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Figure 1: We introduce Octo, our ongoing effort for building open-source, widely applicable generalist
policies for robotic manipulation. The Octo model is a transformer-based diffusion policy, pretrained
on 800k diverse robot episodes from the Open X-Embodiment dataset. It supports flexible task and

observation definitions and can be quickly finetuned to new observation and action spaces.

Abstract

Large policies, pretrained on diverse robot datasets have the potential to
transform robot learning: instead of training new policies from scratch,
such generalist robot policies may be finetuned with only a little in-domain
data, yet generalize broadly. However, existing models restrict downstream
users to the exact inputs and action spaces used during pretraining and
the largest models are typically not available to the public. In this work,
we aim to lay the ground work towards developing open-source, widely
applicable, generalist policies for robotic manipulation. As a first step, we
introduce Octo §&, a transformer-based diffusion policy trained on 800k
robot trajectories from the Open X-Embodiment dataset. It can be instructed
via language commands or goal images and can be effectively finetuned to
robot setups with new sensory inputs and action spaces within a few hours
on standard consumer GPUs. In experiments across 6 robotic platforms we
demonstrate that Octo serves as a versatile policy initialization that can be
effectively finetuned to new observation and action spaces.?

*Lead authors, ordered alphabetically, see Appendix A for list of contributions.
2For models & code, see https://octo-models.github.io
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1 Introduction

The common approach for robotic learning is to train policies on datasets collected for the
specific robot and task at hand. Although a simple and reliable recipe, learning from scratch
requires significant data collection efforts for each task, and policies can only generalize
narrowly beyond the data collection setup. In principle, collected experience from other
robots and tasks offers a possible solution, exposing models to a diverse set of robotic control
problems that may improve generalization and performance on downstream tasks.

However, even as general-purpose models become ubiquitous in natural language [OpenAl,
2023, Touvron et al., 2023]) and computer vision [Rombach et al., 2022, Kirillov et al., 2023],
there has been little progress on the analogous “general-purpose robot model” that can
control many robots for many tasks. A key reason is that training a unified control policy for
robotics presents unique challenges, requiring handling different robot embodiments, sensor
setups, action spaces, task specifications, environments, and compute budgets.

Recently, several works have proposed models that directly map robot observations to actions
and provide zero-shot or few-shot generalization to new domains and robots. We can broadly
refer to these models as “generalist robot policies” (GRPs), emphasizing their ability to
predict low-level visuomotor control across tasks, environments, and robotic systems [Reed
et al.; 2022, Bousmalis et al., 2023, Driess et al., 2023, Zitkovich et al., 2023, Brohan et al.,
2022, Shah et al., 2023a, AI, 2023, Wayve, 2023, Hu et al., 2023, Yang et al., 2023, Kumar
et al., 2023]. For example, the GNM model [Shah et al., 2023b] generalizes across different
robotic navigation scenarios, the RoboCat model [Bousmalis et al., 2023] handles different
robot embodiments for goal-conditioned tasks, and the RT-X model [Open X-Embodiment
Collaboration et al., 2023] performs language-conditioned manipulation across five robot
embodiments. We believe that these generalist robot policies have the potential to transform
how robot learning research is done: in the same way that current models in NLP are almost
universally derived from pretrained large language models, future robot policies might be
initialized from GRPs and finetuned with modest amounts of data. However, previously
proposed models have been limited in multiple important aspects: they typically constrain
downstream users to a pre-defined and often restrictive set of input observations, e.g., a single
camera stream, they lack support for effective finetuning to new domains, and importantly,
the largest models are not available to the general public.

Therefore, our aim in this work is to lay the ground work for developing open-source, widely
applicable, generalist policies for robotic manipulation. As a first step, we are releasing
Octo 8 (see Fig. 1), a transformer-based diffusion policy, pretrained on 800k robot trajectories
from the Open X-Embodiment dataset [Open X-Embodiment Collaboration et al., 2023].
Octo provides high flexibility: out of the box, it supports multiple RGB camera inputs,
can control various robot arms, and can be instructed via language commands or goal
images. Importantly, the modular attention structure in Octo’s transformer backbone allows
it to be effectively finetuned to robot setups with new sensory inputs, action spaces, and
morphologies, using only a small target domain dataset and accessible compute budgets.

We are releasing all resources required to train, use, reproduce, and finetune an Octo model.
Concretely, we provide (1) pretrained model checkpoints with 27M and 93M parameters
respectively, (2) scripts for finetuning these models on new target domains, and (3) our com-
plete pretraining pipeline, including high-quality data loaders, transformer implementations
for multimodal inputs, and tools for monitoring training progress.

The rest of this technical report summarizes our on-going efforts for building Octo, a generalist
robot policy. We detail Octo’s architecture, pretraining data distribution and important
design decisions. We also summarize our preliminary experiments on using Octo as both, a
powerful zero-shot control policy, as well as a flexible initialization for finetuning on 6 diverse
robotic systems. These include new robot observation and action spaces not seen in the
pretraining data. We are releasing the initial set of Octo models with this tech report, and
we plan to further improve model capabilities in future releases.
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Figure 2: Model architecture. Left: Octo tokenizes task descriptions (green) and input obser-
vations (blue) using pretrained language models and CNNs respectively. Top: The transformer
backbone processes the sequence of task and observation tokens and produces readout tokens (purple)
that get passed to output heads to produce actions. Bottom: The block-wise attention structure of
the transformer backbone allows to flexibly add and remove inputs and outputs during finetuning
and e.g., add new observations (blue, dashed) or action spaces (purple, dashed) during finetuning.

2 The Octo Model

The design of the Octo model emphasizes flexibility and scale: the model is designed to
support a variety of commonly used robots, sensor configurations, and actions, while providing
a generic and scalable recipe that can be trained on large amounts of data. Octo supports
both natural language instructions and goal images, observation histories, and multi-modal
action distributions via diffusion decoding [Chi et al., 2023]. Furthermore, we designed Octo
specifically to support efficient finetuning to new robot setups, including robots with different
actions and different combinations of cameras and proprioceptive information. This design
was selected to make Octo a flexible and broadly applicable generalist robot policy that can
be utilized for a variety of downstream robotics applications and research projects.

2.1 Architecture

At its core, Octo is a transformer-based diffusion policy 7. It consists of three key parts:
input tokenizers that transform language instructions ¢, goals g and observation sequences
01,...,0p into tokens [7}, 7;77;] (Fig. 2, left), a transformer backbone that processes
the tokens and produces embeddings e;,eq,e, = T(T, T4, To) (Fig. 2, top), and readout
heads R(e) that produce the desired outputs, i.e., actions a.

Task and observation tokenizers. We convert task definitions, e.g., language instructions
£ and goal images g, and observations o, e.g., wrist and third-person camera streams, into a
common “tokenized” format using modality-specific tokenizers (see Fig. 2, left):

o Language inputs are tokenized, then passed through a pretrained transformer that
produces a sequence of language embedding tokens. We use the t5-base (111M)
model [Raffel et al., 2020].

« Image observations and goals are passed through a shallow convolution stack,
then split into a sequence of flattened patches [Dosovitskiy et al., 2020].

We assemble the input sequence of the transformer by adding learnable position embeddings
p to task and observation tokens and then arranging them sequentially (77,751, 70,2 - - - |-



Transformer backbone and readout heads. Once the inputs have been cast to a unified
token sequence, they are processed by a transformer (see Fig. 2, top). This is similar to prior
works that train transformer-based policies on sequences of observations and actions [Wu
et al., 2023, Radosavovic et al., 2023]. The attention pattern of the Octo transformer is
block-wise masked: observation tokens can only attend causally to tokens from the same
or earlier time steps 7, 0.+ and task tokens 77 (green), and tokens corresponding to a non-
existing observations are fully masked out (e.g. a dataset without language instructions).
This modular design enables us to add and remove observations or tasks during finetuning
(see below). In addition to these input token blocks, we insert learned readout tokens Tg
(purple). A readout token at Tr; attends to observation and task tokens before it in the
sequence, but is not attended to by any observation or task token — hence, they can only
passively read and process internal embeddings without influencing them. A lightweight
“action head” is applied on the embeddings for the readout tokens, and used for the diffusion
loss.

Our design allows us to flexibly add new task and observation inputs or action output heads
to the model during downstream finetuning. When adding new tasks, observations, or loss
functions downstream, we can wholly retain the pretrained weights for the transformer, only
adding new positional embeddings, a new lightweight encoder, or the parameters of the new
head as necessitated by the change in specification (see Fig. 2, bottom).

This flexibility is crucial to make Octo a truly “generalist” robotic model: since we cannot
cover all possible robot sensor and action configurations during pretraining, being able to
adapt Octo’s inputs and outputs during finetuning makes it a versatile tool for the robotics
community. Prior model designs that use standard transformer backbones or fuse visual
encoders with MLP output heads, lock in the type and order of inputs expected by the
model. In contrast, switching the observation or task for Octo does not require re-initializing
large parts of the model during finetuning.

2.2 Design Decisions

So far, we described Octo’s key architectural features that enable us to scale model training
to large and diverse datasets while retaining the flexibility to adapt to new task, observation
and action spaces. However, there is a number of additional design decisions in which Octo
deviates from common policy architectures. We next summarize our findings that motivated
these choices.

Shallow vs. deep image encodings. Prior transformer-based policy designs typically
encode input images with large ResNet-style [He et al., 2016] encoders and fuse multiple inputs
with a comparatively small transformer after [Brohan et al., 2022, Open X-Embodiment
Collaboration et al., 2023, Shah et al., 2023a, Chi et al., 2023, Zhao et al., 2023, Mees et al.,
2022, Shridhar et al., 2023]. Instead, we opt for a “transformer-first” architecture that uses
very shallow CNN patch encoders and concentrates most of the parameters and FLOPS in
the transformer backbone for jointly processing all inputs. Empirically, we found this to lead
to better-performing policies at scale, potentially because the model can perform most of
the processing for all tasks and observations jointly using the scalable transformer backbone.

Early vs. late input fusion. While we strive to have an input encoding that is as simple
as possible to allow most of the processing to happen in the transformer backbone, there
is an inherent trade-off with training speed: since transformer compute requirements scale
quadratic in the context length [Vaswani et al., 2017], encoding each input separately results
in a large number of tokens and slows training and inference. For incorporating goal images,
we make a pragmatic choice and channel-stack goal images, if provided, with the observation
images before patch tokenization. This “early fusion” matches design decisions with other
prior work that train robotic goal-conditioned policies [Shah et al., 2023a, Walke et al., 2023].
Empirically, we found this to work better than fully channel-stacking all input observations,
while fully “flattening” all inputs was computationally prohibitive.

Pretrained encoders. It is common to initialize image encoders with weights pretrained
on large, non-robotic datasets [Dasari et al., 2023, Brohan et al., 2022, Open X-Embodiment



Collaboration et al., 2023] such as ImageNet [Deng et al., 2009]. In our experiments so far,
we found ImageNet-pretrained ResNet encoders to provide no performance improvement over
encoders trained from scratch and thus opt for the latter for simplicity, though we believe
that more investigation into alternative pretrained representations is needed.

We include a list of other findings of “what worked” and “what did not work” in Appendix E.

3 Training Details

Training data. We train Octo on a mix- DATASET SAMPLING WEIGHTS
ture of 25 datasets from the Open X-
Embodiment Dataset [Open X-Embodiment
Collaboration et al., 2023], a diverse collec-
tion of robot learning datasets. Our train-
ing mixture includes data from a variety of
robot embodiments, scenes, and tasks. These
datasets are heterogeneous not just in terms
of the robot type, but also in the sensors
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Figure 3: Training dataset composition. We
curate a subset of 25 datasets from the Open X-
Embodiment dataset that have image observations,
end-effector actions and show diverse behaviors.
The pie chart visualizes the fractions that each
dataset contributes to every training batch on
average. The dataset weights are determined by
the number of samples in each dataset with small
modulations to balance dataset size and diversity
(see main text for details).

also down-weight a few large datasets with
many data points to balance the mixture.
Finally, we zero-pad any missing camera channels and align the gripper action spaces between
the datasets such that a gripper command of +1 means “the gripper is open” and 0 means
“the gripper is closed.” While we found the resulting training mixture to work well, future
work should perform more thorough analysis on what constitutes a good data mixture for
pretrianing such general-purpose models.

Training objective. We use a conditional diffusion decoding head to predict continuous,
multi-modal action distributions [Ho et al., 2020, Chi et al., 2023]. Importantly, only one
forward pass of the transformer backbone is performed per action prediction, after which
the multi-step denoising process is carried out entirely within the small diffusion head. We
found this policy parametrization to outperform policies trained with MSE action heads
or discretized action distributions [Brohan et al., 2022] in both zero-shot and finetuning
evaluations. To generate an action, we sample a Gaussian noise vector z% ~ N (0, I ) and
apply K steps of denoising with a learned denoising network es(z*, e, k) that is conditioned
on the output z* of the previous denoising step, the step index k, and the output embedding
e of the transformer action readout:

2" = a(a® — yep(a, e, k) + N (0,071)). (1)

The hyperparameters «, v and o correspond to the noise schedule: we use the standard
cosine schedule from Nichol and Dhariwal [2021]. We train the diffusion head using the
standard DDPM objective first proposed in Ho et al. [2020], where we add Gaussian noise to
the dataset actions and train the denoising network eg(z*, e, k) to reconstruct the original



action. For a detailed explanation of diffusion policy training, see Chi et al. [2023]. We list
all used hyperparameters in Appendix D.

Finetuning. We use the same diffusion training objective during finetuning and update
the full model, which we found to work better than training only the action head. In all
finetuning experiments, we employ the same recipe: given a small target domain dataset
with around 100 trajectories, we finetune for 50k steps using a cosine learning rate decay
schedule with linear warmup.

Model sizes, infrastructure & data augmentation. We trained two variants of our
model: Octo-Small with a transformer backbone that mirrors the size of a ViT-S, and
Octo-Base with a transformer backbone that mirrors the size of a ViT-B [Dosovitskiy et al.,
2020]. We use the AdamW optimizer [Loshchilov and Hutter, 2017] with an inverse square
root decay learning rate schedule [Zhai et al., 2022], with weight decay of 0.1 and gradient
clipping of 1.0. The ViT-B was trained for 300k steps with a batch size of 2048 using a
TPU v4-128 pod, which took 14 hours. A finetuning run of the same model on a single
NVIDIA A5000 GPU with 24GB of VRAM takes approximately 5 hours and can be sped
up with multi-GPU training. We apply common image data augmentations during training
and use hindsight goal relabeling [Andrychowicz et al., 2017] with randomly sampled future
observations. We further randomly zero out the language instruction or goal image per
training example to enable Octo to be conditioned on either language instructions or goal
images. For datasets without language annotations, we always use goal image conditioning.
This enables our model to learn control mostly from self-supervised visual observations and
reduces the burden on language annotation, similar to prior work on multi-context imitation
learning [Lynch and Sermanet, 2021]. For more details on the choice of hyperparameters,
see Appendix D.

4 Model Checkpoints & Code

We open-source all resources required to train, finetune and run our model (see https:
//octo-models.github.io):

o Pretrained Octo checkpoints for Octo-Small (27M params) and Octo-Base
(93M params)

o Finetuning scripts for Octo models, in JAX

e« Model pretraining pipeline for Octo pretraining on the Open X-Embodiment
dataset, in JAX

e Standalone data loaders for Open X-Embodiment data, compatible with JAX
and PyTorch pipelines

We provide a simple example for loading and inferencing a pretrained Octo model in
Appendix B.

5 Experiments

The goal of our experiments is to answer the following questions:

1. Can Octo control multiple robot embodiments and solve language- and goal-
conditioned tasks out of the box?

2. Does Octo serve as a strong initialization for data-efficient finetuning to new tasks
and robots, and does it improve over training from scratch and commonly used
pretrained representations?

3. Does Octo’s compositional design allow finetuning to new observation and action
spaces?
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Figure 4: Evaluation Tasks. We evaluate Octo on 6 real robot setups across 3 institutions. Our
evaluations capture diverse object interactions (e.g., “WidowX BridgeV2”), long task horizons (e.g.,
“Stanford Coffee”) and precise manipulation (e.g., “Berkeley Peg Insert”). We evaluate Octo’s
capabilities to control robots in environments from the pretraining data out-of-the-box and to
efficiently finetune to new tasks and environments with small target domain datasets. We also test
finetuning with new observations (force-torque inputs for “Berkeley Peg Insert”) and action spaces
(joint position control in “Berkeley Pick-up”).

Evaluation setups. We evaluate Octo’s capabilities across a representative spectrum
of 6 robot learning setups at 3 institutions (see Fig. 4). We test Octo’s ability to control
different robots out-of-the-box (“zero-shot”) for language and goal image tasks using robot
setups from the pretraining data. We further evaluate Octo for data-efficient finetuning
to new environments and tasks, including using new observations (force-torque inputs in
“Berkeley Peg Insert”) and new action spaces (joint position control in “Berkeley Pick-
up”). Each of the finetuning setups uses ~ 100 in-domain demonstrations and finetunes in
< 5 hours on a NVIDIA A5000 GPU, using the same hyperparameters across all setups (see
Appendix D). Our evaluation tasks test Octo’s capability to interact with diverse objects
(e.g., “WidowX BridgeV2”), solve long-horizon tasks (e.g., “Stanford Coffee”) and perform
precise manipulations (e.g., “Berkeley Peg Insert”). For more details on each evaluation
setup, see Appendix F.

Comparisons. We compare Octo’s ability to control multiple robots out-of-the-box to the
best openly available generalist robot policy, RT-1-X [Open X-Embodiment Collaboration
et al., 2023], using the released checkpoint. Similar to Octo, RT-1-X is pretrained on a
diverse robot dataset and aims to control multiple robots zero-shot, thus forming a natural
point of comparison. We further compare Octo’s performance as a policy initialization
for data efficient finetuning to the two most common approaches: (1) training on the
target domain demonstrations from scratch and (2) using pretrained representations. For
training from scratch, we found our large transformer architecture to overfit quickly on the
small datasets. Instead, we obtained better from-scratch results using a canonical policy
architecture employed by many prior works: a ResNet visual encoder with FiLM [Perez
et al., 2018] language conditioning, combined with a smaller transformer action decoder
(“ResNet+Transformer Scratch”), similar to e.g., [Brohan et al., 2022, Zhao et al.,
2023, Chi et al., 2023, Lynch et al., 2023]. The default action head was replaced with the
same diffusion decoder head used by our method. For the second comparison, we use VC-1
pretrained representations [Majumdar et al., 2023], combined with an MLP action decoder.
VC-1 is a state-of-the-art visual representation pretrained on 4,000 hours of ego-centric videos
and ImageNet. We initialized a ViT visual encoder with the VC-1 weights and finetuned the
full network to predict expert actions, using an MSE loss.

5.1 Octo Controls Multiple Robots Out-of-the-box

We show the comparison of zero-shot manipulation capability of Octo and RT-1-X in Fig. 5.
While both methods are able to solve a diverse range of tasks in the pretraining environments,
we find that Octo on average has 33% higher success rate than RT-1-X, the current state-
of-the-art, openly available generalist robot policy (35M parameters). For the WidowX
evaluations we also compare to existing numbers for RT-2-X [Zitkovich et al., 2023], a 55
billion parameter vision-language model finetuned on the Open X Embodiment dataset to
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Figure 5: Zero-Shot Evaluation. Out-of-the-box, Octo can control multiple robots in environments
from the pretraining data. When using natural language to specify tasks, it outperforms RT-1-
X [Open X-Embodiment Collaboration et al., 2023], the current best, openly available generalist
robot policy across two different robot embodiments and setups and performs similar to RT-2-
X [Zitkovich et al., 2023] on the tested WidowX tasks.

produce robot actions®. Additionally, while RT-1-X and RT-2-X only support conditioning
on language instructions, Octo also supports conditioning on goal images. We evaluated our
model on the WidowX tasks using goal image conditioning and found that it achieved a 25%
higher success rate than when evaluated with language conditioning. This is likely because
goal images provide more information about how to achieve the task.

5.2 Octo Enables Data-Efficient Learning in New Domains

CMU Baking Stanford Coffee  Berkeley Peg Insert*  Berkeley Pick-up’  Average

ResNet+Transformer Scratch 25% 45% 10% 0% 20%
VC-1 [Majumdar et al., 2023] 30% 0% 5% 0% 9%
Octo (Ours) 50% 75% 70% 60% 64%

Table 1: Finetuning Evaluation. Octo enables data-efficient finetuning to new domains and
out-performs training from scratch as well as state-of-the-art pretrained visual representations. Each
domain uses ~ 100 target demonstrations and the same hyperparameters across all domains. *: New
observation input (force-torque proprioception). {: New action space (joint position control).

We report data-efficient finetuning results to new domains in Table 1. We find that finetuning
Octo leads to better policies than starting from scratch or with the pretrained VC-1 weights,
with an average success rate improvement of 55% across the four evaluation tasks. Importantly,
we use the same finetuning recipe for all evaluation tasks (see Section 3), making this a good
default configuration for Octo finetuning.

The results also underline Octo’s ability to accommodate new observations (force-torque
inputs for “Berkeley Peg Insert”) and action spaces (joint position control for “Berkeley
Pick-up”). This makes Octo applicable to a wide range of robot control problems that go
beyond a single camera input and end-effector position control.

6 Discussion

While we demonstrated Octo’s strong performance in both zero-shot and finetuning evalua-
tions, we find that the current model still has several short-comings, which we attribute in
large parts to characteristics of the training data.

On the one hand, we find that the current Octo model struggles with adequately processing
wrist camera information, and often finetuning results were stronger when using only a third
person camera instead of combining third person and wrist camera. A likely reason is the lack

3We report RT-2-X numbers from Black et al. [2023] and test our model on the same tasks for
Bridge, as the RT-2-X model is not openly available.



of wrist camera inputs in the pretraining data: only 27% of the data contains wrist camera
information, making it likely that the wrist camera encoders are under-trained. Adding more
data with wrist cameras or weight sharing between wrist and third person camera encoders
may be able to improve performance.

Additionally, we notice a large difference between language-conditioned policy performance
and goal-conditioned policy performance. Again, only 56% of the pretraining data contains
language annotations, which may contribute to the lower performance of the language
conditioned policy. Beyond adding more language-annotated data to the pretraining mix,
there is room to explore alternative approaches for fusing language instruction information
into the policy, e.g., cross-attention between observation and language instruction features.

7 Conclusion and Future Plans

We introduced Octo, our ongoing effort towards building generalist robotics models. As
a first step, we have released the Octo model, a large transformer-based diffusion policy,
pretrained on 800k robot trajectories. We demonstrated that Octo can solve a variety of tasks
out-of-the-box and showed how Octo’s compositional design enables finetuning to new inputs
and action spaces, making Octo a versatile initialization for a wide range of robotic control
problems. Apart from the model itself, we have released our full training and finetuning code,
as well as a number of tools that make it easier to train on large robot datasets.

While this release marks an important milestone for us, there remains work to improve the
Octo model — towards better language conditioning, support for wrist cameras, and data
beyond optimal demonstration data — which we hope to incorporate into updated models
in the near future. We hope that these models offer a simple launchpad for researchers and
practitioners to access larger robotic datasets, and to use pretrained robotics models in a
way that allows for efficient learning of new tasks and broad generalization.
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B Octo Code Example

Loading a pretrained Octo model and performing inference requires little code:

import jax
from octo.model.octo_model import OctoModel

model = OctoModel.load_pretrained("hf://rail-berkeley/octo-base")
print (model.get_pretty_spec()) # Print out the input-output spec
observation = {"image_primary": img}
task = model.create_tasks(texts=["pick up the fork"])
action = model.sample_actions(

observation, task, rng=jax.random.PRNGKey (0))

Listing 1: Example Python code to perform inference with a pretrained ORCA model.

C Data mixture

We list the detailed training mixture used for training the Octo models in Table 2. The
sampling weights are mostly determined by the relative size of the datasets with a few manual
adjustments (see Section 3). We rank the datasets of the Open X-Embodiment dataset [Open
X-Embodiment Collaboration et al., 2023] in terms of their diversity and task relevance
and remove datasets that are too repetitive, have a low image resolution, or are excessively
niche tasks. We also down-weight a few large datasets with many data points to balance the
mixture.
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OctoPretraining Dataset Mixture

Fractal [Brohan et al., 2022] 17.0%
Kuka [Kalashnikov et al., 2018] 17.0%
Bridge [Walke et al., 2023] 17.0%
BC-Z [Jang et al., 2022] 9.1%
Stanford Hydra Dataset [Belkhale et al., 2023] 6.0%
Language Table [Lynch et al., 2023] 5.9%
Taco Play [Rosete-Beas et al., 2022, Mees et al., 2023] 3.6%
Furniture Bench Dataset [Heo et al., 2023] 3.3%
UTAustin Mutex [Shah et al., 2023c] 3.0%
Austin Sailor Dataset [Nasiriany et al., 2022] 2.9%
Roboturk [Mandlekar et al., 2018] 2.8%
Toto [Zhou et al., 2023] 2.4%
Austin Sirius Dataset [Liu et al., 2023] 2.3%
Berkeley Autolab UR5 [Chen et al.] 1.5%
TAMLab CMU Pickup Insert [Saxena et al., 2023] 1.2%
Viola [Zhu et al., 2023a] 1.2%
Berkeley Fanuc Manipulation [Zhu et al., 2023D] 1.0%
NYU Franka Play Dataset [Cui et al., 2022] 0.9%
UCSD Kitchen Dataset [Ge Yan and Wang, 2023] <0.1%
Jaco Play [Dass et al., 2023] 0.6%
Berkeley Cable Routing [Luo et al., 2023a] 0.3%
Austin Buds Dataset [Zhu et al., 2022] 0.3%
CMU Stretch [Mendonca et al., 2023] 0.2%
NYU Door Opening [Pari et al., 2021] 0.1%
DLR EDAN Shared Control [Quere et al., 2020] 0.1%

Table 2: Octo pretraining data mixture using datasets from the Open X-Embodiment
dataset [Open X-Embodiment Collaboration et al., 2023].

D Training Hyperparameters

We mostly follow documented practices for training vision transformers [Zhai et al., 2022]. We
use the AdamW optimizer [Loshchilov and Hutter, 2017] with an inverse square root decay
learning rate schedule [Zhai et al., 2022] and learning rate warm-up. We list hyperparamaters
used during training in Table 3 and the model parameters for the different sizes in Table 4.
We apply standard image augmentations during training. Concretely, for the 3rd person
camera we apply stochastic crops followed be a resize to 256 x256, followed by color jitter.
Finally, we normalize the input image to have pixels with float values between —1.0 and 1.0.
For the wrist camera, we apply the same procedure except without the random crop and
resizing to 128 x128 instead.

Hyperparameter Value
Learning Rate 3e-4
Warmup Steps 2000
LR Scheduler reciprocal square-root
Weight Decay 0.1

Gradient Clip Threshold 1
Batch Size 2048

Table 3: Hyperparameters used during training.

The images are passed through a shallow convolution stack, then split into a sequence of
flattened patches [Dosovitskiy et al., 2020] of size 16 x16. This results in 256 tokens for the
3rd person camera images and 64 tokens for the wrist camera images. For datasets containing
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language annotations, we use a pretrained t5-base (111M) transformer model [Raffel et al.,
2020] that produces a sequence of 16 language embedding tokens.

Model Layers Hidden size D MLP size Heads Params
Octo-Small 12 768 3072 12 27TM
Octo-Base 24 1024 4096 16 86M

Table 4: Details of Octo model variants.

The diffusion action head is characterized by a 3-layer MLP with a hidden dimension of
256, residual connections, and layer normalization. During training we use the standard
DDPM objective as introduced by [Ho et al., 2020] with a cosine noise schedule [Nichol and
Dhariwal, 2021]. During both training and inference, we use 20 diffusion steps.

E Things that Worked and Did Not Work (Yet)

Things we found improved performance:

Adding history during pretraining: Models with one frame of history as context
performed better in zero-shot evals than models pretrained without history. We did
not observe benefits of increasing the history length further on the few tasks we
evaluated on, though other tasks may benefit.

Using action chunking: We found it helpful to use “action chunking” [Zhao et al.,
2023], i.e., to predict multiple actions into the future, for getting more coherent
policy movements. We did not find temporal ensembling of future actions to provide
additional benefits in the finetuning tasks we tested.

Decreasing patch size Tokenizing images into patches of size 16 x 16 led to
improved performance over patches of size 32 x 32, particularly for grasping and
other fine-grained tasks. This does add compute complexity (the number of tokens
is 4x), so understanding how to balance compute costs and resolution remains a
problem of interest.

Increasing shuffle buffer size: Loading data from 25 datasets in parallel is a
challenge. Specifically, we found that achieving good shuffling of frames during
training was crucial — zero-shot performance with a small shuffle buffer (20k) and
trajectory-level interleaving suffered significantly. We solved this issue by shuffling and
interleaving frames from different trajectories before decoding the images, allowing
us to fit a much larger shuffle buffer (up to 500k). We also subsample at most 100
randomly chosen steps from each training trajectory during data loading to avoid
“over-crowding” the shuffle buffer with single, very long episodes.

Things that did not work (yet):

MSE Action Heads: i.e., replacing our diffusion decoding head with a simple L2
loss, lead to “hedging” policies that move very slowly and e.g., fail to rotate the
gripper in Bridge evals.

Discrete Action Heads: i.e., discretizing actions into 256 bins per dimension and
training with cross-entropy loss like in Brohan et al. [2022]; lead to more “decisive”
policies, yet often observe early grasping issues.

ResNet Encoders: train faster as they compress the image into fewer tokens, but
attain worse zero-shot performance.

Pretrained Encoders: ImageNet pretrained ResNet encoders did not provide
benefit on zero-shot evals, though may be confounded with ResNet architectures
underperforming as mentioned above.

Relative Gripper Action Representation: when aligning the gripper action
representations of the different datasets, we tried (A) absolute gripper actions, i.e.,
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actions are +1 when the gripper is open and -1 if it is closed, and (B) relative
gripper actions, i.e., gripper action is +1/-1 only in the timestep when the gripper
opens/closes. We found that the latter tends to open/close grippers less often since
most of the training data represents “do not change gripper” actions, leading to a
slightly higher grasp success rate. At the same time, the relative representation led
to less retrying behavior after a grasp failed, which was ultimately worse. Thus, we
chose the absolute gripper action representation.

¢ Adding Proprioceptive Inputs: resulting policies seemed generally worse, poten-
tially due to a strong correlation between states and future actions. We hypothesize
this might be due to a causal confusion between the proprioceptive information and
the target actions [de Haan et al., 2019].

¢ Finetuning Language Model: In order to improve the visuo-lingual grounding of
Octo we experimented with: i) varying sizes of the T5 encoder [Raffel et al., 2020)
small (30M), base (111M), large (386M) and ii) finetuning the last two layers of
the encoder. While using the base model resulted in better language-conditioned
policies, we did not find improvements when using even larger encoders or finetuning
the encoder. We hypothesize this might be due to the lack of rich, diverse, free-form
language annotations in most of the datasets.

F Experimental Setups

X BridgeV2 UR5 Tabletop CMU Baking Stanford Coffee Berkeley Peg Insert Berkeley Pick-up
e N < v T, F

[} =M 7
0-Shot Evaluation Finetuning Evaluation

Figure 6: Evaluation Tasks. Replicated from the main text for convenience. We evaluate Octo on
6 real robot setups across 3 institutions in zero-shot and finetuning scenarios.

F.1 Zero-Shot Evaluations

WidowX BridgeV2. Uses the setup of Walke et al. [2023], in which a Trossen WidowX
robot performs diverse table top manipulation tasks. Concretely, we evaluate on two tasks in
which a the robot needs to “place carrot on plate” and “put eggplant in the pot”. Both tasks
are challenging since they are out of distribution of the Bridge pre-training data and require
generalization to new objects. The robot observation consists of a single third person camera
stream and the action space are end-effector velocity actions.

URS5. Uses the setup of Chen et al.. A UR5 robot arm performs multiple table top
manipulation tasks, namely picking a toy tiger from a bowl and placing it into a different
bowl and wiping a table with a cloth. The task requires generalization over initial positions and,
since the training data was collected months ago, miscellaneous changes in the environment.
Policies are trained with a single third-person camera input and predict end-effector velocities.

F.2 Finetuning Evaluations

CMU Baking. The robot must pick up the toy bread object, place it in the toaster, and
shut the toaster. This task requires generalization across initial positions (of both the toaster
and object) and the shape of the target toy bread object. We use an eef velocity (Cartesian
pos + rotation delta) action space. Observations come from the 3rd person front-facing
Zed camera. Actions are predicted at 15 Hz, and executed on the robot using the R2D2
Franka controller. The finetuning dataset consists of 120 demos collected via expert VR
tele-operation, and every policy was evaluated using 20 trials (4 novel test objects w/ 5
positions each).
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Stanford Coffee. The robot is tasked with picking up one of four different Keurig Coffee
Pods and placing it inside of Keurig machine. This task requires both generalization across
initial positions and colors of the coffee pod, and precision placement in the Keurig machine.
We use a cartesian delta and rotation end-effector space with an open source controller
running at 10 Hz based on polymetis found here. We use only a single third-person wrist
observation. Our training dataset contained 118 expert demonstrations from varied coffee
pods and positions collected via VR tele-operation. We evaluated policies for 20 episodes,
five episodes for each of four different color coffee pods.

Berkeley Peg Insertion. The task is for a robot to insert a pre-grasped 3d-printed
peg into a matching slot on a 3d-printed board inside the bin, as pictured in Fig. ?7. The
matching tolerance between the peg and the hole is 1.5mm; which makes it a contact-rich
precise part-mating task. The robot must learn an appropriate policy to “search” for the
matching opening through contact, which necessitates the use of relevant input modalities
such as external force/torque measurements. The observation space of the policy consists of
a single side-view camera image, the end-effector twist, and the end-effector force/torque
reading. The policy sends action commands as the robot’s end-effector twists at 5 HZ, tracked
at 1000 HZ by a low-level impedance controller. Our finetuning dataset is composed of 100
human demonstrations from the FMB dataset [Luo et al., 2023b], we evaluated trained
policies for 20 trials with randomized board positions.

Berkeley Pick Up. We use the setup of Radosavovic et al. [2023]: the robot needs to pick
up a block from a table top surface after being trained on a dataset of 100 pickups of various
objects. The robot uses joint position control with an underlying Polymetis control stack [Lin
et al., 2021]. It is conditioned on a wrist camera input image as well as the proprioceptive
readings of the robot.
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