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Fábio G. Cozman1 , Anna H. R. Costa1 , Edson S. Gomi1 , Eduardo A. Tannuri1
Center for Artificial Intelligence (C4AI) – University of Sao Paulo, Brazil
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Abstract
In this work we improve forecasting of Sea Surface
Height (SSH) and current velocity (speed and di-
rection) in oceanic scenarios. We do so by resorting
to Random Forests so as to predict the error of a nu-
merical forecasting system developed for the San-
tos Channel in Brazil. We have used the Santos Op-
erational Forecasting System (SOFS) and data col-
lected in situ between the years of 2019 and 2021.
In previous studies we have applied similar meth-
ods for current velocity in the channel entrance, in
this work we expand the application to improve the
SHH forecast and include four other stations in the
channel. We have obtained an average reduction
of 11.9% in forecasting Root-Mean Square Error
(RMSE) and 38.7% in bias with our approach. We
also obtained an increase of Agreement (IOA) in 10
of the 14 combinations of forecasted variables and
stations.

1 Introduction
Forecasting of metocean conditions in coastal regions and
waterways is an essential task in planning coastal and nav-
igation operations. Forecasts of current and sea surface
height (SSH) of water bodies have traditionally been made
through numerical models that rely on the solution of sim-
plified Navier-Stokes equations. Those models have inherent
errors due to simplifications and uncertainties in parameters
and boundary conditions.

An alternative to numerical models is to use machine learn-
ing (ML) to infer patterns in previous data measured in the
region of interest and thus provide a forecast based only on
the interpolation and extrapolation of those patterns observed
in the past. However, since ML models only rely on corre-
lations between data, thus ignoring the underlying physics of
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the problem, they fail if there is a change in the distribution
of the data.

A recent and promising line of work consists of combin-
ing ML with physics-based models — often referred to as
Physics-Informed Machine Learning (PIML). Such an ap-
proach aims to take advantage of both the power of pattern
recognition given by ML approaches and the power of gen-
eralization in unseen scenarios given by the physics-based
model.

This work expands on our previous work [Moreno et al.,
2022] where PIML was used to correct the error predicted
by a numerical model of the speed of water current in a
measuring station. Our main contribution here consists of
inserting a correction for the direction of the water current
and the sea surface height (SSH) predicted by the numeri-
cal model into the PIML model. In addition, we expand the
corrections to other measurement stations in the Santos-São
Vicente-Bertioga Estuarine System region on the Brazilian
coast. By producing a direct estimate of the numerical model
error, one can correct the model and improve the prediction
accuracy.

Section 2 introduces works that also used ML models to
correct predictions made by numerical models. Section 3 ex-
plains in detail our proposal, while Section 4 describes the
experimental setup and the experiments conducted. Section
5 presents the results of the experiments performed and some
discussion. Finally, Section 6 presents our conclusions and
highlights future work.

2 Related Work
PIML is a relatively recent but already vast field of study;
review articles such as those by [Willard et al., 2020] and
[Kashinath et al., 2021] compile a myriad of applications that
already embed ML with physics-based models for different
purposes.

Some forecasting applications benefit from using tradi-
tional ML techniques to improve the results of physics-based
models. For example, [Xu and Valocchi, 2015] use Random
Forests (RF) and Support Vector Machine (SVM) to improve



the predictive accuracy of groundwater flow numerical mod-
els and provide more robust prediction intervals. We now list
a few other proposals in the literature that are most relevant
to our purposes.

[Eccel et al., 2007] perform a comparison of linear and
nonlinear ML models as methods for post-processing the di-
rect outputs of numerical weather forecast models to reduce
the biases introduced by a coarse horizontal resolution. The
system was used to predict minimum temperatures in a re-
gion of the Italian Alps. Artificial Neural Networks (ANN),
RF, and a Multi-Linear Model were evaluated, showing simi-
lar performance.

[Cho et al., 2020] evaluate the use of RF, SVM, ANN, and
a multi-model ensemble to correct a numerical weather pre-
diction model that outputs next-day maximum and minimum
air temperatures in Seoul, South Korea. Hence ML is used
to mitigate the systematic bias in air temperature forecasting
caused by a coarse grid resolution and lack of parameteri-
zations of the numerical model. The study showed that the
multi-model ensemble had better generalization performance
than the three single ML models.

As shown in the literature, the physical model error is one
of the main obstacles to improving the accuracy and reliabil-
ity in numerical weather and climate prediction. [Bonavita
and Laloyaux, 2020] use Multi-Layer Perceptron ANN with
three layers to model error estimation and correction in
the numerical model temperature and pressure prediction.
[Vashani et al., 2010] make a comparative evaluation of dif-
ferent ML post-processing models for numerical prediction
of temperature forecast over Iranian territory, concluding that
ANN provides the best results. Another type of ANN, Convo-
lutional Neural Networks (CNNs), have been used to reduce
temperature forecasting errors in the Scandinavian Peninsula
[Isaksson, 2018]. In that work a CNN receives a grid of fore-
casted values of temperature and other environmental param-
eters, and produces forecasts with smaller errors than those
obtained with a Kalman filter post-processor. CNNs have
also been employed by [Chapman et al., 2019] to learn and
correct North American atmospheric river forecasts, and by
[Scher and Messori, 2018] to predict uncertainty in weather
forecast.

Finally, our previous work also applied RF in order to learn
the error model of the forecast of sea surface current speed
made by a numerical model for the entrance of the Santos
Channel, in Brazil [Moreno et al., 2022]. In that work we
only corrected the current speed in one station, while in the
present paper we improve the PIML model by expanding its
application to other stations and other two variables types,
current direction and SSH.

3 A Proposed SOFS + RF Architecture
We propose a PIML approach to improve the prediction made
by the Santos Operational Forecasting System (SOFS) [Costa
et al., 2020] in the Santos Channel, a key sea region in Brazil.
The Santos Channel (see Figure 1) provides access to the San-
tos Port Complex, the largest port in Latin America with an
yearly handling of about 145 million tons of cargo. The chan-
nel contains 5 measurement stations maintained by the Ma-

Figure 1: The top images are panoramic views of the Brazilian coast,
to locate the Santos Channel. The bottom image shows the Santos
Channel, and the five markers indicate the location of measuring
stations kept by the Port Authority. Map Source: Google Maps.

rine Pilots, where current and SSH measurements are cap-
tured. In addition, there are weather sensors in the region.
A numerical model based on physics is implemented within
SOFS so as to forecast relevant quantities.

Physics-informed techniques in machine learning can in-
corporate the physics of a domain of interest in different
forms, as described for instance by [Willard et al., 2020].
Some approaches incorporate the physics directly into the
architecture used to learn various quantities, for example by
taking equations to guide the loss function of an ANN during
training. Other approaches are inspired by the physical prob-
lem so as to guide the design of the architecture, for example
by providing the same boundary conditions used for a numer-
ical model solver as inputs of the ML. Another approach is to
use a stand alone numerical model and use the ML algorithm
to correct its output by either estimating the model error or
pondering it with other runs made with perturbed inputs.

Because we have a numerical model already in use for the
variables we are interested in, we adopted the third approach
by developing an architecture that uses Random Forests (RFs)
as an ML model to estimate the SOFS error, which is then
corrected in a post-processing phase. RF was chosen for its
simplicity, effectiveness and efficiency, also demonstrated in
previous work [Eccel et al., 2007]. However, it is worth not-
ing that any other ML model or even an ensemble of ML
models could be used for this function, as for instance argued
by [Cho et al., 2020].



Figure 2: Our proposed Architecture. The training phase is illustrated in the left, where the ML model learns to estimate the SOFS error from
the values of its input variables. The operation phase is illustrated in the right, which receives the input variables together with the SOFS
estimate and provides the corrected estimate value at the output. There is an ML model trained specifically for each target variable and Pn

sensor station.

The target variables estimated by our architecture are the
current speed and direction, and SSH at each time step of the
SOFS forecast. A distinct RF is trained for each pair of target
variable and measurement station Pn, with n ∈ {1, 2, 3, 4, 5}
(see Figure 1), using the numerical model predictions and
sensor data. Once the ML model is trained, the RFs are then
used to correct the SOFS prediction error in the operation
phase.

An overview of the architecture is depicted in Figure 2.
The data used by the PIML architecture comes from the
SOFS model and sensors. The SOFS model, the collected
data, and the training and operating phases of the PIML ar-
chitecture are described in the following.

3.1 The Santos Operational Forecasting System

The numerical model used for this work is the SOFS, a
forecasting system based on the Princeton Ocean Model1
named POM-rain module that provides forecasts of currents,
SSH, salinity and temperature up to three days ahead for the
Santos-Sao Vicente-Bertioga Estuarine System.

The SOFS model is based on the Navier-Stokes equation,
considering Boussinesq approximation, hydrostatic pressure
and an incompressible fluid. The system deals with the fol-
lowing equations:

1http://www.ccpo.odu.edu/POMWEB/
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where η is the SSH and V⃗ = [u, v, w] are water velocities in a
Cartesian coordinate system where x and y axis are horizon-
tal, and the z axis is vertical. Other parameters of this equa-
tion are the total water column depth H , Coriolis acceleration
f , water density ρ, water reference density ρ0, gravitational
acceleration g, pressure p and stresses τi = [τix, τiy, τiz] in
the direction i due to both shear (such as viscosity and wind
stress) and Reynolds stress.

The first equation is the continuity equation, assuming wa-
ter incompressibility; it indicates that the variation in water
elevation at a given point is equal to the difference between
the volume of water that enters and exits the water column
at that point. The three remaining equations are the Navier-
Stokes momentum balance in three directions, considering
advection and Coriolis accelerations in the left side of the
equation and pressure gradient, stresses and buoyancy forces
in the z direction in the right side.

SOFS works with two grids, one larger encompassing
the coastal region from Southeast Brazil, and a nested grid



of finer resolution, encompassing the Santos-São Vicente-
Bertioga Estuarine System, as shown in Figure 3.

For the coarser grid, this model incorporates atmospheric
boundary conditions from the Center for Weather Forecasts
and Climate Studies (CPTEC, Portuguese acronym), currents
in the open boundary is obtained from the Copernicus Marine
Environment Monitoring Service Mercator (CMEMS), and
tides in the boundary were obtained by astronomical compo-
nents for the region. Boundary conditions for the nested grid
are obtained from the coarser grid. It uses a three-dimensional
grid with Sigma vertical coordinates and Arakawa C-grid for
horizontal coordinates.

The SOFS model is also split into two modes, an external
mode where the 2D equations are solved considering mean
values for the entire water column and that is solved using a
faster time-step of 0.8s, and an internal mode where the 3D
equation system is solved in a time-step of 4 seconds.

The historical data available for this system is composed
of daily forecast events, each one consisting of 8 forecasting
steps with a time-step of 3 hours. The initial forecast step is
around midnight GMT and the last one is around 21:00 GMT.
The forecast is available for all grid points of the system, as
shown in Figure 3, but for this work we selected only the
points closest to the measuring stations as shown in Figure 1.
The selected period is between January 1st, 2019 and March
19th, 2021.

3.2 In Situ Measured Data
The measured current velocities and SSH used in this project
were acquired from Sontek SL Acoustic Doppler Current
Profilers (ADCP) installed in the channel; other measure-
ments are obtained from a weather station installed in station
P4 (see Figure 1). The measurements available are 5 minute
averages of surface current speed and direction for all the 5
stations, 10 minutes averages of SSH for stations P2 through
P5, and 5 minutes average, minimum and maximum values
of wind, temperature, rainfall and relative humidity as well as
average atmospheric pressure for the P4 station.

Data collection in the channel is carried out by the San-
tos Port Authority. Over time, sensors have been installed
in the region to increase spatial coverage and the variety of
data available. For this work, we selected the same time win-
dow used for SOFS, covering between January 1st, 2019 and
March 19th, 2021, except for SSH at stations P2, P3, P5,
where the measurement started December 1st, 2019, and for
SSH at station P1 where no measurement is available. Data
coverage for the selected time range depends on the data type
and station. For example, the weather station at P4 has about
4.8% missing data for wind, temperature, and rain, and 1.5%
for SSH in the selected time window.

3.3 PIML training phase
In the training phase of each ML model, following the super-
vised paradigm, a training dataset is used consisting of pairs
⟨input variables , desired value of target variable⟩.

The measured target variable — either current speed,
current direction or SSH — for station Pn, with n ∈
{1, 2, 3, 4, 5}, in time step t, with t ∈ {0, 1, 2, ..., 7}, is given
by targetPn,t. The ML model uses as input variables for

Figure 3: Top: Coarser grid of the SOFS encompassing the South
Brazilian Bight with indication of the localization of the nested grid.
Middle: nested fine grid for the Santos-Sao Vicente-Bertioga Estu-
arine system. Bottom: detail of the grid in the entrance of the Santos
Channel, the points shown as Palmas, Praticagem and Capitania are
respectively stations P5, P4 and P3 in Figure 1. Source: [Costa et
al., 2020].

the training phase the weather data observed at station P4 at
the beginning of the forecast, and the SOFS forecast error
for the respective target variable, station, and respective fore-
cast step, SOFSerrortarget,Pn,t. The SOFS forecast error
for the respective target variable, station, and respective fore-
cast step, SOFSerrortarget,Pn,t is given by the difference
between the value predicted by SOFS for the target variable,



Measured Data SOFS Forecast Data Target Variables
Forecast step SSH SSH

Wind . . . Precip- (One-Hot Curr. Curr. SSH temporal spatial Current speed error
Spd. tation encoded) Spd. Dir. difference difference

(m/s) (mm) 0 1 ... 7 (m/s) (°) (m) (m) (m) (m/s)
3.67 ... 0 1 0 ... 0 0.35 92.3 2.11 0.40 0.06 -0.03
3.67 ... 0 0 1 ... 0 0.24 85.6 1.71 0.56 0.07 -0.06
3.67 ... 0 0 0 ... 0 0.13 248.6 1.15 0.12 0.24 0.08

...
...

...
...

...
...

...
...

...
...

...
...

...

Table 1: Example of the training dataset structure for current speed as the target variable. Some measured data columns were omitted for
brevity.

SOFStarget,Pn,t and the measured value of the same target
variable at the respective station, targetPn,t. For example,
for the SSH target variable and station P5, comes:

SOFSerrorSSH,P5,t = SOFSSSH,P5,t − SSHP5,t.

Once the training database is built, given by pairs of the
type

⟨{weather − datat=0, SOFS − dataPn,t

, targetPn,t}, SOFSerrortarget,Pn,t⟩,

the ML model is trained until a stopping condition is met.
The ML model trained from the PIML model can then be

used in the operation phase.

3.4 PIML operation phase
In the operating phase, the ML model receives as input the
same variables used as input in the training phase, and pro-
vides as output the SOFS error estimate for the respective tar-
get variable, measurement station and prediction time step,
SOFSerrortarget,Pn,t.

However, now the ML model output is subtracted from the
prediction made by SOFS in the same step, for the same sta-
tion and target variable, SOFStarget,Pn,t, resulting in a cor-
rected prediction for the target variable as the output of the
PIML system, targetPn,t:

targetPn,t = SOFStarget,Pn,t − SOFSerrortarget,Pn,t.

4 Experimental Setup
By merging both the SOFS and measured data it is possible
to assemble a single training dataset for each combination of
station Pn and target variable to train the ML model. An
example of the dataset structure is shown in Table 1. Each
row of the training dataset contains one forecasting step of
the SOFS model for SSH and currents, the difference in fore-
casted SSH between the current and next SOFS step, the dif-
ference in forecasted SSH between the current and previous
station in the channel, the forecast step in One-Hot Encoding,
the measured values of wind, temperature, pressure, precipi-
tation, relative humidity, and SSH in station P4 for the initial
forecast step of SOFS, and the target variables. We decided to
add the temporal and spatial SSH differences due to the SSH
importance in driving the currents in the channel.

To obtain the target variables, as explained in Section 3.3,
we subtract the measured values from the values predicted by
the SOFS model, taking into account the closest measurement
taken in time to the respective SOFS forecast step, within a
maximum acceptable difference of 30 minutes. If there was
no measurement available within 30 minutes of the forecast
step time, we discarded the respective full day. Other data
treatments would be possible, but our choice led to the desired
analysis.

The direction error is expressed in the range between -180°
and 180°, taking the angle wrapping around 0°(0°=360°).

The measured data in each row is the latest measurement
available right before the first forecast step of the daily fore-
cast event. If there is no measurement up to 30 minutes before
the first forecast step, we discard the entire day. The measure-
ment data that is used as input is composed of all variables
measured in the weather station and the SSH variable at the
station P4.

The ML model selected to predict the SOFS error is a Ran-
dom Forest Regressor (RF), available in the Python Package
Sklearn, due to the simplicity of tuning its hyperparameters
and its characteristic of averaging the target variable values
seen in the training dataset, avoiding predicted errors above
what has been seen in the past. In a previous work [Moreno
et al., 2022], we used Quantile Regression Forests. However,
we fond in that previous work that the obtained uncertainty
range was too wide to be useful, so we have decided to move
to the RF model.

We ran a 5-fold cross validation using random search to
find the best hyperparameters of the RF model. The random
search approach was performed with 50 random samples at
the intervals shown in the table 3. We used the inital 80% of
the dataset for the cross-validation and model training, and
reserved the remaining 20% for testing.

The hyperparameter optimization was carried on an Intel
i7-11800h, taking on average 50 minutes to cross-validate the
model for 50 points in the hyperparameter space.

The random search selected the hyperparameters that max-
imized the Index of Agreement (IOA). The IOA is given by

IOA = 1−
∑n

i=1(Oi − Pi)
2∑n

i=1(|Pi −O|+ |Oi −O|)2
, (2)

for a sequence of n observations Oi ∈ {O1, O2, ..., On} with
mean O, and predicted values Pi ∈ {P1, P2, ..., Pn}.



SOFS IOA SOFS+RF IOA
Station Current Current

Speed Direction SSH Speed Direction SSH
P1 0.409 ±0.151 0.334 ±0.175 - 0.370 ±0.133 0.581 ±0.170 -
P2 0.528 ±0.193 0.636 ±0.281 0.922 ±0.113 0.516 ±0.195 0.662 ±0.288 0.933 ±0.115
P3 0.563 ±0.203 0.688 ±0.159 0.880 ±0.141 0.556 ±0.200 0.671 ±0.162 0.886 ±0.137
P4 0.591 ±0.231 0.754 ±0.185 0.945 ±0.051 0.622 ±0.227 0.783 ±0.181 0.958 ±0.047
P5 0.483 ±0.193 0.585 ±0.221 0.944 ±0.083 0.553 ±0.182 0.668 ±0.206 0.953 ±0.076

Table 2: Index of Agreement obtained with the combination of SOFS and Random Forests, compared with results obtained with the SOFS
model alone.

Hyperparameter Interval Steps
Number of features 3 - 15 2
Max. tree depth 5 - 60 5
Min. samples for split 2 - 42 4
Min. samples in leaf 1 - 25 4
Number of trees 50 - 1500 50
Loss Metric MAE, MSE -

Table 3: Hyperparameters types and ranges tuned for the post pro-
cessor. Random search was made inside the interval shown in this
table. MAE and MSE stand for ”Mean Absolute Error” and ”Mean
Squared Error”, respectively.

The training dataset was then used to train the RF model
with the best hyperparameters found in the Cross-Validation.
The model was then evaluated in the test dataset, in the oper-
ation phase desribed in Section 3.4. The results os the evalu-
ations carried out are described in the following.

5 Results
We used the Wilcoxon test to decide whether the distribution
of values forecasted by the SOFS model and the PIML model
that combines SOFS with the RF model (SOFS+RF) are dif-
ferent.

The Wilcoxon signed-rank test is a non-parametric hypoth-
esis test that is used to verify if two distributions are different
in a statistically significant way. To measure the model per-
formance we decided to use the Index of Agreement (IOA),
a typical performance metric used to evaluate metocean fore-
casting models. The IOA metric was calculated for each fore-
cast day in the test dataset. IOA average and standard devia-
tion is shown in Table 4.

The results show that there is an increase in the IOA when
the PIML model is employed. The amount of the increase
depends on the parameter of interest and the location of the
station. For some stations, the improvement in the IOA for
the current direction was marginal or non-existent. The im-
provement obtained for the SSH variable was also small, but
this may be due to the high IOA values obtained using the
SOFS model, which already shows very good effectiveness,
leaving only a small margin for improvement. Current speed
prediction using the PIML system, on the other hand, showed
a more consistent increase in the IOA metric for all stations.

We also have calculated the Root-Mean Square Error
(RMSE) for both the SOFS model and the PIML system.

SOFS SOFS+RF
Station Current Current

Speed Dir. SSH Speed Dir SSH
(m/s) (°) (m) (m/s) (°) (m)

P1 0.089 117.9 - 0.071 91.5 -
P2 0.126 82.1 0.137 0.109 75.6 0.116
P3 0.187 79.3 0.189 0.166 65.4 0.196
P4 0.178 72.3 0.125 0.159 62.4 0.105
P5 0.090 86.8 0.125 0.074 75.7 0.109

Table 4: Comparison of Root-Mean Square Error for both SOFS and
SOFS+RF.

RMSE decreases for all variables and stations when using the
PIML model, except for SSH predictions in the P3 station.
One possible explanation for this behavior is a distribution
shift between the training and test data.

We also have calculated the Wilcoxon test to ver-
ify whether the distribution of predictions obtained with
SOFS+RF is different from the SOFS model. If we consider
the typical threshold of p ≤ 0.05 to reject the null hypothesis,
we can observe that in the majority of cases the distribution
obtained with the SOFS+RF system is different from the one
produced with the SOFS model. It can be claimed that the
PIML system (SOFS+RF) produces statistically better results
than the SOFS model.

Wilcoxon Test
Station Current

Speed Direction SSH
P1 < 0.001 0.491 -
P2 < 0.001 < 0.001 < 0.001
P3 0.001 < 0.001 < 0.001
P4 < 0.001 < 0.001 < 0.001
P5 < 0.001 0.055 < 0.001

Table 5: P-values for the Wilcoxon test for the distribution of pre-
dictions of SOFS and SOFS+RF.

We have also employed histograms to visualize the distri-
bution of forecasts errors of the SOFS and the SOFS+RF, as
shown in Figures from 4 to 8. As can be seen, the use of the
RF post-processor changes the error distribution. Ideally the
post-processor would generate a narrow distribution centered
around zero. The error distributions obtained by application



SOFS SOFS+RF
Station Current Current

Speed Dir. SSH Speed Dir SSH
(m/s) (°) (m) (m/s) (°) (m)

P1 0.037 19.2 - 0.001 16.4 -
P2 0.030 22.7 0.010 0.022 18.9 0.005
P3 0.050 23.6 0.050 0.042 10.6 0.097
P4 0.054 18.1 0.034 0.041 1.5 0.019
P5 0.027 5.3 0.029 0.006 3.4 0.004

Table 6: Comparison of the error distribution absolute bias for the
SOFS and the SOFS+RF.

of the RF post-processor have on general a mean closer to
zero in most cases, or lower bias, specially for SSH forecasts
when compared to the SOFS alone. A comparison between
absolute biases with and without the post-processing for each
station is shown in Table 6, where the bias is computed by
calculating the average error obtained in the respective case.
The only case where the bias increased by applying the post-
processor is for SSH in station P3, the same one that saw an
increase in RMSE after application of the post-processor.

The improvement due to the post-processor is most evident
in the histograms in cases where the SOFS model has does
not produce accurate forecasts, such as the case for current
directions in P1 and P5, where the lower current speeds make
the direction forecast more prone to error, or in P4, where
the SOFS model has a positive or negative error depending
if the current is entering or exiting the channel, producing a
two peaked distribution. When compared to previous results
in the region, the decrease in bias obtained from this post pro-
cessor is smaller, but this might be due to the fact that the train
and test datasets were split into two continuous time-series in
this paper, while they were split at random in the previous
study.

6 Conclusions
In this paper we have presented a Physics-Informed Machine
Learning approach to reduce the forecasting error of surface
currents and SSH in the Santos Channel, Brazil, by predicting
the forecasting error of the SOFS model, a numerical model
already in use for the region.

In our PIML approach we used Random Forests (RF) to
predict the SOFS error by taking into account, as inputs, both
the SOFS forecasts and sensor data. An RF model was trained
for each combination of target variable (current speed, current
direction and SSH) and channel location (points P1 to P5 in
Figure 1), resulting in 15 different models. The best hyperpa-
rameters for each RF were found by 5-fold cross-validation
in a training dataset containing 80% of the data, using the In-
dex of Agreement (IOA) as a metric for performance. Once
the RFs are trained, they can be used as a post-processor to
correct the SOFS forecasts.

This post-processor was tested on a dataset not previously
seen in training, and its performance was measured using IOA
and RMSE as metrics. The results show that the use of that
post-processor increased IOA in all stations for SSH, in 4 out
of 5 for current direction, and in 2 out of 5 stations for current

speed, while the RMSE decreased for all combinations of tar-
get variables and stations, except in the case of the SSH for
the P3 station. One possibility is that the increase in RMSE
for that specific case is due to distribution shift, but further
analysis is still required to find the root causes.

Several opportunities arise as this investigation continues.
As an immediate next step, we intend to improve the pro-
posed PIML architecture with tests and comparisons using
other ML models as post-processors. We also intend to ex-
periment with architectural modifications so that more infor-
mation can be used as inputs to the post-processor, as in this
version our post-processor uses measured data obtained only
immediately before the first prediction step. Another pro-
posal is to use Long Short-Term Memory (LSTM) Neural
Networks or Transformers to encode an arbitrary long time
series of measurements taken just before the prediction event
into a fixed-length input that will provide more information
for predictions.
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