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Abstract
Rail track is a critical component of rail systems. Accidents or interruptions caused by rail track anomalies usually 
possess severe outcomes. Therefore, rail track condition monitoring is an important task. Over the past decade, 
deep learning techniques have been rapidly developed and deployed. In the paper, we review the existing literature 
on applying deep learning to rail track condition monitoring. Potential challenges and opportunities are discussed 
for the research community to decide on possible directions. Two application cases are presented to illustrate the 
implementation of deep learning to rail track condition monitoring in practice before we conclude the paper.

Keywords: Rail track maintenance, condition monitoring, anomaly detection and classification, deep learning

1. INTRODUCTION
The rail industry plays an important role in a nation’s economy and development and directly affects the 
lifestyle of the residents. Hence, there is a low tolerance level by the public to any accidents or negative 
events happening to the rail operations as the economy, the livelihood, and the country’s reputation would 
be brought down and the social and political risk level will rise. The rail systems around the world operate 
under different environments with their most critical infrastructure, the steel rail track, including rails, 
sleepers, ballast, fastener, and subgrade. Undesirable consequences such as derailment, death, injury, 
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economic burden and loss of public confidence could be caused by the defects on the rail track and the 
failure of rail tracks[1]. It was also reported that rail maintenance workers were injured or lost life during rail 
inspection and maintenance operations. Thus, safe railway operations demand effective maintenances 
which rely heavily on inspection and monitoring of rail track conditions. The condition monitoring is 
fundamentally critical to the safety, reliability and cost-efficiency of the rail operations[2]. There are also 
regulations by governments on the frequency of regular track inspections which traditionally requires a 
large amount of personnel and equipment resources. Therefore, the rail track condition monitoring is of 
great importance due to the safety, economic and regulatory factors.

Rail defects are normally initiated by loads and stresses applied to rails in longitudinal, transverse, or vertical 
directions. The vehicle wheels can apply vertical, lateral, and creep loads to the rails, while bulk stress such 
as bending stress, thermal stress, and residual stresses can be applied to the rails as well. Different rail 
defects such as rail corrugations, rolling contact fatigue defects, squat defects, shatter cracking, split head, 
and wheel burns have their own causes and characteristics, lead to different effects, and thus require 
corresponding treatments[3]. Therefore, proper detection and classification of rail defects play an important 
role in effective rail maintenance operations. In practice and research, some common rail defects may be 
selected and targeted according to Pareto’s principle as some types of rail track defects are commonly found 
such as rail corrugation, transverse cracks, shelling, and wheel burns. The train wheels contact with the rail 
track and frictions in between will gradually cause rail corrugation over a period of time where crests, 
troughs, and waves remain on the track and will become worse and worse. The rail tracks will have concave 
deform on the top due to the corrugations, which also cause the rail track lifespan to shorten and, therefore, 
a replacement will be needed. Around the faulty weld joint areas, which could be caused by the difference in 
weld material or a manufacturing flaw in the rail, transverse cracks may form. Another cause could be the 
welding processes, such as arc welding, pores, inclusions, and misalignments. Around the gauge corners of 
the rail tracks, there could be subsurface fatigue, which causes the loss of materials and then shelling defects. 
Later on, shelling cracks will develop inside the area which can usually be seen as dark spots on the outside 
of the gauge corners. However, in the beginning, the cracks may grow so fast that unforeseen failures appear 
before the crack defects are detected. The train wheels may slide quite often on the railway tracks, which will 
raise the rail surface temperature to be very high and therefore cause the wheel burn defects, which are 
usually found in pairs, opposite of one another on the two rail tracks. The high temperature will drop down 
quickly, which makes the rail track in the brittle martensite phase according to material science. Wheel 
burns could be found on the surface of rail tracks and might appear similar to squat defects. Wheel burns 
are usually found in pairs, opposite of one another on two rails.

Defects and deteriorated conditions on the rail track can normally be seen by human eyes; therefore, 
manual inspection by patrollers can identify and locate the defects and monitor the condition. However, 
such inspections are labor-intensive and can only be arranged during non-operating hours in order not to 
disrupt the regular service operations. Ultrasound testing, magnetic particle testing, radiographic testing, 
eddy current testing, and penetrating testing are the common non-destructive testing (NDT) methods to 
measure the surface and internal parameters or performance of the tested object without destroying it. 
Among these testing methods, ultrasound testing and eddy current testing are more suitable for the train 
tracks. The ultrasound testing method is the most effective rail track NDT inspection method. It utilizes the 
propagation and attenuation characteristics of sound waves in the medium and the reflection and refraction 
characteristics on the interface. It can detect the internal defects and find cracks on bolt holes, head, and 
web and the longitudinal crack at the bottom of the rail. Due to rail steel being ferromagnetic, the eddy 
currents do not penetrate into the material. Therefore, they flow along the crack side so that the pocket 
length of the cracks can be determined in the railhead by eddy current testing. The eddy current testing 
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method is particularly suitable to inspect steel rails even under high temperatures[4]. Due to the harsh 
environment, late hours, and tired patrollers, the inspection accuracy might be affected[5]. Rail inspection 
vehicle and sensor technologies are being deployed as an efficient and cost-effective data collection 
technology solution to support rail maintenance operations and can capture vast amounts of data. Data-
driven automatic condition monitoring and detection and classification of rail track anomalies have been 
attracting attention from researchers at universities and railway institutes.

Deep learning methods are producing successes in various applications with the recent advances of the 
techniques. Deep learning has neural networks as its functional unit to mimic how the human brain solves 
complex problems based on data. Methods such as long-short-term memory (LSTM) as a type of recurrent 
neural network (RNN) and convolutional neural network (CNN) propelled the development of deep 
learning and the field of artificial intelligence and have been reported with convincing performances in 
monitoring conditions for tools, machines, and turbines. The performances in prediction and learning of 
these methods are improving with the increasing amount of data available[6-8]. Deep learning methods have 
been adopted for rail track condition monitoring and anomaly detection and classification.

Some research questions are formulated to guide our review with clear purposes. Subsequently, we select the 
publications for the detailed review.

• What types of deep learning models are available for rail track condition monitoring?

• What deep learning techniques can be useful for applications in rail track condition monitoring?

• What types of rail track anomalies are more commonly chosen to identify?

• What types of data are collated for the deep learning applications?

• Where are the specific objectives of applying deep learning models to rail track condition monitoring?

• What are the deep learning data pre-processing methods adopted?

• What are the challenges that researchers face?

• How does the application in rail track condition monitoring correspond to the evolution of deep learning 
techniques?

• What are the trend and insights for future directions of research and practice?

Figure 1 shows the review framework that is proposed by this paper to address the list of research questions. 
The importance, the types of defects, and the existing manual inspection techniques of rail track monitoring 
are presented to give the context and introduction of this study. The shortcomings of manual inspection 
techniques partially provide the need to adopt deep learning methods. We then review the deep learning 
methods available and their relevance by briefly discussing the evolution of the deep learning field and 
describing the deep learning models for the ease of selecting suitable models for tasks. The studies applying 
deep learning methods to rail track condition monitoring are then reviewed where summaries are made 
according to the trend over time, the region of study, the raw data type, the pre-processing data, the purpose 
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Figure 1. Review framework.

of applications, and the deep learning models adopted. How to apply these deep learning techniques for 
applications and the advantage and limitations of deep learning methods are discussed before some possible 
further research areas are outlined as well. Illustrative case studies are also included to show the practical 
considerations of applying deep learning methods to rail track condition monitoring. This review 
framework provides a balance between deep learning methods and their application to rail track condition 
monitoring. The scope is only about condition monitoring of rail tracks; we do not review other rail 
components such as rolling stocks or pantographs. Our studies also focus on the deep learning methods 
instead of more broadly artificial intelligence or machine learning approaches. The review framework caters 
to the needs of both practitioners who need to solve operational issues and researchers who might have 
more interests in the methodologies.
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Through this paper, the authors intend to provide a useful guide to researchers and practitioners who are 
interested in applying deep learning methods to rail track condition monitoring tasks. There are three major 
contributions of this paper. First, the evolution of deep learning and a collection of relevant deep learning 
methods provide clear coverage of the relevance, usefulness, and applicability of deep learning methods, 
which enable fellow researchers to navigate through the usually rather daunting deep learning domain with 
confidence. Second, a systematic search and review of the application publications proves the relevance of 
deep learning methods to rail track condition monitoring tasks and provides insights into how such 
research works are carried out and what potential further studies can be followed up. Third, two illustrative 
case studies demonstrate practical considerations and aim to motivate wider and more creative adoption of 
deep learning methods to rail industries. This paper is organized as follows. Section 2 describes a historical 
overview of deep learning and briefly introduces common deep learning models. Section 3 reviews research 
adopting deep learning methods for rail track condition monitoring and anomaly detection. Section 4 
discusses challenges and opportunities. Section 5 presents case studies applying deep learning to rail 
anomaly detection and classification while Section 6 concludes the paper.

2. DEEP LEARNING MODELS
2.1. Historical overview of deep learning
We provide a simplified timeline for deep learning and its evolution. Important issues and development at 
critical junctures are highlighted. A modern definition of deep learning describes a current understanding of 
the topic. Multiple layers of a deep learning model learn to represent the data with abstractions at multiple 
levels. The intricate structure of the large input data is discovered through the computations at each layer. 
Each layer computes its own representation from the representation of its previous layer according to the 
deep learning model’s internal parameters which are updated using the backpropagation algorithm. Images, 
video, speech, and audio data can be processed by deep convolutional nets while sequential data such as text 
and speech by recurrent nets[9]. In the following paragraphs, we examine the journey of deep learning from a 
single neuron to the current status and hence determine the scope of the following review work.

The McCulloch-Pitts (MCP) neuron proposed in 1943 was the first computational model mimicking the 
functionality of a biological neuron which marks the start of the era of artificial neural networks. An 
aggregation of Boolean inputs determines the output through a threshold parameter[10]. The classical 
perceptron model[11] proposed in 1958 was further refined and analyzed[12] in 1969. The perceptron model 
brought in the concept of numerical weights to measure the importance of inputs and a mechanism for 
learning those weights. The model is similar to but more generalized than the MCP neuron as it takes 
weighted real inputs and the threshold value is learnable. As a single artificial neuron is incapable of 
implementing some functions such as the XOR logical function, larger networks also have similar 
limitations which cooled down the artificial neural network development.

The multi-layer perceptron (MLP) was proposed in 1986 where node outputs of hidden layers are calculated 
using sigmoid function and biogeography based optimization is used to find the weights of the network 
model[13]. The universal approximation theorem of MLP, proved in 1989, states that, for any given function 
f(x), there is a backpropagation neural network that can approximately approach the result[14]. The LeNet 
network was proposed in 1989 to recognize handwritten digits with good performances[15]. In 1991, with the 
backpropagation neural network, the vanishing gradient problem was discovered, that is back-propagated 
error signals either shrink rapidly or grow out of bounds in typical deep or recurrent networks because 
certain activation functions, such as the sigmoid function, take a large input space but have a small output 
space between 0 and 1[16]. The LSTM model was proposed in 1997[17] and performs well in predicting 
sequential data. However, since then, neural networks had not been progressing well until 2006. It is worth 
mentioning that statistical learning theory, a framework for machine learning, blossomed between 1986 and 



Page 156 Ji et al. Intell Robot 2021;1(2):151-75 https://dx.doi.org/10.20517/ir.2021.14

2006. Methods and models such as decision trees[18], support vector machines (SVM)[19], AdaBoost[20], kernel 
SVM[21], and random forests[22] were proposed. Graphical models were proposed in 2001 to provide a 
description framework for various machine learning methods such as SVM, naïve Bayes, and hidden 
Markov model[23].

Complementary priors were introduced in 2006 to eliminate the vanishing gradient problem that makes 
inference difficult in densely connected belief nets that have many hidden layers[24]. The rectified linear 
activation function (ReLU) was introduced in 2011 and became the default activation function of many 
neural networks. ReLU outputs the input directly if it is positive; otherwise, it is zero. ReLU is effective in 
tackling the vanishing gradient problems[25].

In 2012, AlexNet, a large deep convolutional neural network, was developed and trained to participate in the 
ImageNet large scale visual recognition challenge (ILSVRC) for the first time and delivered state-of-the-art 
results which drew attention from researchers[26]. AlexNet was the pioneer of using the graphics processing 
unit (GPU) to train the neural network. In the following years, deep learning became more and more 
popular, the architecture and training methods were improved rapidly, and the hardware advanced quickly 
and became more powerful. Deep learning has since been adopted by more industries including the railway 
industry and delivered more meaningful results. This paper focuses on reviewing research works of deep 
learning applications to rail track condition monitoring since 2013.

2.2. Common deep learning models
Artificial intelligence, machine learning, and deep learning have developed rapidly in recent years. There are 
many more deep learning networks than one can practically remember. As the resources to learn a 
particular deep learning method are abundant, we only list some deep learning methods in this section to 
provide an overview of the techniques available for practitioners and researchers to select and provide brief 
introductions about the methods. More detailed guides on implementations can be found from the 
abundance of references available.

The most commonly heard neural network names are probably CNN and RNN. CNN might be noted as 
ConvNet. The architecture of a CNN was inspired by the organization of the visual cortex and is analogous 
to that of the connectivity pattern of neurons in the human brain. Individual neurons respond to stimuli 
only in a restricted region of the visual field known as the receptive field. A collection of such fields overlaps 
to cover the entire visual area. CNN takes in an input image, assigns importance (learnable weights and 
biases) to various aspects/objects in the image, and can differentiate one from the other. In RNN, which was 
derived from feedforward neural networks, nodes are connected to form a directed graph along a temporal 
sequence to exhibit temporal dynamic behavior. RNN’s internal states (memory) are utilized to process 
variable-length sequences of inputs. A typical RNN architecture is LSTM which has feedback connections 
and can process both single data points (such as images) and entire sequences of data (such as speech or 
video). Applications of CNN and RNN to rail maintenance operations are commonly available, but CNN 
has been more widely adopted.

There are also some neural network architectures based on CNN with a novel configuration and supporting 
specific functions and tasks which might give inspirations for the rail maintenance operations. A Siamese 
neural network, also called a twin neural network, is an artificial neural network that uses the same weights 
while working in tandem on two different input vectors to calculate similarity scores of output vectors[27]. 
Figure 2 shows how the CNN layers are positioned to form the architecture of the Siamese neural network.
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Figure 2. Siamese neural network. CNN: Convolutional neural network

U-Net is a CNN that was developed for biomedical image segmentation. It supplements the usual 
contracting network by successive layers to increase the output resolutions, where up-sampling operators 
replace pooling operations[28]. Figure 3 shows how the CNN layers are positioned to form the architecture of 
the U-Net.

Transfer learning and generative adversarial networks (GANs) are exciting and rapidly changing fields that 
have been drawing attention from researchers and practitioners in and out of the rail industry. The idea of 
transfer learning [Figure 4] is that a model developed for a task can be reused as the starting point for a 
model on another task[29]. Pre-trained models are used as the starting point as transfer learning on both 
computer vision and natural language processing tasks so that computing and human resources can be 
preserved and provide a big jump for new deep learning tasks.

Generative modeling is performed to auto-learn and discover the regularities or patterns in input data, and 
then the model can generate new examples that are plausibly the same as the original dataset[30]. GANs 
frame the problem with two sub-models: the generator model that is trained to generate new examples, and 
the discriminator model that tries to classify examples as either real (from the domain) or fake (generated). 
The two models are adversarially trained together with an objective that the discriminator model cannot 
distinguish between real and generated inputs. Figure 5 illustrates the main ideas of transfer learning and 
GANs.

There are different deep learning methods suitable for different tasks. The most important problems that 
humans have been interested in solving with computer vision are image classification, object detection, and 
segmentation in the increasing order of their difficulty. Rail track anomalies might need to be classified so 
that appropriate actions can be taken, thus it is an image classification task. A foreign object might need to 
be located from a rail track image taken, thus it is an object detection task. Sometimes both the types of 
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Figure 3. A sample U-Net architecture.

Figure 4. Transfer learning.

anomalies and the location of the anomalies need to be identified. It means classification tasks and 
localization tasks need to be performed concurrently, which is semantic segmentation. Classification 
networks are created to be invariant to translation and rotation, thus giving no importance to location 
information, whereas localization involves getting accurate details with respect to the location. Thus, these 
two tasks are inherently contradictory. Most segmentation algorithms give more importance to localization 
and thus lose sight of the global context.
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Figure 5. Generative adversarial networks.

For image classification tasks, the following deep learning methods could be adopted:

• LeNet is the earliest pre-trained model used for recognizing handwritten and machine-printed characters 
and has a simple and straightforward architecture.

• AlexNet consists of eight layers, five convolutional layers and three fully connected layers, features ReLU 
and overlapping techniques, and allows multiple GPU. The dropout technique is used to prevent overfitting 
problems while suffering from longer training time. The dropout technique is that, at every training step, 
the number of interconnecting neurons of a neural network is randomly reduced by a percentage. ZFNet is 
a classic CNN and was motivated by visualizing intermediate feature layers and the operation of the 
classifier[31]. It has smaller filters and convolution stride than AlexNet.

• Inception network differs from the CNN classifiers in that it has filters with multiple sizes operating on the 
same level and concatenated outputs are sent to the next inception module which makes the neural network 
wider[32].

• GoogLeNet is a 27-layer architecture including nine inception modules that reduce the input images while 
retaining important spatial information to achieve efficiency. Users can utilize a GoogLeNet network 
trained on Imagenet with transfer learning instead of implementing or training the network from the 
scratch.

• ResNet introduces, as shown in Figure 6, an identity shortcut connection that skips one or more layers. 
The identity mapping layers do nothing to avoid producing higher training error[33]. Pre-activation ResNet 
makes the optimization easier and reduces the overfitting. RiR (ResNet in ResNet) makes the input with 
residual stream and transient stream for better accuracy attempts in order to generalize the ResNet block for 
residual network[34]. Residual networks of residual networks (RoR) proposes to have shortcut connections 
across a group of residual blocks[35]. On top of this, another level of shortcut connection can exist across a 
group of “groups of residual blocks”. Wide residual network (WRN) reduces training time but has more 
parameters as the network widens and it tests plenty of parameters such as the design of the ResNet block 
including the depth and the widening factor[36].
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Figure 6. A residual block.

• ResNeXt is a variant to ResNet and looks similar to the inception network as they both follow the split-
transform-merge paradigm, but the outputs of different paths are merged by adding them together for 
ResNeXt instead of depth-concatenated for inception network[37]. ResNeXt architecture’s paths share the 
same topology. The number of independent paths is introduced as a hyper-parameter cardinality to provide 
a new way of adjusting the model capacity.

• DenseNet further connects all layers directly with each other for the benefit of shortcut connections[38]. All 
earlier layers’ feature maps are aggregated with depth-concatenation and passed to subsequent layers. 
DenseNet is highly parameter-efficient due to feature reuse.

• Network with stochastic depth randomly drops layers during training but uses the full network during 
testing. The ResNet neural network takes less time in training and is thus more useful for real-world 
applications[39]. Each layer is randomly dropped with a survival probability during training, and all layers are 
active and recalibrated according to their survival probabilities during testing time. During training, the 
input of a residual block flows through both the identity shortcut and the weight layers when it is enabled; 
otherwise, only it only flows through the identity shortcut.

• VGGNet is a standard deep CNN architecture with 16 and 19 convolutional layers for VGG-16 and VGG-
19[40]. The VGG architecture is a well-performing image recognition architecture on many tasks and datasets 
beyond ImageNet.

• SPPNet is a type of CNN that employs spatial pyramid pooling to remove the fixed-size constraint of the 
network[41]. An SPP layer is added on top of the last convolutional layer to pool the features and generate 
fixed-length outputs which are then fed into the fully connected layers or other classifiers with the aim to 
avoid the need for cropping or warping at the beginning.

• PReLU-Net is a kind of CNN using parameterized ReLUs for activation function and a robust Kaiming 
initialization scheme to account for non-linear activation functions[42].
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• Xception is a 71-layer CNN with an input image size of 299 × 299[43]. The network was trained on more 
than a million images from the ImageNet database and learned rich feature representations for a wide range 
of images. Users can load a pre-trained version of the network that can classify images into 1000 object 
categories.

• MobileNet is a lightweight deep neural network designed for mobile applications of computer vision 
tasks[44]. As a filter’s depth and spatial dimension can be separated, MobileNet uses depthwise separable 
convolutions to significantly reduce the number of parameters A depthwise separable convolution is made 
from depthwise convolution, the channel-wise DK × DK spatial convolution, and pointwise, the 1 × 1 
convolution to change the dimension.

• FractalNet is a type of CNN that uses a fractal design instead of residual connections[45]. A simple 
expansion rule is repeatedly applied to generate deep networks. These networks have structures of truncated 
fractals and contain interacting subpaths of different lengths. There are no pass-through or residual 
connections, and every internal signal is transformed before flowing to subsequent layers.

• Both Trimps-Soushen and PolyNet performed very well in the ILSVRC image classification competition. 
Trimps-Soushen uses the pre-trained models from Inception-v3, Inception-v4, Inception-ResNet-v2, Pre-
Activation ResNet-200, and Wide ResNet (WRN-68-2) for classification. PolyNet introduced a building 
block called PolyInception module formed by adding a polynomial second-order term to increase the 
accuracy. Then, a very deep PolyNet is composed based on the PolyInception module.

For object detection tasks, the following deep learning methods can be deployed:

• OverFeat is a classic type of CNN architecture, employing convolution, pooling, and fully connected 
layers[46].

• R-CNN extracts only 2000 regions from the image as region proposals to work with using the selective 
search algorithm[47]. The CNN extracts the features from the image. The extracted features at the output 
dense layer are fed into an SVM to classify the presence of the object within that candidate region proposal. 
For Fast R-CNN, the region proposals are identified from the convolutional feature map generated by the 
CNN with the input image[48]. The region proposals are then warped into squares and reshaped into a fixed 
size using a RoI pooling layer before being fed into a fully connected layer. From the RoI feature vector, the 
class of the proposed region and the offset values for the bounding box are predicted with a softmax layer. 
Fast R-CNN is faster than R-CNN because the convolution operation is performed only once per image to 
generate a feature map. Faster R-CNN is similar to Fast R-CNN but much faster. It uses a separate network 
to predict the region proposals instead of using a selective search algorithm to identify the region proposals 
on the feature map generated by CNN[49]. An RoI pooling layer then reshapes the predicted region proposals 
for classifying the image within the proposed region and predicting the offset values for the bounding boxes. 
Real-time object detection tasks can adopt faster R-CNN.

• DeepID-Net introduces a deformable part-based CNN[50]. A new deformable constrained pooling layer 
models the deformation of the object parts with geometric constraint and penalty. Besides directly detecting 
the entire object, it is also crucial to detect object parts which can then support detecting the entire object.
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• R-FCN is similar to the logic of R-CNN-based detectors but reduces the amount of work needed for each 
region proposal to increase the speed[51]. The region-based feature maps can be computed outside each 
region proposal and are independent of region proposals.

• You only look once (YOLO) algorithm detects objects in real-time using a neural network[52]. Its 
architecture passes the nxn image once through the fully convolutional neural network and outputs mxm 
prediction. The YOLO architecture splits the input image into an mxm grid and generates two bounding 
boxes and associated class probabilities of the boxes for each grid. The bounding boxes could be larger than 
the grid itself. Differential weights of confidence predictions are adopted for boxes with or without objects 
during training. The square root of width and height are predicted differently for bounding boxes 
containing small or large objects. These changes to the loss function enable YOLO to produce better results. 
YOLOv3 (You Only Look Once, Version 3) was commonly adopted by the studies reviewed here.

• Single Shot multibox Detector (SSD) builds on the VGG-16 architecture while discarding its fully 
connected layers [Figure 7][53]. The original VGG fully connected layers are replaced with a set of auxiliary 
convolutional layers (from conv6 onwards) to extract features at multiple scales and progressively decrease 
the size of the input to each subsequent layer.

For semantic segmentation tasks, the following deep learning methods can be adopted:

• FCN uses a CNN to transform image pixels to pixel classes[54]. Instead of image classification or object 
detection, FCN transforms the height and width of intermediate feature maps back to those of the input 
image by using the transposed convolutional layer. Thus, the classification output and the input image have 
a one-to-one correspondence at the pixel level. Therefore, the classification results for the input pixel are 
held by the channel dimension at its output pixel at the same spatial position.

• DeconvNet gradually deconvolutes and un-pools to obtain its output label map, different from the 
conventional FCN with possible rough segmentation output label map[55].

• DeepLab applies atrous convolution for up-sampling[56]. Atrous convolution is a shorthand for convolution 
with up-sampled filters. Filter up-sampling amounts to inserting holes between nonzero filter taps. Atrous 
convolution allows effectively enlarging the field of view of filters without increasing the number of 
parameters or the amount of computation. Up-sampling the output of the last convolution layer and 
computing pixel-wise loss produce the dense prediction.

• ParseNet aggregates the values of each channel feature map’s activations to declare contextual 
information[57]. These aggregations are then merged to be appended to the final features of the network. This 
approach is less tiresome than the proposal cum classification approach and avoids unrelated predictions 
for different pixels under FCN approach.

• DilatedNet uses dilated convolutions, filters with holes, to avoid losing resolution altogether[58]. In this way, 
the receptive field can grow exponentially while the number of parameters only grows linearly. The front 
end is based on VGG-16 by replacing the last two pooling layers with dilated convolutions. A context 
module and a plug-and-play structure are introduced for multi-scale reasoning using a stack of dilated 
convolutions on a feature map.
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Figure 7. Single Shot multibox Detector architecture.

• PSPNet utilizes a pyramid parsing module to exploit global context information by aggregating different 
region-based contexts[59]. A pre-trained CNN with the dilated network strategy is used to extract the feature 
map, on top of which the pyramid pooling module gathers context information. The final feature map size 
is one-eighth of the input image. Using a four-level pyramid, the pooling kernels cover the whole, half of, 
and small portions of the image. They are fused as the global prior, which is then concatenated with the 
original feature map in the final part. It is followed by a convolution layer to generate the final prediction 
map. The local and global clues together make the final prediction more reliable.

3. REVIEW OF RAIL TRACK CONDITION MONITORING WITH DEEP LEARNING
The authors systematically searched published peer-reviewed journal articles and papers found in Google 
Scholar. Combinations of keywords such as “rail”, “surface”, “rail track”, “defect”, and “deep learning” were 
used as search keys to find research works published in the application of deep learning techniques to rail 
track condition monitoring and anomaly detection and classification. The review covers work from 2013 to 
2021. In total, we identified 62 relevant research publications to review.

The trend over time: a clear increasing trend can be observed of the popularity of deep learning approaches 
in rail track condition monitoring applications. Table 1 summarizes the findings. The number of papers 
surged in 2018. Before 2018, machine learning techniques other than deep learning approaches were more 
widely adopted. The rail industries are adopting deep learning methods with growing interests. An upwards 
trend of publication number is observed. There is also a gap of a few years from the invention of a deep 
learning model to its adoption by the rail industry.

Regions of study: fourteen regions are represented by the papers identified. Among them, China has the 
highest number of papers, which indicates the popularity of rail-related research work corresponding to the 
expanding rail networks across the country. Papers from China surged in 2018 and kept a high number in 
the following years. Table 2 summarizes the distribution of papers over regions.

Raw data type: it is observed that 70% of studies used image-type raw data for the deep learning models. 
Nevertheless, acoustic emission signals[65,71,100,103,108], defectogram[96,109], speed accelerations[98], concatenated 
vector of curve and numbers[101], current signal[89], maintenance records[80,99], synthetic data from generative 
model[63], time-frequency measurement data[82], time-series[60], geometry data[87], and vibration signal[119] 
could all be possible input data sources as well.
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Table 1. Number of papers over time

Year Total number of papers Ref.

2014 1 [60]

2015 1 [61]

2016 3 [62-64]

2017 5 [65-69]

2018 13 [70-82]

2019 16 [83-98]

2020 13 [99-111]

2021 10 [112-121]

Table 2. Paper distribution over regions

Region Total number of papers Ref.

Australia 1 [70]

Canada 1 [83]

China 35 [65,71-78,84-92,99-107,112-119]

Germany 1 [93]

Hong Kong 2 [94,108]

India 2 [66,67]

Korea 1 [95]

Netherlands 4 [62,63,78,80]

Russia 2 [96,109]

Singapore 3 [81,97,110]

Swiss 1 [60]

Turkey 3 [68,69,111]

UK 1 [120]

USA 5 [61,64,82,98,121]

Purpose of study: it is observed that detection, classification, and/or localizing rail surface defects including 
various components (rail, insulator, valves, fasteners, switches, track intrusions, etc.) are the most common 
purpose of the studies. There are also papers on predicting maintenance time[99] and detecting track 
geometry elevations[98]. Detection and classification tasks are more common than prediction tasks[60,80,87,99,119].

Adoption of deep learning models: many deep learning models are adopted by researchers. Table 3 
summarizes the distribution of deep learning models. CNN is the most popular deep learning model being 
adopted; however, many researchers created their own structure or divided their tasks into a few stages. 
CNN has been popular for extracting features and RNN/LSTM has been used for the sequential data type.

From the summary in Table 3, there are various deep learning methods being adopted in different forms. 
The effectiveness and the results differ from each other depending on the tasks. It is observed that image is 
the most popular input data type used for deep learning applications. However, there is a consistent process 
flow for how to apply the deep learning methods to rail track condition monitoring. First, the image 
acquisition subsystem (cameras/recording devices) is usually installed on rail engineering maintenance 
vehicles to capture raw input data. Second, the raw input data are transferred to the image processing 
subsystem where optional data pre-processing could be performed. Images could be resized, enhanced, have 
noise removed, or cropped for target areas with image processing techniques. Third, the input data are 
prepared for the training and testing of deep learning models. Data are labeled accordingly and then 
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Table 3. Adoption of deep learning models

Deep learning model Ref.

AlexNet, ResNet [76]

Autoencoder [89,101]

CNN [61,62,65,68,69,74,75,79,85,94,95,102,108,109]

CNN (object detection), RNN (distance estimation) [93]

CNN + YOLOv3 [117]

CNN based self-proposed DFF-Net [118]

CNN based self-proposed FR-Net [72]

CNN to extract feature, only 1 class [82]

CNN, transfer learning [64]

CNN, transfer learning, Bayesian optimization to tune hyperparameters [100]

CNN-LSTM [87,103,107]

Faster R-CNN [78,88]

Faster R-CNN + CNN [73]

FastNet, convolutional network-based [120]

Fine-grained bilinear CNNs model [70]

FCN [119]

GAN for CNN [115]

Inception-ResNet-v2 & CNN [113]

LSTM-RNN [63,71,99]

Mask R-CNN [121]

ML Tree based methods [80]

MobileNetV2, YOLOv3 [84]

Multilayer feedforward neural networks based on multi-valued neurons (MLMVN) [60]

neural network [96]

Point Cloud deep learning [92]

ResNet classifier, DenseNet classifier [81]

ResNet, FCN [83]

Resnet50, transfer learning, Inception, Faster R-CNN [67]

Self-proposed, 2 stage FaultyNet, CNN based [97]

Self-proposed, segment U-Net (CNN based) then detect, progressive [116]

Self-proposed, ShuffleNet-v2 extracts features from the track image, RPN predicts [86]

Siamese convolutional neural network [66,91]

Single Shot multibox Detector (SSD) [90]

SqueezeNet, MobileNetV2 [111]

U-Net to segment [105]

Variational autoencoder [98]

YOLO V3 [77,104,106,110,114]

YOLOv5 detect object; mast R-CNN detect surface defect; ResNet classify fastener state [112]

CNN: Convolutional neural network; RNN: recurrent neural network; YOLOv3: You Only Look Once, Version 3; LSTM: long-short-term memory; 
DFF-net: differential feature fusion convolution neural network; FR-net: feature fusion refine neural network; FCN: fully convolutional networks; 
RPN: region proposal network.

randomly assigned for training and testing purposes. Fourth, the selected deep learning model is trained 
with the training data and validated by the testing data. Depending on the purposes, the deep learning 
model could perform classification or localization tasks. It is also possible to perform classification and 
localization concurrently, which is the most common type of task. The feature representations of the input 
data are always extracted; however, the next steps to deal with the feature vectors differ. It is noted that 
researchers also proposed their own neural network architectures to replace or complement the existing 
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architectures[72,86,97,116,118]. Fifth, the trained deep learning model is put in production with the trained 
parameters for real-world applications. Due to the criticality of rail track condition monitoring, redundancy 
of inspections by human operators could be provided to double confirm the accuracy. Finally, the efficiency 
and effectiveness of the deep learning models are reviewed and enhanced for improved performances.

Various deep learning methods are reported to produce promising results. With more data available from 
the rail industry, breakthroughs of deep learning methods, and more advanced and cheaper hardware, deep 
learning methods will only become more popular and useful for rail track condition monitoring. Deep 
learning models performed well for feature extraction and data classification tasks. The image processing 
requirements and the man-made feature extraction efforts are low for deep learning methods, which make 
the application economical. However, the nature of rail operations causes the distribution of rail track image 
data to be uneven and extremely disproportional, which could cause class imbalance problems in deep 
learning applications. The extremely high safety requirement of rail operations and the considerably black-
box nature of deep learning models contradict each other and might cause some trust issues, which is 
demonstrated by the redundancies applied to rail track inspections.

Data pre-processing: removing outliers, normalizing data, and applying image process techniques to 
enhance the images are common pre-processing techniques. Fourier transforms such as Fast Fourier 
Transforms and Short Time Fourier Transform have been applied to transform sequential data (e.g., 
acoustic emission) to 2D spectrograms, which can then be applied to CNN models[65,82,108].

4. DISCUSSIONS
Condition monitoring and anomaly detection and classification are important to a productive rail 
maintenance operation. There are four main types of maintenance strategies: corrective maintenance, 
preventive maintenance, proactive maintenance, and predictive maintenance. Deep learning methods can 
support the maintenance strategies depending on the tasks it performs. For example, detection of a certain 
type of defect will normally trigger corrective maintenance actions to rectify the rail track. The prediction 
tasks supported by deep learning methods can be used for predictive maintenance strategies, and they are 
becoming more and more popular.

Internet of Things (IoT) technologies can be implemented to support rail maintenance operations. Sensor, 
networking, and application layers in IoT can collect big data, which can then be analyzed by deep learning 
techniques for application services. In rail track condition monitoring, various types of sensors are being 
deployed across the rail network to collect data that need enablers such as deep learning techniques to 
unleash their full potential.

Deep learning methods can be more effective when they can be used in real time in the field by the 
technicians. Integration of deep learning, IoT, mobile technologies, and edge computing has the potential to 
develop useful applications that support the daily rail track maintenance operations.

Deep learning models are normally trained with high computing powers. In order for the deep learning 
models to be used in the field, light deep learning models need to be developed so that less powerful but 
more accessible devices such as mobile phones can be used with deep learning techniques to support the rail 
maintenance operations.
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Image data have been widely used with useful results. However, they tend to be used in detection and 
classification, which normally correspond to corrective or preventive maintenance strategies. In order for 
the industry to advance to predictive maintenance, the causes of defects need to be investigated and 
corresponding signals can be used for deep learning models’ training and testing. Thus, deep learning 
application in rail track condition monitoring need to cater to more varieties of data types; for example, the 
vibration signal is normally a sequential signal and vibration tends to cause wear on the rails over time.

The performance of deep learning models such as accuracy, response time, and precision tend to be 
influenced by the data used. Therefore, a common dataset of rail tracks will be helpful for researchers to use 
and validate the performance of deep learning models developed around the world. True performance 
comparisons could be made as well.

There are always more sections of normal rail tracks than defective sections; therefore, the number of 
normal track images tend to be much more than the defective ones. When considering the different classes 
of defects, the number of defect images will be even lower, which can cause class imbalance issues. GAN is a 
deep learning-based generative model. With the application of GAN to generate more images of defects, the 
training of deep learning models for detecting and classifying rail defects could be more efficient and 
accurate.

Transfer learning focuses on storing knowledge gained while solving one problem and applying it to a 
different but related problem. As rail track condition monitoring task is shared by researchers around the 
world, a “more” related problem and the knowledge gained will be more useful when it is transferred to 
another problem but in the same industry. This could be a promising research area for future work.

Reinforcement learning is the training of machine learning models to make a sequence of decisions. The 
agent learns to achieve a goal in an uncertain, potentially complex environment. This trial-and-error 
approach suits well the complex situation of deciding when it is the right time to perform the maintenance 
operations. This research area could generate meaningful results for the industry.

5. ILLUSTRATIVE CASE STUDIES
In this section, we use two application examples to illustrate the implementation of deep learning models to 
support rail track condition monitoring and rail defect detection and classification.

5.1. Data acquisition and preparations
Data acquisition equipment or devices could be installed on the rail inspection vehicles or passenger trains 
at different positions. We use rail vision systems here to record videos of the rail tracks for both head and 
rail checks. Lights are usually required to further enhance the quality of images taken; we use halogen 
floodlights to support visibility. The train speed might affect the image quality; therefore, a maximum speed 
may be set. For us, it is 100 km/h. Figure 8 illustrates a typical setup.

Various types of input data (image, sound, vibration, etc.) could be adopted for deep learning tasks. For 
image data, different formats and sizes might be used. Original greyscale images are captured from the rail 
track videos and then used without segmenting the tracks from the ballast, the sleepers, or other 
background textures around the rail tracks so as to minimize the image pre-processing efforts and maximize 
the utility of deep learning models. Pre-processing of input images is optional. Figure 9 shows a sample 
image that was used for training and test purpose.
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Figure 8. Image acquisition setup.

Figure 9. A sample image for training.

We worked with rail maintenance operations staff to describe and label the images according to their 
properties. Figure 10 shows some sample patterns of “normal”, “corrugation”, “insulated rail joint”, and 
“weld” images.

5.2. Deep learning environment configurations
The deep learning experiments were performed on a platform with OS (Windows or Linux) and GPU. Our 
configurations include Intel Core i7-8700 CPU, Nvidia GeForce RTX 2080 Ti GPU, and 64 GB RAM. 
Software packages such as Python 3.6, Nvidia CUDA Toolkit, cuDNN, and TensorFlow with GPU support 
were installed on Windows 10 operating system for our experiments.

5.3. Application 1: CNN
We conducted training and prediction experiments for both anomaly detection and classification purpose. 
The input images were categorized by the neural network into two output classes for detection tasks and ten 
output classes for classification tasks. For both tasks, 90% of the image samples were randomly reserved for 
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Figure 10. Sample patterns of different classes.

training while the remaining 10% for testing for every class. In anomaly detection, the distribution of images 
is comprised of 57% normal images and 43% images with various types of defects. In anomaly classification, 
there are ten classes in total that are to be classified; their distributions are: 57%, 7%, 2%, 4%, 1%, 1%, 7%, 2%, 
17%, and 2%. Input greyscale images were resized to 186 × 256 pixels before being fed into the neural 
network for training and prediction.

Four convolutional layers, two max-pooling layers, and four fully connected layers were connected for the 
deep convolutional neural network, and the convolutional kernel size was set as 3 × 3 pixels. We used max-
pooling units of size 2 × 2 pixels. ReLU was used as an activation function for convolutional layers. We 
added a dropout layer as an effective regularization method after max-pooling to reduce overfitting by 
randomly dropping out nodes during training. After the convolutional and max-pooling layers, we used 
fully connected layers to perform high-level reasoning in a convolution neural network.

We ran the deep convolutional neural network model for detection and classification tasks separately while 
keeping the training and testing images the same and only adjusting the number of output classes for the 
network classifiers at the end of the network. The learning rate of the Adam optimizer was set as 0.001 for 
training the model. For both the binary classification of detection tasks and the multi-class classification of 
classification tasks, we counted the number of true positives, true negatives, false positives, and false 
negatives. The binary classification accuracy was calculated as 87.45% and F1-score as 88.33%. The 
performance is acceptable and substantially improves the performance of the existing auto-detect method 
based on image process techniques and man-made feature representations in operation.

5.4. Application 2: Siamese neural network
We conducted training and prediction experiments for classification tasks with four classes of data which 
comprise normal images and three common types of defects. We used an equal number of images for each 
class. We created the training data samples for Siamese neural network, which is much easier than the 
classic convolutional neural network datasets that require images to be labeled. Image samples were 
randomly chosen from this dataset to form anchor-positive-negative trios. While sampling an image pair, 
the two images were chosen from the same category with a probability of 0.5 with a corresponding label of y 
= 0. Similarly, the images were chosen from two different categories with the remaining probability of 0.5 
with the label y = 1.

Two identical four-layer convolutional neural networks were used to form the twin structure of the Siamese 
neural network to perform the identification of rail surface defects. The batch size was 128. The number of 
epochs was 50. The number of steps per epoch was 5. ReLU was used as an activation function. The neural 
network optimizer used was Adam. During testing, data of matching pairs and non-matching pairs were 
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formed by randomly selecting images from each of the categories. All combinations, for example, “Normal 
vs. Defect_1” or “Defect_2 vs. Defect_3”, were tested with 10 pairs and the mean, minimum, and maximum 
values of test output distance were summarized for analysis. During the testing phase, the images were 
chosen randomly. These images belonged to a different set of classes that were never shown to the network 
during training. As described, all combinations of pairwise comparisons were tested with 10 different 
sample image pairs. The mean Euclidean (L2) distance was computed as the similarity score.

Our experiment results show that, when two test images belong to the same class, their dissimilarity score is 
smaller than those of images from two different classes. A threshold value can be chosen to determine 
whether two images are from the same or different classes based on the test similarity scores. We also notice 
that the threshold value has a decent margin to vary. From our experiments, 82.5% of test images actually 
from the same class were predicted to be “from the same class”, while 80.8% of test images actually from 
different classes were predicted to be “from different classes”. The binary classification accuracy was 
calculated as 81.67% and F1-score as 81.82%. The accuracy level is acceptable to the current rail 
maintenance operations with the potentials for further improvement.

Both cases can perform rail track condition monitoring and anomaly detection and classifications tasks with 
deep learning methods with the same dataset. The case studies deal with them in different ways with 
different deep learning models. Datasets generated from the maintenance operations are put into good use 
with the deep learning models to improve the rail track maintenance operations. Training of Siamese 
convolutional neural network was observed to take a shorter time than the classic convolutional neural 
network approach. The existing hardware setup in the rail operations did not require significant 
modification. The features extracted by the deep learning models performed better than the approaches of 
selected man-made features.

6. CONCLUSIONS
This paper presents the importance and criticality of rail track condition monitoring to safe rail operations. 
We give a brief overview of the historical development of deep learning and list common deep learning 
models. Deep learning came into the rapid development phase after 2012; therefore, we review the deep 
learning applications to rail track condition monitoring from 2013 to 2021. The applications are reviewed 
according to the temporal evolutions, the regional adoptions, the data type, and the deep learning models. 
We then discuss the potential challenges and research opportunities for applying deep learning to rail track 
condition monitoring. Two application case studies are shared to illustrate the implementation of deep 
learning methods in rail track condition monitoring.
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