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ABSTRACT

Nitrogen fertilizers have a detrimental effect on the environment, which can be re-
duced by optimizing fertilizer management strategies. We implement an OpenAI
Gym environment where a reinforcement learning agent can learn fertilization
management policies using process-based crop growth models and identify poli-
cies with reduced environmental impact. In our environment, an agent trained
with the Proximal Policy Optimization algorithm is more successful at reducing
environmental impacts than the other baseline agents we present.

1 INTRODUCTION

Fertilizer use has vastly improved crop yields in the past century (Frink et al., 1999). Yet excessive
use of fertilizers is damaging the environment in several ways (Schlesinger, 2009; Sheriff, 2005;
Yadav et al., 1997). Leakage into waterways can lead to eutrophication and lower oxygen levels
up to an extent where marine life is no longer supported (Diaz & Rosenberg, 2008). On top of
that, excessive fertilization contributes to global warming due to high energy demand of fertilizer
production and conversion by soil bacteria into nitrous oxide, a potent green house gas (Erisman
et al., 2011).

By improved farming practises, leakage into the environment can be reduced. As an example, im-
provements can come from tailored side dress recommendations, where at the start of the season a
small dose of fertilizer is applied which gets supplemented locally during the growth season (van Ev-
ert et al., 2012). Alternatively, intercropping methods (Cong et al., 2015) and other eco-innovations
can reduce the need for synthetic fertilization (Hasler, 2017).

Studying and validating farming strategies in practise is a challenging process, because of the long
duration and labor intensity of field trials and the presence of many confounding factors. Process-
based models, which simulate crop growth, can help to gain insights in this area. In this work,
we create a reinforcement learning environment in which an agent can learn fertilization strategies
using a process-based crop growth model. While reinforcement learning has had significant impact
in other domains, we think its potential in agriculture has not been fully recognized yet. By providing
an OpenAI Gym environment, we aim to encourage exploration of the application of reinforcement
learning to sustainable agricultural management.

2 RELATED WORK

Deep RL is the subfield of machine learning which is concerned with training agents to take actions
in an environment based on a reward signal (Sutton, 2018). Deep RL has been successfully applied
in numerous fields, ranging from computer games (Silver et al., 2016; Mnih et al., 2013), to the au-
tonomous navigation of stratospheric balloons (Bellemare et al., 2020). Applications to agriculture
have been proposed in Bu & Wang (2019) and Binas et al. (2019). RL agents have been imple-
mented to control irrigation in a greenhouse setting (Zhou, 2020) and to determine field sampling
strategies using remote sensing (Zhang et al., 2020). We are not aware of any works which study
crop fertilization strategies or make use of process-based crop growth models.

OpenAI Gym provides a standardized collection of benchmark problems with a common interface
(Brockman et al., 2016). It allows for comparison between algorithms and assessment of generaliza-
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tion performance. It also provides an interface to convert a real-world problem into a custom Gym
environment.

Process-based crop growth models are designed for quantitative analysis of biophysical processes in
crop growth and production. These models describe crop growth processes in terms of differential
equations which estimate crop growth in daily timesteps, based on factors such as light interception,
water and nutrient availability. Widely used frameworks are APSIM (Keating, 2003; Holzworth,
2014) and the Python Crop Simulation Environment (PCSE), which contains models as LINTUL-3
(Shibu et al., 2010) and WOFOST (WOrld FOod STudies, de Wit et al. (2019)). For a literature re-
view of agricultural systems modelling, see Jones (2017). Modern wheat crop models are discussed
in Chenu et al. (2017).

3 DESCRIPTION OF THE GYM ENVIRONMENT

The CropGym environment1 contains the following components:

• The state space S, consisting of the current state of the crop (in terms of a multidimensional
output of a process-based crop growth model) and an multidimensional weather observation

• The action space A, which consists of discrete doses of fertilizer to apply
• Transitions between states, governed by the deterministic process-based model and the

weather sequence
• The reward r, which encourages large yield and limited fertilizer use.

Figure 1: Interaction between the agent and the CropGym environment

The information flow is shown schematically in Fig. 1. The above framework can be applied for any
process-based crop growth model or farm management simulation. In the next sections we detail
our implementation choices.

State space A natural intervention interval for farmers is a week. This is why, using the default
settings, the agent observes and intervenes in the CropGym environment on a weekly basis. The
observations by the agent consist of the output variables of the process-based crop growth model
LINTUL-3 (Light INtercepion and UTilization). Nitrogen limited crop growth in LINTUL-3 is
implemented in the Python Crop Simution Environment (PCSE). The model parameters have been
calibrated to simulate winter wheat (Wiertsema, 2015), which is why we chose to focus on this crop.
The observed variables from the crop growth model are listed in Appendix A.1. Additionally the
agent observes the weather of the past week as described by the default weather variables in PCSE
(see Appendix A.2). For these weather variables we use 29 years of weather data from 9 locations
in the Netherlands from the PowerNASA database.

Action space The agent’s action space consists of a range of nitrogen fertilizer values to apply at
each time step. From a farm management perspective, applying no fertilizer at all at a given point in
time is an attractive choice, because there is no time investment. This is why we chose to discretize
the action space. At each intervention, the agent has the following options for fertilizer application:

A = {20 k kg
ha | k ∈ {0, 1, 2, ..., 6}}

In this way the agent can experiment with both doses which are smaller than and similar to those
used in practise (Wiertsema, 2015).

1The source code is available at link to be added in camera-ready version
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Reward We reward the agent for a large grain yield (we do not take losses during harvest into
account), which is referred to in LINTUL-3 as the mass of the storage organ (mSO) of the crop,
expressed in kilograms of dry matter per hectare. The achievable mass varies per season, because
weather variables affect the yield. To account for this, we calculate both the mass mSO the agent
achieves with its fertilization policy, and the mass m∗

SO which would have been reached without
fertilizer application. Our reward function contains the difference between these quantities. Finally,
our goal is to discourage fertilizer application, which is why we penalize the agent for the weight of
fertilizer applied (mfert), expressed in the same units. The reward at timestep t is thus defined as:

rt = mSO,t −mSO,t−1 − (m∗
SO,t −m∗

SO,t−1)− βmfert,t

where the parameter β determines the trade-off between large yield and reduced environmental
impact. Setting β ∼ 1 leads to optimization of the current economic cost for a farmer in the Nether-
lands, since wheat prices and fertilizer prices are similar (agrimatie.nl, a;b). When developing poli-
cies which have reduced environmental impact, we need to set β > 1.

4 BASELINE AGENTS

Implemented agents To determine whether reinforcement learning agents can indeed identify
efficient fertilization policies, we compare three agents:

• The standard practise agent adds applies nitrogen fertilizer on three different dates during
the season, as is done in practise in the Netherlands. For details, see Appendix A.3.

• The reactive agent adds a fixed amount of fertilizer to the field whenever the nitrogen in the
soil is depleted.

• The PPO agent is trained with the Proximal Policy Optimization algorithm, a widely used
policy gradient algorithm (Schulman et al., 2017), as implemented in the Stable Baselines3
package (Raffin et al., 2019). The policy and value function networks are both fully con-
nected networks consisting of 2 layers with 64 nodes per layer.

For more details on agent training and hyperparameters, see Appendix A.3.

Agent performance We evaluate the reward the agents obtain on the seasons starting in 1984,
1994, 2004 and 2014 with weather data from 52oN, 5.5oE. These years were excluded from the
training set of the PPO agent. For the reward function we set β = 10. As can be seen in Fig. 2a,
the PPO agent gets a higher reward than the standard practise agent and the reactive agent in 1994,
2004 and 2014. In Fig. 2b,c we show the total yield obtained and the amounts of fertilizer applied
by the agents respectively. The PPO agent has a somewhat smaller yield than the other agents in
1984 and 2004, because of the reduced fertilization. Figure 2d shows the soil nitrogen level and the
fertilization events proposed by the PPO agent in 2014. The nitrogen uptake by the wheat and the
reward are shown in Fig. 2e,f respectively. Similar data for other years from the test set is shown in
Appendix A.4.

5 CONCLUSION

We introduce a new Gym environment to study fertilization strategies for crops and discuss the
considerations we made during the design process of the CropGym. We implement a reactive agent,
standard practise and an agent trained with PPO, which serve as a baseline for further investigations.
The PPO agent was able to learn strategies with a higher reward than the other agents for three out of
four years in the test set, which demonstrates that reinforcement learning agents are able to identify
policies with reduced environmental impact.

6 FUTURE WORK

Other farm management practices After further calibration of the more detailed process-based
model WOFOST, we intend to train an agent to learn policies for more management options, as
phosphorus and potassium fertilization. Learning irrigation policies and including weather forecast
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Figure 2: Agent performance. (a) Reward obtained by various agents. (b) The weight of the storage
organ at the end of the season. (c) The amount of fertilizer applied by the agents. (d) Nitrogen avail-
able in the soil as a function of time in the season starting in 2004. Gray bars indicate fertilization
events by the PPO agent. (e) Wheat nitrogen uptake. (f) Reward of the PPO agent.

data are other extensions we consider. The potential of reinforcement learning agents can be further
exploited at a large scale when using whole farm simulations, which take interactions between fields
and livestock farming into account (Holzworth, 2014; Rodriguez et al., 2014).

Environmental impact and climate change When coupling process-based crop growth models
to more detailed soil models, the interaction between fertilization, rainfall and irrigation can be taken
into account (Engel & Priesack, 1993; Groenendijk et al., 2016). Just as process-based models, the
CropGym can be used to study the effect of a changing climate on crop growth, to assess adaptations
of farm management strategies (Rodriguez et al., 2014).

Reality gap To get closer to the practical situation in the field, the environment can be modified to
a partially observable Markov Decision Process, in which the agent only observes variables which
can be realistically observed on a weekly basis. More accurate digital representations of crop growth
processes would also help to get closer to reality. These can be provided by tailored calibration of
process-based crop growth models, inclusion of other experimental data sources within the models
(Holzworth, 2014) or digital farm twins (Jans-Singh et al., 2020; Pylianidis et al., 2021).
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A APPENDIX

A.1 CROP GROWTH VARIABLES

Symbol Meaning Unit
DVS development stage -
LAI Leave area index -
TGROWTH Total biomass growth g/m2

NUPTT Total N uptake g N/m2

TRAN Crop transpiration rate m3 H2O/m2

TIRRIG Water applied by irrigation m3 H2O/m2

TNSOIL Soil nitrogen available g N/m2

TRAIN Total rainfall m3 H2O/m2

TRANRF Transpiration reduction factor mm/day
TRUNOF Soil runoff m3 H2O/m2

TAGBM Total above ground dry weight g/m2

TTRAN Water removed by transpiration m3 H2O/m2

WC Soil moisture content m3 H2O/m2

WLVD Dry weight of dead leaves g/m2

WRT Dry weight of roots g/m2

WLVG Weight green leaves g/m2

WSO Dry weight of storage organ g/m2

WST Dry weight of stems g/m2

A.2 WEATHER VARIABLES

Symbol Meaning Unit
TMAX Daily maximum temperature oC
TMIN Daily minimum temperature oC
VAP Mean daily vapour pressure hPa
RAIN Precipitation cm/day
IRRAD Daily global radiation J/m2/day

A.3 AGENT HYPERPARAMETERS

Standard practise agent The standard practise agent applied nitrogen on the following days, in
correspondence with Wiertsema (2015):

Date Amount of fertilizer
3rd of March 60 kg/ha
31st of March 60 kg/ha
5th of May 60 kg/ha

Reactive agent The reactive agent adds 120 kg/ha of nitrogen fertilizer whenever the soil nitrogen
drops below 5 kg/ha.

PPO agent The environment was normalized with the VecNormalize environment wrapper, with
a discount factor of γ=1, a normalized reward and observation clipping set to 10. The PPO agent
trained for 500.000 timesteps using default hyperparameters.
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A.4 AGENT RESULTS
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Figure A.1: Performance of the PPO agent in 1984, 1994 and 2014
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