
Towards Optimally Weighted Physics-Informed Neural Networks in Ocean
Modelling

Abstract
Understanding the ocean has particular relevance
with the emergence of the climate change phe-
nomenon. Nowadays, this is an essential task, but
also very expensive in the computational sense.
This work explores the benefits of using physics-
informed neural networks (PINNs) for solving
partial differential equations (PDEs) related to
ocean modeling; such as the Burgers, wave, and
advection-diffusion equations. We explore the
trade-offs of using data vs. physical models in
PINNs for solving partial differential equations.
PINNs account for the deviation from physical laws
in order to improve learning and generalization. We
observed how the relative weight between the data
and physical model in the loss function influences
training results. Additionally, we compare the vari-
ance of our results and analyze the implications
of activation functions for training neural network
derivatives.

1 Introduction
The ocean is mostly a fluid in almost permanent movement
– subjected to currents, tides, waves and other interactions –
where different organisms, atmosphere, and continents inter-
act. Therefore, in order to understand the ocean it is nec-
essary to take into account these fundamental characteris-
tics.Understanding the ocean gains particular relevance with
the emergence of the climate change phenomenon and, there-
fore, we need trying to model, forecast and device policies to
attempt to mitigate its effects.

Modeling oceanic fluid dynamics is essential but also very
expensive in the computational sense. Mathematical models
like the Navier-Stokes equations [Temam, 2001] can express
some processes of interest in fluid dynamics. Moreover, there
are a several equations that are of particular interest when
modelling the ocean that are the focus of this work. We refer
to [Griffies and Adcroft, 2008] for a brief review on the for-
mulation of models describing the thermo-hydrodynamics of
the ocean.

For solving a PDE computationally, methods like finite dif-
ferences, finite elements and finite volumes, have been suc-
cessfully implemented in the last decades [Allaire, 2007].

However, when the complexity of the problem is higher, such
as in higher dimensional settings, those methods seem to be
not efficient enough. Hence, in order to have high perfor-
mance computing, some methods have been developed, such
as reduction of dimensionality for parametric PDEs [Haas-
donk, 2017]. Those methods are currently in the frontier of
knowledge and have big open questions for certain PDEs, and
the state-of-the-art is strongly suggesting the development of
deep learning strategies [Ohlberger and Rave, 2015].

Physics-informed neural networks (PINNs) [Raissi et al.,
2019] is a technique based on the fact that every smooth (by
parts) function can be approximated by a neural network.
This fact is complemented by the training of the weights and
biases taking into account the information of the PDE and
the data, which is can be of two types: for simulations, it
is enough to consider a few amount of data, usually in the
boundary and in the initial condition; while for inverse prob-
lems, we need to take the enough data which depends on
the equation and the known results about inverse problems
in PDEs, usually a naive requirement is a big amount of data
taken from the whole spatio-temporal domain. Other setting
for simulations has also been considered; see, e.g., [Sirig-
nano and Spiliopoulos, 2018], where data for prediction can
be taken in random interior points. This idea is related to
[Mishra and Molinaro, 2022], where the authors show how
PINNs are able to predict the solution of a PDE by knowing
it in a small part of the domain.

In each general setting for PINNs, these networks are
trained by loss terms, one accounting for the deviation from
the data and the other from the physics under which the so-
lution is subjected. This extra constraint forces the network
to adhere to the physical law underlying the problem, and al-
lows it to improve its performance and to generalize better
to unseen data. The physical laws that we investigate consist
of temporal and spatial derivatives, which can be easily cal-
culated using the gradient evaluation technique employed for
backpropagation in everyday neural network training.

In addition, the balance between the physical and the data
parts is a crucial ingredient in the performance of PINNs,
such as reported in some works; see, e.g., [van der Meer et
al., 2020; Xiang et al., 2021]. As we will see in Section 2,
training the PINNs can be seen as a multi-objective learning
task, where we want to minimize the error with the data as
well as the error with a physical law. Hence, we have three

problems instead of one: minimizing the error with the data,
minimizing the error with the physical law, and the combina-
tion of training for both objectives.

This paper deals with the problem of predicting the solu-
tion of a PDE in space and time relying on PINNs. The PDEs
that are considered have a focus on ocean modelling. Our
main goal is provide an attempt at determining how the bal-
ance between the PDE and the data can improve the perfor-
mance of PINNs. By answering this question we aim to find
a procedure for efficient configuration of parameters with nu-
merical experiments inferred from the characteristics of the
problem and the data available.

The contributions of this papers are:
1. to study the influence of the physics information and the

scenarios where using it is more effective,
2. a first step towards the automatic parameterization of

PINNs using simple oceanographic models as test case,
and

3. we study the effects of other hyperparameters as the
length and width of the neural network and activation
functions on the optimal weight.

The rest of this paper is organized as follows. In Section 2,
we deal with the theoretical aspects of our work, that is, we
formulate the PINNs problem we study. In Section 3 we
present the equations of interest that we want to address with
the PINNs technique. In Section 4, we describe the experi-
mental setting of our numerical experiments. Then, in Sec-
tion 5 analyze the experimental studies involving PINNs for
the estimation of the solution and parameters of the PDEs. Fi-
nally, in Section 6 we put forward our conclusions of outline
out future work.

2 Physics-informed neural networks (PINNs)
PINNs are neural network models that are trained to obey
laws in physics described by partial differential equations
(PDEs). They can be used used to solve supervised tasks in
which we both minimize the error with respect to the data and
to the physics law. We define the loss function as follows

` = (1− λ)`data + λ`physics (1)

where `data is the loss with respect to the data, `physics is the
loss with respect to the PDEs of a physics law, and λ ∈ [0, 1]
is the relative weight of the physics loss. If f j is the error of
each physical condition, then using the mean-squared error
for both losses we obtain

` = (1− λ)

Nu−1∑
i=0

(yi − ŷi)2
+ λ

∑
j

Nf−1∑
i=0

(f ji)2 . (2)

Any neural network such as fully connected, recurrent, and
convolutional networks can be used, where we make use of
automatic gradient calculations as used by back-propagation
to compute derivatives of the output variables with respect to
the input variables. An example of such a network is shown
in Fig. 1, with f representing the PDE rewritten as f = 0.

The network is designed with input variables x, y, and t
and output variables û and v̂. The output variables are used

directly to calculate the data loss term, while for the physics
loss term we differentiate the variables with respect to the in-
put variables as needed for the physics loss function. Observe
that the neural network must have input variables that corre-
spond to the physics law’s derivative terms. That is, if ∂u

∂x
is part of our physics loss function, then x must be an input
variable and u an output variable of our neural network.

The objective is to train both in a supervisory manner with
measured or simulated data (i. e. `data), as well as training to
minimize the departure from the physics law. For a ML per-
spective, the `physics term ensures that the neural network gen-
eralizes better for unseen data by preventing overfitting. The
physics loss encourages that the output variables are not just
trained to a local region around the input values of the given
data, but that also their first and/or second-degree derivations
(depending on the PDEs) match with our physical under-
standing of the model thus spurring better predictive power
outside the region of the training data.

As it is a recent topic, there is not much literature about
weighted PINNs. Having optimal weights for the loss func-
tions in PINNs could help us to improve the performance of
deep learning solvers for PDEs and so make the computa-
tions cheaper than regular PINNs. In [van der Meer et al.,
2020], the authors propose optimal weights for linear PDEs
under the knowledge of boundary values and the differential
equation. They use the structure and properties of the PDEs
studied. In [Xiang et al., 2021], the authors propose a self-
adaptive loss balanced PINNs (lbPINNs) to solve the incom-
pressible Navier-Stokes equation by an empirical search of
the weights. In other works, for example, [van Herten et al.,
2020; He and Tartakovsky, 2020], the authors also chose em-
pirically the weights to the loss functions in PINNs for their
respective applications.

We also hypothesize that, even in cases where there is
a sufficient amount of data, adding a physics-informed loss
function can potentially lead to a better interpretability of the
trained model. This term can be seen as regularization term
that would prompt the network to create representations that
are consistent with the current knowledge of the phenomena.
This, then should allow in the future to have an easier inter-
pretation, assimilation, validation and acceptance by domain
experts.

In this work, we study the influence of the weight on a
validation quality metric, in particular the relative error of the
neural network solution. In addition, we study the effects of
other hyperparameters as the length and width of the neural
network and activation functions on the optimal weight.

3 Model equations related to the Ocean
We will study the numerical solution by PINNs of the follow-
ing three ocean modeling related equations:

• Burgers equation [Burgers, 1948]: We consider the fol-
lowing Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (3)

where ν is a diffusion coefficient. This equation usu-
ally appears in the context of fluid mechanics, and more

Neural network Physics information

x

y

t
...

...

û

v̂

I

∂∂x

∂∂y

[]∂2∂x2

etc.

f

`data(u, û, v, v̂)

`physics(f)

` = (1− λ)`data + λ`physics

Figure 1: Schematic representation of a physics-informed neural network with inputs x, y, and t; outputs û and v̂. In this work we applied
metaheuristics for determining the optimal hyperparameters for each case. Using automatic gradient calculation we can differentiate the
neural network by its input variables and construct a physics error function f . The loss function involves a loss term for the data and a loss
term for the physics function.

specifically models one-dimensional internal waves in
deep ocean. It represents a hyperbolic conservation
law as ν → 0 and it is the simplest model for ana-
lyzing the effect of nonlinear advection and diffusion
in a combined way. This equation appears often as a
simplification to understand the main properties of the
Navier-Stokes equations. It is a one-dimensional equa-
tion where the pressure is neglected but the effects of
the nonlinear and viscous terms remain, hence as in the
Navier-Stokes equations a Reynolds number can be de-
fined [Orlandi, 2000]. Notice that the Burgers equa-
tion (3) can be written as a physics loss term of (2) as
fBurgers[u] = 0.

• Wave equation: under certain suitable conditions, it can
be seen as a reduced model of the shallow-water equa-
tion which is a well-known model of the water height
behavior in coasts and channels [Stoker, 2011], which
is a simplification of Navier-Stokes equations in a free
boundary under certain suitable an realistic conditions.
The wave equation we consider is

∂2η

∂t2
−∇ · (H∇η) = 0 , (4)

where η : Ω×R+
0 → R represents the superficial fluctu-

ations of a water container or channel and H : Ω→ R+
0

is the depth of the water from a reference level. Equa-
tion (4) can be written as fwaves[η] = 0. This is where
the physics loss is taken from for this PDE.

• Advection-diffusion equation: models the distribution of
temperature T in the subsurface of water [Union, 2013].
This equation is obtained by using the energy conserva-
tion law and Fourier law of heat conduction. Assuming
that there are no sources nor sinks of heat, the advection-
diffusion equation takes the form

∂T

∂t
= ∇ · (D∇T)− u · ∇T , (5)

where T : Ω × R+
0 → R is the temperature in K, D

is the thermal diffusivity, and u is the groundwater ve-
locity field in m

s satisfying ∇ · u = 0, that is, the fluid
is assumed to be incompressible. This equation can de-
scribe the effects of the fluid flow through the subsurface
media on the temperature distribution in the surface. As
the previous equations, equation (5) can be written as a
physics loss term as fAD[T] = 0.

4 Experiments
In this section we describe the datasets preparation and the
setting of the PINNs experiments.

4.1 Datasets preparation
In order to generate data for training, validation, and testing,
we simulate the PDEs using a Fourier spectral method for
the one dimensional model, finite element methods (FEM)
for the wave equation and the explicit analytical solution for
the advection-diffusion equation. Simulations for the two-
dimensional problems were performed using FEniCS [Alnæs
et al., 2015].
Burgers equation We simulated the Burgers equation in
the spatiotemporal domain [0, L] × [0, T], using a Fourier
spectral method as described in [Basdevant et al., 1986]. The
diffusion coefficient is taken as ν =

(
0.01
π

)
. We consider the

initial condition

u(x, 0) = − sin(πx), with x ∈ (−1, 1) , (6)

and boundary conditions

u(1, t) = u(−1, t) = 0, with t ∈ (0, 1) , (7)

with N = 512 spatial points in a uniform grid in [−1, 1] and
100 points in time defined in a uniform grid in [0, 1].
Wave equation We simulate the wave equation in a rect-
angular domain in the time interval]0, Tf [, with Dirichlet
boundary conditions for η as

η = 0, on ∂Ω×]0, Tf [, (8)

and initial conditions on Ω

η(x, y, 0) = exp
(
−10 ·

(
(x− 0.5)2 + (y − 0.75)2

))
,

∂η
∂t (x, y, 0) = 0 .

(9)
On the other hand, the depth H is given by

H(x, y) = (1− x)(2− sin(3πy)) in Ω . (10)

We implement FEM in this equation considering Lagrange
finite elements of degree 1. The time scheme is explicit and
Tf = 1.0, n = 100.

Advection-diffusion equation We simulate the two-
dimensional advection-diffusion equation (5) for T =
T (x, y, t) in Ω× (0, Tf) where Ω = (0, Lx)× (0, Ly), where
Lx = Ly = 1.0 and Tf = 1.0. In addition, we con-
sider a constant diffusion coefficient, D = 0.02; the veloc-
ity is assumed to have only the horizontal components, that
is, u = (u, v), where u = cos(φ) and v = sin(φ), and
φ = 22.5◦. Let us consider the function

T̃ (x, y, t) =
1

4t+ 1
exp

(
− x2+y2+t2(u2+v2)−2t(xu+yv)

D(4t+1)

)
.

(11)
Notice that T = T̃ is a solution for the advection-diffusion
equation (5), so we will take the following boundary and in-
titial conditions:

T |∂Ω×]0,Tf [= T̃ |∂Ω×]0,Tf [, T |Ω×{t=0} = T̃ |Ω×{t=0}.

We generate this solution in a uniform unit square mesh with
40 points in each spatial dimension. This setting follows
[He and Tartakovsky, 2020], where the authors study PINNs
for advection-difussion equations, also considering different
weights.

4.2 Settings for PINNs
In this work we study the behavior of the relative error (val-
idation loss) with respect to the weight in the physical part,
for Burgers, wave, and advection-diffusion equations.

As part of the experimentation we assess different ac-
tivation functions. As our optimization problem is non-
convex, the stochastic gradient-descent Adam optimizer was
used [Kingma and Ba, 2017] with different learning rates
depending on the problem. The weights of the neural net-
work are initialized randomly using Xavier’s initialization
method [Glorot and Bengio, 2010]. As we intend to an-
alyze how activation functions play a role in learning the
derivations of PDEs the tanh, GELU, Softplus, LogSigmoid,
Sigmoid, TanhShrink, CELU, Softsign, and ReLU activation
functions.

We select a sample subset (Xi, Yi)∀i ∈ [0, Nu − 1] at
random from the entire solution space for training the data
loss, with Xi ∈ RD the D features and Yi ∈ RP the la-
bels of dimension P . For the physics loss we select a subset
Xi∀i ∈ [0, Nf −1] at random for which we evaluate the PDE
error. Note that for the physics loss the solution is not needed,
allowing applications to be able to train even when few data
are available of the solution. In general we pick Nu � Nf .

5 Results and discussion
See Table 1 for an overview of the used parameters for each
of the models. The hyperparameters, such as the number and
size of the hidden layers; the optimizer; and the number of
epochs, were chosen either manually or by a grid search. All
experiments were executed using Google Colab, a platform
to run notebooks on fast graphics processing units (GPUs).
The ability of GPUs to run calculations in parallel greatly en-
hances the speed of evaluating the neural network and calcu-
lating the gradients.1

To be able to compare the performance between models,
the validation data loss is calculated over the entire data set
and then normalized as

Relative Error =

√
MSE(Yval, Ŷval)

‖Yval‖2
, (12)

where Yval are the labels of the validation data set, Ŷval the
output of the neural network, and MSE the mean squared er-
ror. In the case of advection-diffusion the labels Yi have been
normalized to have zero mean and unit standard deviation to
bring down the scale of the temperature, which is in Kelvin, to
a range around zero. This obviates the need for the division
when calculating the relative error. Additionally, to reduce
the jitter in the loss while training, we use the lowest valida-
tion data loss of the last 250 epochs to calculate the relative
error.

Learning the optimal value of λ, the relative weighting of
the physics loss with respect to the data loss is a metalearn-
ing objective in order to improve subsequent training of the
same PINN. In Fig. 2 we show the results of evaluating differ-
ent problems using different values for Nu to find an optimal
value of λ. A sharp rise in the relative error can be observed
at λ = 0.0 and λ = 1.0, which are equivalent to training us-
ing solely the data loss or physics loss terms respectively. We
note that the optimal value for λ depends on the problem at
hand and specifically on the scale of the data loss versus the
physics loss. Normalizing the data set labels would in part
solve the problem, but the scale of the physics loss remains
hard to normalize. In our experiments however, we note that
for typical values of λ the comparison of the data and physics
loss remains roughly 0.1 < `data/`physics < 10.

Per problem we observe that at decreasing values for Nu,
the optimal value of λ shifts slightly towards 1.0. This trend
suggests that as data become more sparse, the physics loss
takes higher importance. As less data are available, the in-
formation input from the physics loss helps training signifi-
cantly, while the reverse holds as more data are available. At
the limit where Nu is sufficiently large to be able to train the
network autonomously, the optimal value of λ tends to zero.

In cases where few data points are known (i.e. Nu is small),
the choice of the sample subset can have a large influence on
training results. In Fig. 3a the relative error is shown for 25
random data subset selections with and without the physics
loss. The added physics loss term reduces the relative error,

1The data sets, source code, and results are available online
at https://github.com/Inria-Chile/assessing-pinns-ocean-modelling
and are released under the CeCILL license.

https://github.com/Inria-Chile/assessing-pinns-ocean-modelling

10 3

10 2

10 1

100

Va
lid

at
io

n
lo

ss

Burgers Nu = 500 AdvDif Nu = 2500

10 3

10 2

10 1

100Waves Nu = 500

10 3

10 2

10 1

100

Va
lid

at
io

n
lo

ss

Burgers Nu = 200 AdvDif Nu = 500

10 3

10 2

10 1

100Waves Nu = 200

0.0 0.2 0.4 0.6 0.8 1.0
Lambda

10 3

10 2

10 1

100

Va
lid

at
io

n
lo

ss

Burgers Nu = 100

0.0 0.2 0.4 0.6 0.8 1.0
Lambda

AdvDif Nu = 100

0.0 0.2 0.4 0.6 0.8 1.0
Lambda

10 3

10 2

10 1

100Waves Nu = 100

Figure 2: The relative error for different values of Nu and for different problems. Each dot represents the final value of the relative error
after training. We observe how the choice of λ affects training results, and we observe a slight shift to higher λ values as Nu decreases. The
dashed lines were added manually to aid in observing trends. For Burgers we note that the minimum shifts towards 1.0 as Nu decreases, and
for advection-diffusion the slope becomes more negative as Nu decreases. The wave equation is more less evident, but it can be seen that for
Nu = 500 and Nu = 200 the minimum lies around zero, while for Nu = 100 the trend has flattened and the results would be similar for
λ ∈ [0.1, 0.9] roughly.

Table 1: Parameters for each of the models. Here epochs are the numbers of iterations over the training set, and Nu and Nf are the number
of points used for the data loss and the physics loss respectively. Nval

u is the number of data points used to for the validation data loss.

Model NN setup Optimizer Epochs Nu Nf Nval
u

Burgers 8× 20 Adam (lr=0.001) 25000 100, 200, 500 12800 25600
Advec.-Diffusion 3× 40 Adam (lr=0.002) 20000 100, 500, 2500 5000 168100

Wave 5× 50 Adam (lr=0.001) 10000 100, 200, 500 10000 21800

Burgers AdvDif Waves
Model

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
la

tiv
e

er
ro

r

With physics loss
Without physics loss

(a) Errors with/without physics loss.

tanh GELU Softplus LogSigmoid Sigmoid TanhShrink CELU Softsign ReLU
Activation function

10 2

10 1

Re
la

tiv
e

er
ro

r

Burgers
AdvDif
Waves

(b) Relative error using different activation functions.

Figure 3: Summary of the experimental results. Fig. 3a shows results for 25 runs with and without physics loss for each of the models. For
Fig. 3b, Nu is 200, 500, and 200 and λ is 0.1, 0.5, and 0.002 for the Burgers, advection-diffusion, and wave equations respectively.

averaged over all three models, by 65% and reduces its stan-
dard deviation by 56%. PINNs thus improve training results
and reduce variability when the number of data points is low.

An analysis of how activation functions play a role in learn-
ing the derivations of PDEs, a comparison is made with nine
activation functions in Fig. 3b. Here we compare the tanh,
GELU, Softplus, LogSigmoid, Sigmoid, TanhShrink, CELU,
Softsign, ReLU activation function for their performance. It
can be observed that especially the tanh and GELU activa-
tion functions and to a lesser extend Softplus work well. The
ReLU function produces poor results due to its inability to
learn second or higher derivatives. Due to the fact that a DNN
using the ReLU activation function produces a piece-wise
linear function [Liu and Liang, 2021], its second derivative
is zero except at the points where the linear segments meet,
where it will be a Dirac function at x = 0, inhibiting learning
second derivatives or higher. The Softsign and CELU func-
tions have similar problems given their discontinuity of the
second derivative at x = 0.

6 Final remarks
Information from the PDE serves in cases where data avail-
ability is limited to the extent that it would either be unable to
train the network satisfactorily using solely the data, or where
results would vary widely depending on the selection of the
data points. The addition of the physics loss term both im-
proves training results and improves the stability of the train-
ing, even more so when the weight in the loss function is
optimal.

Finding the optimal weight of the loss function is a com-

plex problem and this is, to the best of our knowledge, the
first study to understand the behavior of it with respect to dif-
ferent hyperparameters and PDEs. In the future, we expect
to find the optimal weights using only the data available. In
addition, it is also the first attempt at the study of PINNs for
ocean modelling equations with very simplified geometries.
We expect to extend our results to more complex and realistic
geometries in order to use our results in real applications.

As λ has a dual role: the prior confidence in the training
data vs. the PDE and the scaling of these two terms, fu-
ture work could understand each role of this parameter, which
could be a possible explanation of why the optimal weight in
some of our experiments are so different between different
models. In addition, as we observed for very small data sets,
it would be interesting to find what “good” sample subsets of
the problem for training are more stable under optimization.
This would be the first step to estimate the minimal amount
of data required to train the neural networks in a robust way.

Future work on this topic is needed as it is required to de-
velop better models for understanding the ocean and integrate
those models with others that explain the interaction between
organisms and the environment. This is essential because of
the constantly changing nature of the ocean.

We believe that PINNs have the potential of providing such
tools, and therefore, serve as a building block of a more com-
prehensive solution that addresses the ultimate issue of under-
standing and mitigating the climate change crisis. However,
this potential also comes with important risks as using an in-
adequate, biased, or non-transparent tool could lead instead
to a deterioration. In this direction, as we already mentioned

in the paper, we are interested in combining PINNs with ex-
plainable AI and powerful visualization tools. Similarly, ex-
tended validation is necessary by domain experts.

Ethical Statement
There are no ethical issues.

Acknowledgments
References
[Allaire, 2007] Grégoire Allaire. Numerical analysis and op-

timization: an introduction to mathematical modelling and
numerical simulation. Oxford university press, 2007.

[Alnæs et al., 2015] Martin S. Alnæs, Jan Blechta, Johan
Hake, August Johansson, Benjamin Kehlet, Anders Logg,
Chris Richardson, Johannes Ring, Marie E. Rognes, and
Garth N. Wells. The FEniCS project version 1.5. Archive
of Numerical Software, 3(100), 2015.

[Basdevant et al., 1986] Cea Basdevant, M Deville,
P Haldenwang, JM Lacroix, J Ouazzani, R Peyret,
Paolo Orlandi, and AT Patera. Spectral and finite dif-
ference solutions of the burgers equation. Computers &
fluids, 14(1):23–41, 1986.

[Burgers, 1948] J.M. Burgers. A mathematical model illus-
trating the theory of turbulence. volume 1 of Advances in
Applied Mechanics, pages 171–199. Elsevier, 1948.

[Glorot and Bengio, 2010] Xavier Glorot and Yoshua Ben-
gio. Understanding the difficulty of training deep feed-
forward neural networks. In Yee Whye Teh and Mike Tit-
terington, editors, Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics,
volume 9 of Proceedings of Machine Learning Research,
pages 249–256, Chia Laguna Resort, Sardinia, Italy, 5
2010. PMLR.

[Griffies and Adcroft, 2008] Stephen M Griffies and Alis-
tair J Adcroft. Formulating the equations for ocean mod-
els. Ocean modeling in an eddying regime, 177:281–317,
2008.

[Haasdonk, 2017] Bernard Haasdonk. Reduced basis meth-
ods for parametrized pdes–a tutorial introduction for sta-
tionary and instationary problems. Model reduction and
approximation: theory and algorithms, 15:65, 2017.

[He and Tartakovsky, 2020] QiZhi He and Alexandre M Tar-
takovsky. Physics-informed neural network method for
forward and backward advection-dispersion equations.
arXiv preprint arXiv:2012.11658, 2020.

[Kingma and Ba, 2017] Diederik P. Kingma and Jimmy Ba.
ADAM: A method for stochastic optimization, 2017.

[Liu and Liang, 2021] Bo Liu and Yi Liang. Optimal func-
tion approximation with ReLU neural networks. Neuro-
computing, 435:216–227, 2021.

[Mishra and Molinaro, 2022] Siddhartha Mishra and
Roberto Molinaro. Estimates on the generalization error
of physics-informed neural networks for approximating
a class of inverse problems for pdes. IMA Journal of
Numerical Analysis, 42(2):981–1022, 2022.

[Ohlberger and Rave, 2015] Mario Ohlberger and Stephan
Rave. Reduced basis methods: Success, limitations and
future challenges. arXiv preprint arXiv:1511.02021, 2015.

[Orlandi, 2000] Paolo Orlandi. The Burgers equation, pages
40–50. Springer Netherlands, Dordrecht, 2000.

[Raissi et al., 2019] M. Raissi, P. Perdikaris, and G.E. Karni-
adakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal
of Computational Physics, 378:686–707, 2019.

[Sirignano and Spiliopoulos, 2018] Justin Sirignano and
Konstantinos Spiliopoulos. DGM: A deep learning algo-
rithm for solving partial differential equations. Journal of
Computational Physics, 375:339–1364, 12 2018.

[Stoker, 2011] James Johnston Stoker. Water waves: The
mathematical theory with applications, volume 36. John
Wiley & Sons, 2011.

[Temam, 2001] Roger Temam. Navier-Stokes equations:
Theory and numerical analysis, volume 343. American
Mathematical Soc., 2001.

[Union, 2013] J Ind Geophys Union. Advection diffusion
equation models in near-surface geophysical and environ-
mental sciences. J. Ind. Geophys. Union (April 2013),
17(2):117–127, 2013.

[van der Meer et al., 2020] Remco van der Meer, Cornelis
Oosterlee, and Anastasia Borovykh. Optimally weighted
loss functions for solving PDEs with neural networks.
arXiv preprint arXiv:2002.06269, 2020.

[van Herten et al., 2020] Rudolf LM van Herten, Amedeo
Chiribiri, Marcel Breeuwer, Mitko Veta, and Cian M
Scannell. Physics-informed neural networks for my-
ocardial perfusion mri quantification. arXiv preprint
arXiv:2011.12844, 2020.

[Xiang et al., 2021] Zixue Xiang, Wei Peng, Xiaohu Zheng,
Xiaoyu Zhao, and Wen Yao. Self-adaptive loss balanced
physics-informed neural networks for the incompressible
navier-stokes equations. arXiv preprint arXiv:2104.06217,
2021.

	Introduction
	Physics-informed neural networks (PINNs)
	Model equations related to the Ocean
	Experiments
	Datasets preparation
	Settings for PINNs

	Results and discussion
	Final remarks

