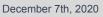
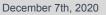

OcéanIA AI, Oceans and Climate Change

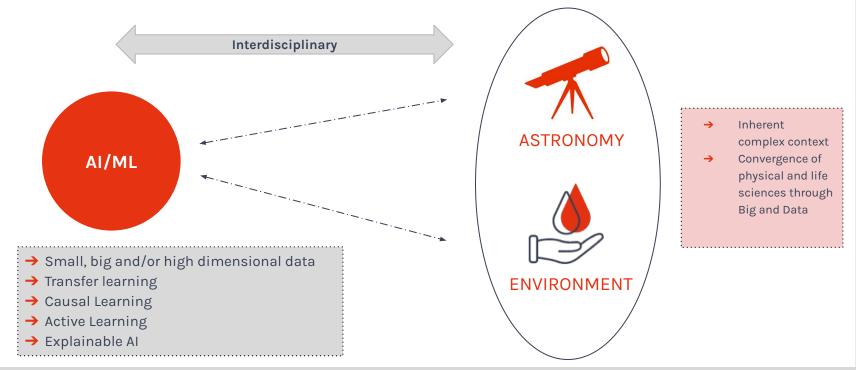
Nayat Sánchez Pi Director Inria Research Center in Chile

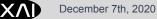


Diversity in Natural Resources: Atacama desert


Ínría_

Diversity in Natural Resources: Antarctica





Ínría_

Challenging enough to AI/ML

Inria Challenge

OcéanIA:

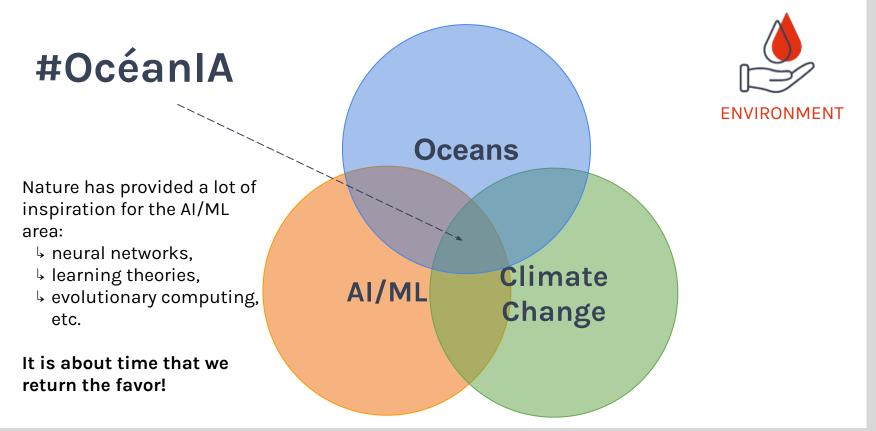
Artificial Intelligence and Modelling for Understanding Climate Change

https://oceania.inria.cl/

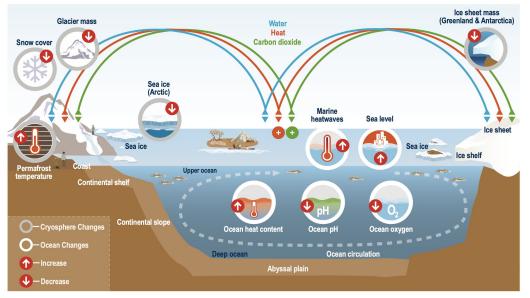
Ο C É A N I A

ARTIFICIAL INTELLIGENCE AND MODELING FOR UNDERSTANDING OCEANS AND CLIMATE CHANGE

76				A. C. S.	
7	ABOUT	GOALS	TEAM MEMBERS	PUBLICATIONS	NEWS


O INRIA CHILE - OCÉANIA IS AN INRIA CHALLENGE PROJECT

Environment



Climate Change and the Ocean

Source: H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, E. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.- O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.).

NEURAL INFORMATION PROCESSING SYSTEMS

8

Environment

December 7th, 2020

• TARA OCEANS (2009-2013) : First global study of the planktonic ecosystem

TARA MÉDITERRANÉE EXPEDITION 2014

• TARA MEDITERRANEAN (2014) : Study of the impact of plastic on the marine ecosystem in the Mediterranean

tara PACIFIC

• TARA PACIFIC (2016-2018) : Study of the adaptive capacity of coral reefs to climate change

Mission Microplastiques

• MICROPLASTICS (2019) : First study of river sources of microplastics on a European scale

11 missions including 5 major expeditions 100,000 microscopic marine species discovered Over 150 milion marine genes discovered Almost 200,000 viruses characterized Over 150,000 samples collected

9

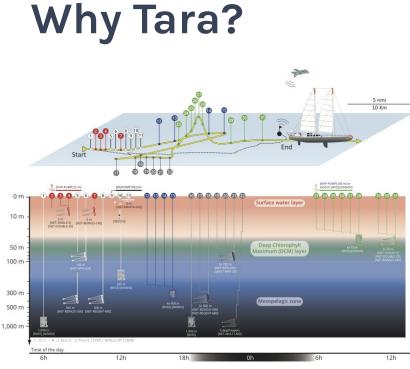
NEURAL INFORMATION PROCESSING SYSTEMS

TARA Oceans

Expedition Feb - May 2021

Mission Microbiome -CEODOS

Understand the ocean environment, climate change, its impact and mitigation.

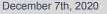


Environment

Source: Pesant, S., Not, F., Picheral, M., Kandels-Lewis, S., Le Bescot, N., Gorsky, G., Iudicone, D., Karsenti, E., Speich, S., Trouble, R., Dimier, C., & Searson, S. (2015). Open science resources for the discovery and analysis of Tara Oceans data. *Scientific Data*, 2(Lmd), 1–16. https://doi.org/10.1038/sdata.2015.23

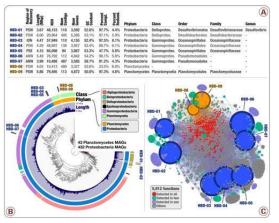
Schooner Tara:

- → >40,000 plankton samples collected
- ↓ 210 sampling stations at three depths
- ${\label{eq:solution}$ >60 terabases of DNA and RNA sequenced
- Tara Oceans adopts the principle of open access and early release of raw and validated data sets.
- Solid, diverse and international scientific community.


OcéanIA

An opportunity and a challenge to state-of-the-art AI/ML

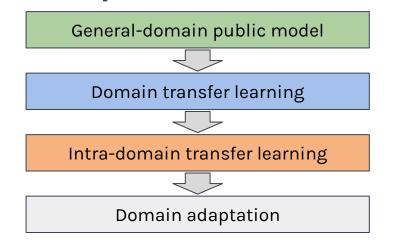
	CHALLENGES												
Small & high dimensional data	Data Engineering & HPC	Transfer Learning	Multiobjective decision making	Data & Al Governance	Interpretability Explainable Al	Causal inference	Structure and graph-based NN	Energy-aware Green Al/ML					
	€ <u>₹</u> } ∎∎∎												



Small but high-dimensional heterogeneous data

Source: Delmont, T. O., Quince, C., Shaiber, A., Esen, Ö. C., Lee, S. T., Rappé, M. S., MacLellan, S. L., Lücker, S., & Eren, A. M. (2018). Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nature Microbiology, 3(7), 804–813. https://doi.org/10.1038/s41564-018-0176-9

December 7th, 2020



LXAD

- Tara expeditions gather lots of data from a marine biology point of view.
- → Highly heterogeneous: DNA barcodes, images, environment variables.
- → Samples includes many species at the same time.
- → Grouped by sample location, interested in networks and graph-based information.
- → In spite of efforts it is not always consistent and it is always evolving: i.e. new hardware.
- Data from Tara allows exploration of the relationship between marine ecosystem functioning and biodiversity.

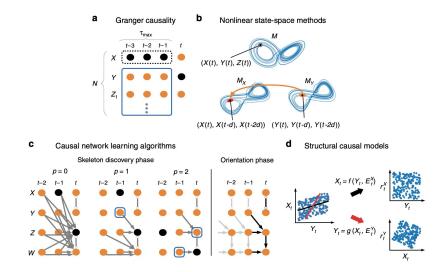
Model reuse, transfer learning and domain adaptation

A three-step work hypothesis:

- Is it possible to adapt existing (computer vision or graph) models to out domain?
- How to transfer a domain model to other biomes, locations or across species?
- How to cope with variations across species and sensing hardware?
- **Transfer learning** addresses the issue of how to adapt and re-purpose the internal representations of a model that has been trained on a similar problem.
- **Domain adaptation** is the capacity to cope with changes in the environment because of the evolution of the system and/or the need to particularize a general model to a particular instance.

Active, few-shot and multi-task learning

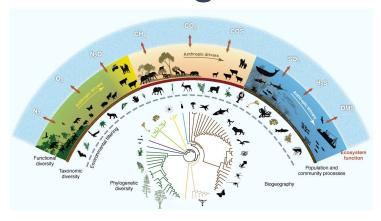
Source: https://brandidea.ai/activeLearning.html


- → Limited data and/or high uncertainty,
- Direct sampling to the areas of the domain where they are most necessary.
- → Guiding sampling using active learning.
- → Few-shot learning methods to produce actionable products with minimal data.
- → multi-source or multi-task learning ensembles training signals of related tasks.
 - Is enables the model to generalize better on the main task.
 - effectively increases the sample size that is being used for training.
 - biases the model to prefer representations that are useful for other tasks -> transfer learning!

Causality and Explainable AI

Source: Runge, J., Bathiany, S., Bollt, E. et al. Inferring causation from time series in Earth system sciences. Nat Commun 10, 2553 (2019). https://doi.org/10.1038/s41467-019-10105-3.

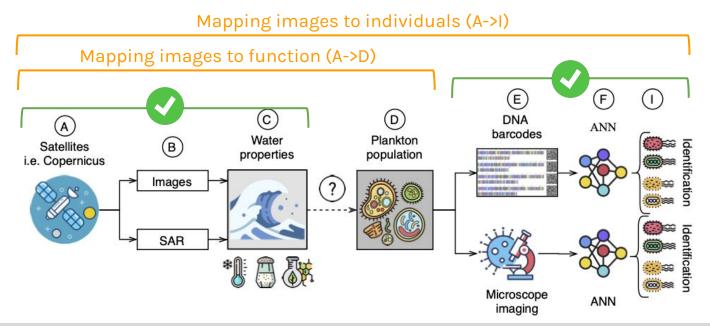
- Produce explainable models, while maintaining performance (prediction accuracy),
- research support tools that combine explainability and causality for new scientific discoveries and theories by making surrogate human-readable models, and
- enable human users to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partners.


Essential for policy making.

Biodiversity and ecosystem functioning

Source: Naeem, S., Duffy, J. E., & Zavaleta, E. (2012). The Functions of Biological Diversity in an Age of Extinction. Science, 336(6087), 1401 LP - 1406. https://doi.org/10.1126/science.1215855

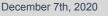
- Biodiversity supports functions like primary productivity and carbon fixation and sequestration, etc.
- Understanding this is fundamental: science and policy making.
- Data from Tara allows exploration of the relationship between marine ecosystem functioning and biodiversity.
- How variations on biodiversity impact those functions?
- ➔ How changes in temperature (or other variables) impact biodiversity and functions?
- Understand causality and circular causality among different levels of biodiversity, ecosystem functioning.



December 7th, 2020

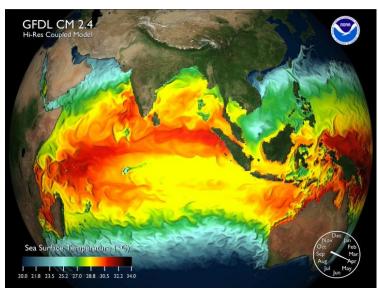
Understanding plankton communities using AI, ML, and vision

Anomaly detection and explainable AI for automatic plankton ID


Source: Wikipedia

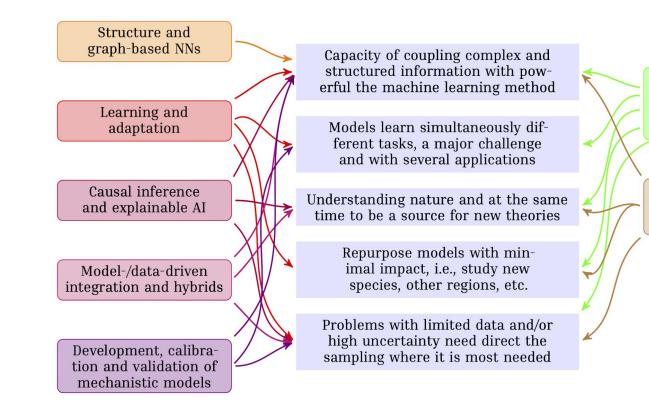
- Identifying plankton as a supervised problem: already addressed.
- Estimated that more than 70,000 species unknown.
 unsupervised or active learning approaches.
- → Tara sampling includes high-res microscope.
- → Identify unknown or out of context species.
- Why an organism represents an interesting specimen?
- ➔ Methods involved:
 - b transfer learning and domain adaptation,
 - (un/self)supervised object detection and segmentation
 - ↓ causal inference to understand context.
 - explainable AI: i. e. hint what parts of the organism that determining its selection.

Field experts want a research tool not a black-box.



Integrating model-based (i.e. PDEs) and data-based (i.e. ML) approaches

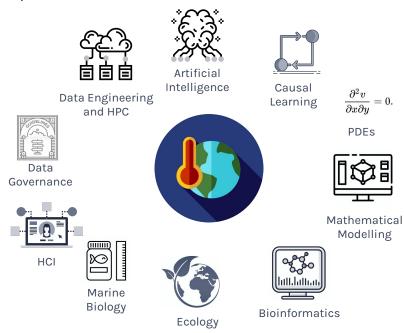
Source: https://www.gfdl.noaa.gov/hires_indian_sst/


Ocean Circulation Models studying dynamics:

- → high-res models are computationally inviable,
- → current resolution of models is not sufficient,
- → requiere large viscosity and diffusion coefficients smooths out features such as jets and mesoscale eddies.
- oceanic turbulence at small scales, which play an important role.
- ➔ Planned actions:
 - Learning PDEs from Data
 - Understanding learning dynamics
 - Hybrid models: Combining PDE solvers and DNNs (improved explicability).

Integrating biodiversity community structures and function along the ocean

Computer vision for understanding plankton communities

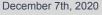


EURAL INFORMATION

CESSING SYSTEMS

The OcéanIA team

https://oceania.inria.cl/


Summary

- Oceans and climate change are intimately related:
 - > Carbon capture, impact of change of temperatures, etc.
- ➔ Oceans are the last 'unknown':
 - > Understanding the role of oceans in climate change is not only important but also challenging for modern AI, ML and applied math.
- A way to address current hot topics like explainability, bias, etc. on a different domain.
- ➔ Tara as source of data that can be crossed with other sources.
- I have described the approaches we are to follow in the next 4 years.
- ➔ OcéanIA has just started!
 - > <u>We are hiring!</u>

Thank you! Merci! Obrigada! ¡Gracias!

Follow us: www.inria.cl and oceania.inria.cl

