, we only record one set of history for the entire recurrent
history (by pooling all the activations from 0 to the current recurrent time steps).

As in Figure 5C,D, we observe that both networks adopts a similar model complexity
progression. Unlike the traditional understanding of the asynchronous learning stages for
different recurrent time steps, this analysis suggests that the change of the model complexity
COMP during learning over different recurrent time steps are relatively universal. The
model complexity of earlier time step (or earlier unfolded layer) seems to be much lower
than later ones, and the margins are decreasing over the recurrent time step. This recurrent
neural net appears to process the recurrent input in gradually increasing complexity until
a plateau. As expected, the proposed regularity normalization regularizes the complexity
assignments across recurrent time steps (as unfolded layers) such that the complexities of the
later time steps remain a relatively low level. Further analysis on the recurrent networks with
different architectures, multiple layers and different activations functions can enlighten more
insights on these behaviors. In the next section, we included an example where regularity
normalization improves the performance in recurrent generative modeling.

7. Empirical Results
7.1. The Imbalanced MNIST Problem with Feedforward Neural Network

As a proof of concept, we evaluate our approach on the MNIST task and compute
the classification errors as a performance metric. As we specifically wish to understand
the behavior where the data inputs are non-stationary and highly imbalanced, we create
an imbalanced MNIST benchmark to test seven methods: batch normalization (BN), layer
normalization (LN), weight normalization (WN), regularity normalization (RN) and its
three variants: the saliency normalization (SN) with data prior as class distribution, regular-
ity layer normalization (RLN) where the implicit space is defined to be layer-specific, and
LN+RN which is a combined approach where the regularity normalization is applied after
the layer normalization. Given the nature of the regularity normalization, it should better
adapt to the regularity of data distribution than others, tackling the imbalanced problem
by up-weighting the activation of the rare features and down-weighting dominant ones.

Experimental setting. The imbalanced degree n is defined as following: when n = 0, it
means that no classes are downweighted, so we term it the “fully balanced” scenario; when
n =1 to 3, it means that a few cases are extremely rare, so we term it the “rare minority”
scenario. When n = 4 to 8, it means that the multi-class distribution are very different, so
we term it the “highly imbalanced” scenario; when n = 9, it means that there is one or two
dominant classes that is 100 times more prevalent than the other classes, so we term it the
“dominant oligarchy” scenario. In real life, rare minority and highly imbalanced scenarios are
very common, such as predicting the clinical outcomes of a patient when the therapeutic
prognosis data are mostly tested on one gender versus the others. More details of the
setting can be found in the Appendix B.1.

Performance. Table 1 reports the test errors (in %) with their standard errors of the
eight methods in 10 training conditions over two heavy-tailed scenarios: labels with under-
represented and over-represented minorities. In the balanced scenario, the proposed
regularity-based method doesn’t show clear advantages over existing methods, but still
manages to perform the classification tasks without major deficits. In both the “rare
minority” and “highly imbalanced” scenarios, regularity-based methods performs the
best in all groups, suggesting that the proposed method successfully constrained the
model to allocate learning resources to the “special cases” which are rare and out of
normal range, while the BN and WN fail to learn it completely (ref. confusion matrices
in the Appendix B.2). We observe that, In certain cases, like n = 0, 8 and 9 (“balanced”
or “dominant oligarchy”), some of the baselines are doing better than RN. However,
that is expected because those are the three cases in the ten scenarios that the dataset is
more “regular” (or homogenous in regularity), and the benefit from normalizing against the
regularity is expected to be minimal. For instance, in the “dominant oligarchy” scenario, LN
performs the best, dwarfing all other normalization methods, likely due to its invariance to
data rescaling but not to recentering. However, as in the case of n = 8, LN + RN performs
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considerably well, with performance within error bounds to that of LN, beating other
normalization methods by over 30%. On the other hand, if we look at the test accuracy
results in the other seven scenarios, especially in the highly imbalanced scenarios (RN
variants over BN/WN /baseline for around 20%), they should provide promises in the
proposed approach ability to learn from the extreme regularities.

Table 1. Heavy-tailed scenarios: test errors (in %) of the imbalanced MNIST 784-1000-1000-10 task.

“Balanced” “Rare Minority” “Highly Imbalanced” “Dominant Oligarchy”
n=20 n=1 n=2 n=3 n=4 n=>5 n==~6 n=7 n=38 n=29
baseline ~ 4.80 4 0.15 1448 +028 23.74+0.28 32.80+£022 4201+045 51.99+£032 6086+0.19 70.81+040 80.67+£0.36 90.1240.25
BN 2.77 £0.05 12544030 21.774+£025 30.75+£030 40.67+045 49.96+046 59.08+070 6725+054 7655+1.41 80.54+238
LN 3.09 £0.11 8.78 £0.84 1422 4+0.65 20.62+146 2687+£097 3423+208 36.87+0.64 41.73+274 41.20+1.13 41.26 £1.30
WN 4.96 £0.11 14514+044 2372+0.39 3299+028 41.954+046 5210+030 60974018 70.87+0.39 80.76£0.36  90.1240.25
RN 4.91+0.39 8.61 £0.86 14.61+£058 19494045 2335+122 3384+1.69 4147+191 60464288 81.96+0.59 90.11+0.24
RLN 5.01£0.29 9.47 £1.21 12.324+0.56  22.17+£0.94 2376+156 3223+1.66 43.06+£356 57.30+6.33 8836+1.77 89.55+0.32
LN+RN 4.59 £0.29 8.41+1.16 1246 £0.87 17.25+1.47 25.65+£191 28.714+1.97 33.14+249 36.08+209 4454+174 8229+4.44
SN 7.00+0.18 1227 4+130 1612+1.39 2491+161 31.07+141 41.87+£178 52884209 6844+142 8334+1.85 82414230

We observe that LN also manages to capture the features of rare classes reasonably well
in other imbalanced scenarios, comparing to BN, WN and baseline. The hybrid methods
RLN and LN + RN both display excellent performance in imbalanced scenarios, suggesting
that combining regularity-based normalization with other methods is advantageous, as
their imposed priors are in different dimensions and subspaces. This also brings up an
interesting concept in applied statistics, the “no free lunch” theorem. LN, BN, WN and the
proposed regularity-based normalizations are all developed under different inductive bias
that the researchers impose, which should yield different performance in different scenarios.
In our case, the assumption that we make, when proposing the regularity-based approach,
is that in real life, the distribution of the encounter of the data samples are not necessarily
ii.d, or uniformly distributed, but instead follows irregularities unknown to the learner.
The data distribution can be imbalanced in certain learning episodes, and the reward
feedback can be sparse and irregular. This inductive bias motivates the development of
this regularity-based method.

The results presented here mainly deal with the short term domain to demonstrate
how regularity can significantly speed up the training. The long term behaviors tend to
converge to a balanced scenario since the regularities of the features and activations will
become higher (not rare anymore), with the normalization factors converging to a constant
in a relative sense across the neurons. As a side note, despite the significant margin of the
empirical advantages, we observe that regularity-based approach offers a larger standard
deviation in the performance than the baselines. We suspect the following reason: the
short-term imbalanceness should cause the normalization factors to be considerably distinct
across runs and batches, with the rare signals amplified and common signals tuned down;
thus, we expect that the predictions to be more extreme (the wrong more wrong, the right
more right), i.e., a more stochastic performance by individual, but a better performance
by average. We observe this effect to be smaller in the long term (when the normalization
factors converge to a constant relatively across neurons). Future further analysis might
help us fully understand these behaviors in different time scales (e.g., the converging
performance over 100 epochs).

Probing the network with the unsupervised attention mechanism. Figure 6A-C demonstrate
three steoretypical COMP curves in the three imbalanced scenarios. In all three cases, the
later (or higher) layer of the feedforward neural net adopts a higher model complexity.
The additional regularity normalization seems to drive the later layer to accommodate
for the additional model complexities due to the imbalanced nature of the dataset, and at
the same time, constraining the low-level representations (earlier layer) to have a smaller
description length in the implicit space. This behaviors matches our hypothesis how
this type of regularity-based normalization can extract more relevant information in the
earlier layers as inputs to the later ones, such that later layers can accommodate a higher
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complexity for subsequent tasks. Figure 6D,E compare the effect of imbalanceness on the
COMP difference of the two layers in the neural nets with or without RN. We observe that
when the imbalanceness is higher (i.e., n is smaller), the neural net tends to maintains a
significant complexity difference for more iterations before converging to a similar levels
of model complexities between layers. On the other hand, the regularity normalization
constrains the imbalanceness effect with a more consistent level of complexity difference,
suggesting a possible link of this stable complexity difference with a robust performance in
the imbalanced scenarios.

(A) _ (B) _ (©) ,
COMP (imbalanced n = 3) COMP (imbalanced n = 6) COMP (imbalanced n = 9)
6
4
ot o ol
= = =
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Figure 6. Probing the unsupervised attention mechanism in imbalanced MNIST: In the imbal-
anced MNIST task, we train a classical 784-1000-1000-10 feedforward neural network on the MNIST
where 7 classes out of the ten are downsampled to 1%. We record the COMP the two fully connected
(fc) layers of the neural network and compute the differences between the two (ACOMP). (A) The
COMP dynamics of the neural network when 3 classes are downsampled. (B) The COMP dynamics
of the neural network when 6 classes are downsampled. (C) The COMP dynamics of the neural
network when 9 classes are downsampled. (D) The difference of COMP between the two layers in
the neural net during training. (E) The difference of COMP between the two layers in the neural net
during training when regularity normalization (RN) is applied.

7.2. The Classic Control Problem in OpenAl Gym with Deep Q Networks (DQN)

We further evaluate the proposed approach in the reinforcement learning problem,
where the rewards can be sparse. For simplicity, we consider the classical deep Q network
(DQN) [32] and test it in the OpenAl Gym’s LunarLander and CarPole environments [33]
(see Appendix C.1 for the neural network setting and game setting). We evaluate five agents
(DON, +LN, +RN, +RLN, +RN+LN) by the final scores in 2000 episodes across 50 runs.

Performance. As in Figure 7A, in the LunarLander environment, DQN + RN (66.27 £ 2.45)
performs the best among all five agents, followed by DON + RN + LN (58.90 & 1.10) and
DOQN+RLN (51.50 + 6.58). All three proposed agents beat DON (43.44 £ 1.33) and DQN-LN
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(51.49 £ 0.57) by a large marginal. The learning curve also suggests that taking regularity into
account speed up the learning and helped the agents to converge much faster than the baseline.
Similarly in the CarPole environment, DQN + RN + LN (206.99 + 10.04) performs the best
among all five agents, followed by DON + RN (193.12 £ 14.05), beating DQN (162.77 4 13.78)
and DON + LN (159.08 & 8.40) by a large marginal (Figure 7D). These numerical results
suggests the proposed method has the potential to benefit the neural network training in
reinforcement learning setting. On the other hand, certain aspects of these behaviors are
worth further exploring. For example, the proposed methods with highest final scores do not
converge as fast as DON + LN, suggesting that regularity normalization resembles adaptive
learning rates which gradually tune down the learning as scenario converges to stationarity.
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0 8
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Figure 7. Performance and analysis in additional tasks: In the OpenAl gym environments, we train
the Deep Q Networks with or without different types of normalization methods. (A) The learning
curve of the score performance in LunarLander. (B) The COMP dynamics of different layers of
DOQN during the training in LunarLander. (B) The COMP dynamics of different layers of DQN with
regularity normalization during the training in LunarLander. (D) The learning curve of the score
performance in Carpole. (E) The regularization effect demonstrated by the COMP difference between
the fully-connected layers 1 (fc1) and 2 (fcy) in the local Q networks. (F) The complexity trade-off
demonstrated by the the COMP of fc; vs. fcp. (G) The performance in the generative modeling of
MNIST dataset with the Deep Recurrent Attentive Writer (DRAW) with or without different types of
normalization methods, demonstrated by the KL divergence loss of across training epochs. (H,I) are
the accuracy performance of the Graph Gated Neural Networks (GGNN) with or without different
types of normalization methods in the task 18 and 19 in the bAbI benchmark, the most challenging
two tasks. (J) The normalized score performance of the Proximal Policy Optimization (PPO) network
with or without different types of normalization methods in the RedBlueDoors memory task, the
most challenging task in MiniGrid benchmark.
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Probing the network with the unsupervised attention mechanism. As shown in Figure 7B,C,
the DQN has a similar COMP change during the learning process to the ones in the com-
puter vision task. We observe that the COMP curves are more separable when regularity
normalization is installed. This suggests that the additional regularity normalization con-
strains the earlier (or lower) layers to have a lower complexity in the implicit space and
saving more complexities into higher layer. The DQN without regularity normalization,
on the other hand, has a more similar layer 1 and 2. We also observe that the model
complexities COMP of the target networks seems to be more diverged in DQN comparing
with DON+RN, suggesting the regularity normalization as a advantageous regularization
for the convergence of the local to the target networks. Figure 7E,F offer some intuition why
this is the case: the DON+RN (red curve) seems to maintain the most stable complexity
difference between layers, which stabilizes the learning and provides a empirically advan-
tages trade-off among the expressiveness of layers given a task (see Appendix C.3 for a
complete spectrum of this analysis).

7.3. The Generative Modeling Problem with Deep Recurrent Attentive Writer (DRAW)

We investigate the effect of the regularity normalization on the generative modeling of
variational models. We evaluate the generative modeling task on MNIST dataset with the
state-of-the-art model, the Deep Recurrent Attention Writer (DRAW) [34]. Following the
experimental setup as [15], we record the KL divergence variational bound for the first 50
epochs. Figure 7G highlights the speedup benefit of applying the regularity normalization
even faster than the layer normalization. Other than the regularity normalization and
layer normalization, we also note a significant speedup over baseline in the previously
underperforming saliency normalization. In the classification task, we don’t spend time
choosing the best data prior for the saliency normalization, but this prior of class informa-
tion happens to be beneficial to this generative task. We would like to comment that the
potential to integrate top-down priors in a neural network can be impactful, especially in
the generative models.

7.4. The Dialogue Modeling Problem in bAbl with Gated Graph Neural Networks (GGNN)

We further test whether we can impose the unsupervised attention mechanism beyond
the layers of neural nets, into the message passing across generic neural modules. We
choose to evaluate on a natural language processing dialogue modeling task, the bAbI [35]
benchmark, a dataset for text understanding and reasoning. We apply different normaliza-
tions upon its state-of-the-art, the Gated Graph Sequence Neural Networks (GGNN) [36]
(experimental details in Appendix D). As the bAbl benchmark is a solved task (with 100%
accuracy in all the GGNN variants), so we focus on the short-term learning sessions within
the first few epochs. As show in Figure 7H,I, we observe that in the two most difficult tasks
(task 18 and task 19), the GGNN + RN + LN converges the fastest among all agents, followed
by the layer normalization. Although the benefit of the regularity-based normalization is
not apparrent in this task, this experiment shows that the unsupervised attention mech-
anism can be potentially useful for more complicated information propagations among
computational modules, as in this graph neural network example.

7.5. Procedurally-Generated Reinforcement Learning in MiniGrid with Proximal Policy
Optimization (PPO)

Lastly, we experiment on whether the regularity-based priors are useful in more
complicated reinforcement learning environments. In MiniGrid [37], environments are
procedurally-generated with different regularities across states. These states usually in-
volve multi-modal signals like text-based commands and pixel-based image states. We
introduce the normalization methods to a popular policy gradient algorithm, Proximal
Policy Optimization (PPO) [38], and demonstrate that PPO + RN + LN can be very robust.
For instance, in the RedBlueDoors, the most challenging memory-based task, while all the
agents converge in the later rounds, we observe that in the earliest frames, our methods
receive more rewards by exploring based on regularity (Figure 7]). Due to the unstable
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nature of this open-sourced benchmark in development, this experiment is not conclusive
on a constant performance improvement of the proposed regularity-based normalizations.
The fast convergence of regularity-boosted agent in early rounds might suggest a benefit
of exploring unseen states modulated by the regularity of the learned representations in
policy gradient algorithms.

8. Discussion

Inspired by the neural code adaptation of biological brains, in this paper we introduce a
biologically plausible unsupervised attention mechanism taking into account the regularity
of the activation distribution in the implicit space, and normalizing it to upweight activation
for rarely seen scenario and downweight activation for commonly seen ones. This work
provides an example on how neuronal phenomena can offer straightforward solutions to
important engineering questions such as when, where and how to allocate resources most
productively in the learning process.

This method can complement existing measures to understand deep learning. Despite
the success of deep learning systems in various engineering applications, the interpretabil-
ity of its results and the comprehensive theoretical understanding of its effectiveness are
still limited. This prevents confident deployments on critical ares like medical diagno-
sis and credit analysis. In spirit of the no free lunch theorem, the existing measures of
the deep network each offer valuable but limiting insights from different perspectives.
Our estimation of the minimum description length is related to other complexity and
information-theoretical measures, but differs in several critical ways:

Mutual information (MI): In the traditional perspective, the minimum description
length is a two-part code, the sum of the data code length and the model code length:
L = L(x|M) + L(M). The mutual information only accounts for the data code length. [39]
analyzes the mutual information that each layer preserves on the input and output variables
and suggested that the goal of the network is to optimize the Information Bottleneck (IB)
tradeoff between compression and prediction, successively, for each layer. Despite various
recent attempts to estimate the mutual information [40,41], the information bottleneck ap-
proach can arrive at different conclusions under different assumptions for these estimation
and misleading causal connections between compression and generalization [42]. Our
MDL estimate complements this missing link by (1) incorporating also the model code
length and (2) computing the normalized maximum likelihood (NML) incrementally with
simple inference techniques. Unlike many mutual information estimators, our NML-based
MDL estimate has no arbitrary parameters like the number of bins. While a high mutual
information (or L(x|M)) is necessary for effective compression, a low model complexity (or
L(M)) can further ensure a parsimonious representation. Fundamentally, we implement it
with an incremental update of normalized maximum likelihood, constraining the implicit
space to have a low model complexity and short universal code length.

VC dimension [43] and Rademacher complexity [44]: Both the Rademacher complexity
and VC dimension depend only on the data distribution and model architecture, and not
on the training procedure used to find models. Our proposed estimate of model complexity,
on the other hand, depends on the training procedure and captures the dynamics over
training. This additional sensitivity to the training procedures and training stages can offer
us critical information to understand the deep learning’s fitting behavior and monitor the
states of the deep learning models in real time.

Effective model complexity (EMC) [45]: The effective model complexity is the maximum
number of samples on which it can achieve close to zero training error, and is proposed
to specifically analyze the “double-descent” phenomenon in deep learning [46]. Unlike
EWC, our model complexity estimate COMP is a function over time, instead of just one
number as the EWC. This property allows us to track the COMP trajectories over different
training states. Unlike EWC, COMP does not have to depend on the true labels of the data
distribution and can therefore apply to more scenarios beyond the double descent, such as
designing meta-learning algorithms (to adapt based on complexity) and selecting the right
neural network at the right moment based on MDL.
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In theory, our study suggests that the new regularization mechanism offers a dynamic view
of the model complexity during training. In machine learning community, model complexity
is related to a model’s generalization ability. Despite not a focus of this work, it is our next
step to understand the link between between our proposed approximation form of minimum
description length and generalization in the deep networks (e.g., via PAC-learning bound).
Other than the empirical and theoretical insights to the deep learning community, there are
potential broader impacts to other active research domains from our study as well:

Promote Al fairness and diversity: Recent Al systems and applications have been extensively
deployed not only in daily life, but also in many sensitive environments to make important and
life-changing decisions such as forensics, healthcare, credit analysis and self-driving vehicles.
It is crucial to ensure that the decisions do not reflect discriminatory behavior toward certain
groups or populations. The most common bias is the representation bias in existing datasets
such as underrepresenting African and Asian communities in 23andMe genotype dataset [47]
and lacking geographical diversity in ImageNet dataset [48]. There are also unintentional
types of bias. For instance, [49] showed that vanilla PCA on the labeled faces in the wild
(LFW) dataset has a lower reconstruction error rate for men than for women faces, even if
the sampling is done with an equal weight for both genders. In face of these challenges, our
proposed methods implicitly incorporate the fairness by allocating more learning resources to
underrepresented samples and features through the normalization process. In addition, we
propose the saliency normalization, which can introduce top-down attention and data prior to
facilitate representation learning given fairness criteria.

Incorporate useful data priors for security: Other than fairness, the proposed normalization
allows to incorporate top-down priors of other kinds. For instance, security-related decision
making systems usually requires stability in certain modules and adaptability in others.
Feeding the learning states as data prior into the proposed normalization can individually
constrain each modules to accomplish this goal. Given existing knowledge, one can also flag
certain feature types as important (or “salient”) in anomaly detection or information retrieval
tasks to allocate more learning resources. Integration of top-down and bottom information is
crucial for developing neural networks which can incorporate priors. One main next direction
of this research is the top-down attention given by data prior (such as feature extracted from
signal processing, or task-dependent information). The application of top-down attention s(x)
to modulate the normalization process can vary in different scenarios. Further investigation
of how different functions of s(x) behave in different task settings may complete the story
of having this method as a top-down meta learning algorithm potentially advantageous
for continual multitask learning. Imposed on the input data and layer-specific activations,
unsupervised attention mechanism has the flexibility to directly install top-down attention
from either oracle supervision or other meta information.

Draw attention to neuroscience-inspired algorithms: Like deep learning, many fields in arti-
ficial intelligence (AI) benefited from a rich source of inspirations from the neuroscience for
architectures and algorithms. While the flow of inspirations from neuroscience to machine
learning has been sporadic [50], it systematically narrows the major gaps between humans
and machines: the size of required training datasets [51], out-of-set generalization [52],
adversarial robustness [53,54], reinforcement learning [13,55,56] and model complexity [57].
Biological computations which are critical to cognitive functions are usually excellent can-
didates for incorporation into artificial systems and the neuroscience studies can provide
validation of existing Al techniques for its plausibility as an integral component of an
overall general intelligence system [58].

9. Conclusions

In summary, inspired by the biological phenomenon of the regularity-driven neuronal
firing, we propose to consider the neural network training process as a model selection problem
and compute the model complexity of a neural network layer as the optimal universal code
length with a normalized maximum likelihood formulation. We show that this code length can
serve as a normalization factor and can be easily incorporated with established regularization
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methods to (1) speed up training, (2) increase the sensitivity to imbalanced data or feature spaces,
and (3) analyze and understand neural networks in action via the lens of model complexity.
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Appendix A. Further Discussions

Empirical results offer a proof of concept to the proposed unsupervised attention mecha-
nism. In the tasks of image classification, generative modeling and reinforcement learning
problems, our approach empirically outperforms existing normalization methods in the im-
balanced, limited, or non-stationary data scenario as hypothesized. However, several analyses
and developments are worth pursuing to further understanding of the behaviors.

Appendix A.1. More Analytics

First, the metric use in the MNIST problem is the test error (as usually used in the
normal case comparison). Although the proposed method is shown to have successfully
constrained the model to allocate learning resources to the several imbalanced special
cases, there might exist better performance metric specially tailored for these special cases.
Second, the probability inference can be replaced with a fully Bayesian variational inference
approach to include the regularity estimation as part of the optimization. Moreover, al-
though the results shows the proposed regularity-based normalization has an improvement
on MNIST, it would be additionally interesting to record the overall loss or probability as
the computation of the normalized maximum likelihood makes selection on the model, like
a partially observable routing process of representation selection as in [59].

Appendix A.2. Gaussian and Beyond

The proposed model complexity estimation method does not require a Gaussian
assumption. In Section 6 and the shared codes, we offer an example to estimate COMP
given Gaussian prior because it has fast numerical tricks. However, with any standard
Bayesian inference estimator, one can set other priors according to the specific problems.
An simple extension is to apply Gaussian mixture priors which should fit most applications.
The model complexity estimate COMP of these priors can be easily implemented with the
expectation—-maximization algorithm for their specific assumptions.

Appendix B. More details on the Imbalanced MNIST Tasks
Appendix B.1. Neural Network Settings

To simulate changes in the context (input) distribution, in each epoch we randomly
choose 7 classes out of the ten, and set their sampling probability to be 0.01 (only 1%
of those 7 classes are used in the training). In this way, the training data may trick the
models into preferring to classifying into the dominant classes. We build upon the classical
784-1000-1000-10 FFNN with ReLU activation functions for all six normalization methods,
as well as the baseline neural network without normalization. As we are looking into the
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short-term sensitivity of the normalization method on the neural network training, one
epoch of trainings are being recorded (all model face the same randomized imbalanced
distribution). Training, validation and testing sets are shuffled into 55,000, 5000, and 10,000
cases. In the testing phase, the data distribution is restored to be balanced, and no models
have access to the other testing cases or the data distribution. Batch size is set to 128.
Stochastic gradient decent is used with learning rate 0.01 and momentum set to be 0.9.

Appendix B.2. Supplementary Figures
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Appendix C. More Details on the OpenAI Gym Tasks
Appendix C.1. Neural Network Settings

The Q networks consist of with two hidden layers of 64 neurons. With experience
replay [60], the learning of the DQN agents was implemented as Actor-Critic algorithm [61]
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with the discount factor y = 0.99, the soft update rate T = 0.001, the learning rate /r = 0.001,
epsilon greedy exploration from 1.0 to 0.01 with decay rate of 0.95, the buffer size 10,000,
the batch size 50 and optimization algorithm Adam [62]. To adopt the proposed regularity
normalization method, we installed the normalization to both the local and target Q
networks.

Appendix C.2. Game Settings

In LunarLander, the agent learns to land on the exact coordinates of the landing pad
(0,0) during a free fall motion starting from zero speed to the land with around 100 to 140
actions, with rewards fully dependent on the location of the lander (as the state vector) on
the screen in a non-stationary fashion: moving away from landing pad loses reward; crashes
yields —100; resting on the ground yields +100; each leg ground contact yields +10; firing
main engine costs —0.3 points each frame; fuel is infinite. Four discrete actions are available:
do nothing, fire left orientation engine, fire main engine, fire right orientation engine.

In CarPole, the agent learns to control a pole attached by an un-actuated joint to a
cart, which moves along a frictionless track, such that it doesn’t fall over. The episode ends
when the pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units
from the center and a reward of +1 is provided for every timestep that the pole remains
upright. Two discrete actions are available: applying a force of +1 or —1 to the cart to make
it go left or go right.

Appendix C.3. Supplementary Figures
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Figure A2. LunarLander: visualizations of regularization effects on the model complexities.
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Figure A4. LunarLander: visualizations of regularization effects on the model complexities, plotted
relative to DQN.
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Figure A5. LunarLander: visualizations of 1st and 2nd-order derivative of COMP with respect to training.
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Figure A7. CarPole: COMP in local and target Q networks in DQN with different regularizations.
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Figure A8. CarPole: visualizations of regularization effects on model complexities relative to DQN
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Figure A9. CarPole: visualizations of 1st and 2nd-order derivative of COMP with respect to training.

Appendix D. More Details on the bAbI Tasks
Appendix D.1. Neural Network Settings

Graph Neural Networks (GNNs) usually have a propagation model to compute node
representations and an output model to make predictions on nodes. Gated Graph Neural
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Networks (GGNN) unroll recurrence for a fixed number of steps and just use backpropaga-
tion through time with modern optimization methods and gating mechanisms [36]. The
propagation model consists of a single gated layer of 10 neurons and outputs to all edges
in the graph. To adopt the proposed regularity normalization method, we installed the
normalizations to the recurrent message passing step, where the message from any other
nodes go through the normalization before entering the current node. Learning is done via
the Almeida-Pineda algorithm [63]. Batch size is set to 10. Adam [62] is used with learning
rate 0.001.

Appendix D.2. Game Settings

The Facebook bAbI tasks are meant to test reasoning capabilities that Al systems
should be capable of [35]. In the bAbI dataset, there are 20 tasks that test basic forms of
reasoning like deduction, induction, counting, and path-finding. In this work, we presented
two most challenging tasks, task 18 and 19. Task 18 requires reasoning about the relative
size of objects and is inspired by the commonsense reasoning examples in the Winograd
schema challenge [64]. The goal of task 19 is to find the path between locations: given
the description of various locations, it asks: how do you get from one to another? This is
related to the work of [65] and effectively involves a search problem.

Appendix E. More Details on the MiniGrid Tasks
Appendix E.1. Neural Network Settings

The Proximal Policy Optimizations (PPO) algorithm is a policy gradient method which
involves alternating between sampling data through interaction with the environment [38].
It still built upon existing Actor-Critic models, which we selected a popular deep version
building upon this existing Git repository (https://github.com/lcswillems/torch-ac (accessed
on 17 November 2021)). As our agents directly receive pixel-level image input in our minigrid
task, the network has a image processing embedding which consists of a convolutional layer
of 16 neurons with kernel size 2 by 2, followed by an ReLU activation, a maxpooling step with
kernel size 2 by 2, another ReLU activation and another convolutional layer of 32 neurons with
kernel size 2 by 2. The task that we performed has a memory component, thus, we introduced
a LSTM layer to process the image embedding sequentially. In certain task of MiniGrid,
there are text inputs like a command to “open the door”, thus we installed a text embedding
with 32 neurons for the word and 128 neurons for the sentence. The text understanding is
accomplished by feeding both the word embedding and the text embedding into a gated
recurrent unit (GRU) sequentially. The actor and critic networks both have two layers of 64
neurons each, where the first layer received a input of the combined embedding of the text
and image and the second layer output to either the action space (actor) or a value function
(critic). As other modules, ReLU is applied across layers. To adopt the proposed regularity
normalization method, we installed the normalization to both the actor and critic networks.
Batch size is set to 256. Adam [62] is used with learning rate 0.001 and discount rate set to
be 0.99.

Appendix E.2. Game Settings

MiniGrid is a minimalistic gridworld environment with a series of challenging
procedurally-generated tasks [37]. In this work, we presented the early round of the
RedBlueDoors, whose purpose is to test memory. The agent is randomly placed within a
room with one red and one blue door facing opposite directions. The agent has to open
the red door and then open the blue door, in that order. The agent, when facing one door,
cannot see the door behind him. Hence, the agent needs to remember whether or not he
has previously opened the other door to reliably succeed at completing the task.


https://github.com/lcswillems/torch-ac
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Appendix E.3. Reproducibility and Code Availability

The codes and data to reproduce all the experimental results can be accessed at:
https:/ /github.com/doerlbh /Unsupervised AttentionMechanism (accessed on 17 Novem-
ber 2021).
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