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ABSTRACT 

The notion of vehicles moving in platoons is of considerable interest when seeking to 

decrease traffic congestion and gas consumption. This usually means automated operation in 

longitudinal and possibly lateral direction. This report focuses on the lateral dynamics and 

control of a vehicle platoon following a leader in the lateral direction. A thorough system 

modelling and analysis is conducted and different classical control approaches discussed. It is 

noted that overshoot cannot be avoided in the system when using reasonable feedback 

controllers, due to the inherent characteristics of the plant. The concept of string stability (i.e 

damping the propagation of errors in the platoon) is covered along with different 

communication topologies, which under certain assumptions will guarantee stability. It is 

noted that solely communicating the preceding vehicle’s lateral error will not result in string 

stability. A novel compensation is introduced taking into account information from several 

vehicles, which is proven to give a string stable system. 
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1 Introduction 
This chapter will give a brief overview of the project, topics discussed, as well as goals and 

limitations. 

1.1 Background 

The concept of having a vehicle platoon moving in unison, whether in longitudinal or lateral 

direction, is of considerable interest when seeking to decrease traffic congestion and gas 

consumption, improve driver comfort and safety, and limit emissions [1] [2]. In the platoon, 

the objective to achieve, for the longitudinal case, is each vehicle maintaining a safe and 

predetermined distance to the vehicle in front, called the leader. The distance would typically 

be dependant of velocity, since higher velocities require larger safety-distances [2].The driver 

thus lets the gas and brake of the vehicle be handled automatically. In the lateral case, the 

objective is to, in a stable manner, follow the path of the leading vehicle and mimic its 

manoeuvres using a control algorithm. The driver can then hand over the steering to the 

computer.  

However, much research has been focused on utilization of vehicle platoons operating in 

specialized infrastructure, such as highways with magnets integrated into the path and used as 

road markings [2]. Recent developments are more tended toward the implementation of 

platoons in unmodified roads using available sensor information and communication, such as 

angle and distance to preceding car, to determine acceleration, braking or steering [3].  

 

Figure 1.1.1: Depiction of a platoon performing a lane-change with the leader marked black. 

 

The picture above illustrates the concept; each vehicle will depending on its state and the state 

of the neighbouring vehicle utilize a control strategy to follow its movements and maintain 

the platoon. The platoon can under these assumptions be seen as decentralized. A serious 

issue that may arise here is error propagation throughout the platoon. In the case of the first 
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following car being laterally displaced relative to the leader, the displacement might be 

amplified to the second follower, and so on. This problem needs to be either eradicated or 

bounded, i.e string stability has to hold, to avoid vehicles further down the line leaving the 

lane. Communication between vehicles, provided the delay is short enough, play an important 

role in dealing with this problem. Thus there are two important points when dealing with 

automated platoons; a control strategy that ensures string stability, and the assumptions or 

infrastructures necessary to implement these.  

Previous work has been much focused on vehicle platoons in which lane-keeping or tracking 

has been involved, and thus not clearly described the difficulties to attain string stability in 

vehicle-following systems. However, all conclude the fact that there is some need of 

communication strategies to assure string stability.  

1.2 Purpose and Aims  

The main focus of this thesis was to design a controller which stabilizes a system of vehicles 

following in the lateral direction, provides adequate response and finally guarantees or 

enforces string stability under certain assumptions. For this to be achieved, literature studies 

were required, proper understanding of the vehicle model, system and various controller 

design techniques. Thus, the report is segmented into several parts; theory of vehicle 

dynamics, modelling of the vehicle, modelling and analysis of a two-vehicle following 

system, controller design approaches, and finally testing and verification theoretically in a 

software environment as well as implementation in vehicles at Volvo Car Corporation.  

The whole problem can be partitioned into two main parts; 

1) The regulation problem, consisting of obtaining a controller design and communication 

topology that would stabilize the system and yield some criteria for string stability. 

2) The path-following problem, in which a suitable reference-signal to each individual in the 

platoon should be determined to satisfy proper following. 

Of these two parts, the former will be given most attention in this report, while the latter will 

be touched upon briefly in the discussion. 

1.3 Methodology 

To accomplish the goals mentioned above, extensive research in the areas of vehicle 

dynamics and control was required. This was conducted through the study of relevant papers 

published in the field as well as literature studies. The system was thereafter modelled, 

partitioned analytically and analyzed in terms of characteristics such as frequency domain 

behaviour and stability. Several controller techniques were utilized and the performance of 

each was systematically evaluated in MATLAB, while simulations of basic vehicle following 

were carried out in Simulink. The controllers were finally implemented on vehicles at Volvo 

Car Corporation. 
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1.4 Scope and Limitations 

Initially, the research was restricted to the modelling of a two-car system and development of 

a controller which performs according to specifications. To enable simpler analysis, the 

vehicle model was linearized and only linear controllers were considered. The algorithm was 

then evaluated on a larger sized platoon to verify robustness and restrictions on the use of the 

algorithm depending on the number of cars in the platoon. The sensor information available 

was assumed to be a wide range of vision and radar information; such as angle and distance 

between each vehicle, while communication relays steering-wheel angle, velocity as well as 

partial state information throughout the platoon. Furthermore, the maximum amount of lag 

that may be present in the system was assumed to be 100ms, while the actuator of the 

steering-wheel was approximated by a first-order lag with a time-constant. The platoon 

considered consists of identical vehicles, where all vehicle-related parameters were assumed 

non-varying with the exception of velocity and look-ahead distance. Finally, no manoeuvres 

inducing offsets of larger than 15 degrees between each vehicle were considered.   
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2 Preliminaries 
This chapter will briefly discuss simple terms and concepts that will facilitate understanding 

for the reader.  

 

2.1 Look-Ahead Distance 

The term look-ahead denotes in vehicle applications the concept of communicating the 

position of a point at a certain distance (referred to as the look-ahead distance) to the vehicle. 

To reach this goal different techniques can be used; for example through GPS or attaching a 

sensor on the front of the vehicle to monitor the relative position of the preceding vehicle’s 

rear bumper. 

This technique is in sharp contrast to the so called lane-keeping or look-down methods, since 

its implementation in a platoon will lead to an interconnected system, while the latter enable 

each vehicle to track the reference line independently of the performance of preceding or 

following vehicles. Hence, there is no need for stability analysis for the platoon; however the 

amount of infrastructure needed (such as magnets positioned on the lanes or road-marker 

cameras) and dedicated highways required for this system becomes an issue. 

The look-ahead distance has strong effect on the stability and performance of the closed loop 

system; it was shown in [4] that closed loop stability can always be achieved for a constant 

proportional control law by increasing the look-ahead distance to an appropriate value. The 

impact on the damping of the system caused by variations in the look-ahead distance will be 

clearly discussed in Section 4.  

 

2.2 Sensors and Inter-Vehicle Communication 

The sensor information used to determine lateral offset to the preceding vehicle is obtained 

from a camera, radar, and laser mounted on the windshield of the vehicle. By measuring the 

distance and angle to a fixed point on the preceding vehicle’s bumper, a suitable 

approximation can be made. Inter-vehicle communication is present in the system as well; 

measurements of yaw-rate, steering-wheel angle and velocity are available to convey 

throughout the platoon with negligible delay assumed. 
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3 Modelling 
This chapter is divided into two parts; the former deals with theory behind a basic linear 

vehicle model while the latter forms the equations needed for analysis of a vehicle-following 

system.  

 

3.1 Vehicle Model 

The lateral motion of a front-wheel driven vehicle can be modelled mathematically using 

kinematics, where the equations of models are simply geometric relationships within the 

system. However, this approach is only suitable for low velocities (speeds less than 5m/s) 

since it is assumed that the velocity-vector at each wheel is in the direction of the wheel-

angle; in other words, there is no slip at the wheels, and the slip-angle is hence zero [1]. 

Since this project focuses on tight platoons of relatively high speeds (i.e. above 5m/s) this 

assumption no longer holds and a dynamic model taking the slip-angle into consideration has 

to be developed. 

The model used is a linear, so-called bicycle model, where the two front wheels have been 

merged and represented as one single wheel, with the two rear wheels also treated similarly. 

This will simplify the modelling process is deemed to be satisfactory for analysis.  

Consider the figure below, showing a bicycle model of the vehicle and its orientation with 

respect to some global coordinate-system        

 
Figure 3.1.1: Lateral vehicle dynamics approximated as a bicycle model 

The vehicle yaw-angle   is measured as the angle from the global axis   to the vehicle’s 

current orientation, while the lateral position is measured along the lateral axis to the center of 

rotation of the vehicle.    denotes the velocity from the centre of gravity in the direction of 
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the yaw, while   is the velocity-vector at the centre of gravity.   is the slip-angle at the center 

of gravity of the vehicle and can be approximated (for sufficiently small angles) as 

   ̇    (3.1.1) 

Applying Newton’s second law of motion in the   -direction only,  

            (3.1.2) 

is obtained, where the lateral forces     and     are those exerted from the front and rear 

wheels respectively, while    denotes the inertial acceleration at the center of gravity in the 

direction of the  -axis. Decomposing this term further shows that it is the sum of two terms; 

the lateral acceleration  ̈ and the centripetal acceleration    ̇.  

Substituting these terms into the left-hand side of equation (3.1.2) yields the following 

relationship. 

 ( ̈     ̇)          (3.1.3) 

Treating the vehicle as a rod, the moment balance about the  -axis can be formulated similar 

to that of a beam to obtain the dynamics for the yaw. 

   ̈              (3.1.4) 

Here, the constants    and    denote the distance from the front wheel and rear wheel to the 

center of gravity, respectively, while    is the moment of inertia.  

The calculations of the lateral tire forces     and     involve the slip-angle, and can for small 

values of this be seen as a proportional relationship. For a more detailed explanation, see [1]. 

The slip-angle,    is defined as the difference in the orientation of the tire,  , and the velocity 

vector of the front and rear wheel,     and     respectively (see figure 3.1.2).  

 
Figure 3.1.2: Illustration of tire-slip angle 

Thus, denoting these angles, for the front wheel,    (slip angle),   and     respectively, it 

holds that  
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         (3.1.5) 

and similarly for the rear wheel  

        (3.1.6) 

since the vehicle does not have rear-wheel steering. 

The tire forces are thus formulated as follows, with the cornering stiffness parameters     and 

    being the proportionality constants. 

                (3.1.7) 

               (3.1.8) 

The factor of 2 is due to the fact that there are two front wheels and two rear wheels which are 

lumped together, respectively.  

For the tire velocity angles the following relations exist: 

   (   )  
      ̇

  
 (3.1.9) 

         
      ̇

  
 (3.1.10) 

Approximating for small angles and substituting the notation     ̇, it holds that  

    
 ̇    ̇

  
 (3.1.11) 

    
 ̇    ̇

  
 (3.1.12) 

By substituting expressions (3.1.11) and (3.1.12) into (3.1.7) and (3.1.8) respectively, and 

replacing the results in (3.1.3) and (3.1.4) the following state space model expressing the 

lateral motion of the vehicle is obtained. 

 ̇   

[
 
 
 
 
 
    

  
     

   
     

         

   

    

  
         

    
  

    
      

 

    ]
 
 
 
 
 

  

[
 
 
 
 
 
  

 

 
    

  ]
 
 
 
 

   (3.1.13) 

where   [  ̇   ̇] ,         and        . 

For analysis and simulation purposes, the parameters presented in Table 3.1.1 were used, 

where. These correspond to conventional vehicles according to the work done in [5]. 
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Vehicle Parameter Value 

  (mass) 1445    

   (z-axis inertia) 2094        

   (cornering stiffness rear) 135200       

   (cornering stiffness front) 135200       

   (distance from CoG to rear axle) 1.79   

   (distance from CoG to front axle) 0.88   

    (distance from CoG to rear bumper) 2.46   

    (distance from CoG to front bumper) 1.54   

Table 3.1.1: Vehicle parameters 

 

3.2 System Model 

With a complete dynamical model of the vehicle obtained, it is of interest to see how the 

system behaves in the case of following a target vehicle. For the sake of simplification, the 

leading vehicle is initially modelled as a point at distance   from the centre of gravity of the 

follower.  

Consider the schematic picture below, illustrating two vehicles and their associated 

orientations. The lateral deviation, that is the following car’s lateral offset from the target 

vehicle’s position, can be modelled as relations of the two vehicles' states, under the 

assumption that both vehicles maintain the same longitudinal velocity. 

Figure 3.2.1: Geometric interaction of two vehicles 
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The relation shows that the lateral deviation changes according to the rotation of the following 

vehicle as well as the difference in the direction of motion of the two vehicles. The indices  , 

  and   denote           ,          and       , respectively. The indices are dropped 

for the following vehicles states. 

By letting    be defined as      , there are two distances to consider; the first being the 

deviation from centre of gravity to centre of gravity,      ,  which is dependent on the 

distance travelled in the  -direction 

              ∫         
 

  
         ∫            

 

  
       (3.2.1) 

where    and    denote the yaw- and slip-angle of the leading vehicle, respectively, with the 

assumption of the initial condition for    being no lateral offset. 

The second length is from the projected point at a distance    from the followers centre of 

gravity to the centre of gravity of the leading vehicle. This represents the point that is being 

followed, and can for small deviations be approximated as the look-ahead distance  , as the 

following figure shows. 

 

Figure 3.2.2: Representation of look-ahead distance. 

                           (3.2.2) 

Thus, by approximating for small angles and adding equations (3.2.1) and (3.2.2), the 

following dynamic equation describing the rate of change of the lateral deviation is obtained. 

  ̇    ̇                    (3.2.3) 

When augmenting the model described in Section 3.1 with this expression while performing 

the substitution  ̇      as in (3.1.1), the following state-space formulation is obtained, with 

the state-vector redefined as shown below. 

 ̇   

[
 
 
 
 
  

     

   

         

   
     

         

  
 

    
      

 

    
  

    
      ]

 
 
 
 
 

  

[
 
 
 
 

  

   
    

  

 
 ]

 
 
 
 

  [

 
 
 
 

] (3.2.4) 

where   [  ̇    ] ,             and the state   removed since it is of no 

interest in this case.  
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In standard form, (3.2.4) can be written as  

 ̇        (3.2.5) 

where the matrices   and   are as above and the disturbance vector   ignored. 

If instead the point followed is on the rear bumper of the leading vehicle, the expression for   

should be modified to 

                ̇  (3.2.6) 

where the new term relates the orientation of followed point on the target vehicle’s rear 

bumper. It has to also be noted that the look-ahead distance   can be factored into two parts, a 

constant part consisting of the distance     from the vehicle’s center of gravity to the front 

bumper of the vehicle and a variable term which shall be denoted    denoting the distance 

from the follower’s front bumper to the leader’s rear bumper, as can be seen in figure 3.2.2. 

The term   relates the variations induced by the motions of the leader vehicle; hence, seen 

from the perspective of the following vehicle, there is no control over it. Treating it as a 

measured disturbance, the whole system can be visualized in the block-diagram below, where 

the measured output coming from the sensor is the lateral deviation. Furthermore,       is 

redefined to include the rear-bumper dynamics, as 

        ∫            
 

  
             (3.2.7) 

 

 

 

 

 

Figure 3.2.3: Block-diagram showing a single-vehicle following system 

 

3.3 Actuator Dynamics 

The transfer-function from desired steering-angle to actual angle is dependent on the dynamic 

of the front wheel steering actuator; it can be seen as dominated by a first-order lag according 

to [6]. Thus 

             
 

    
 (3.3.1) 

where   is the time-constant of the motor.  

The controller feeds the actuator a desired steering angle, which in turn is converted into the 

actual steering-profile of the steering-wheel, and finally inputted to the system. 

         reference 
     

   

_

t

_

T 

   
Controller Vehicle 
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The actuator dynamics can affect the stability margins on the system. Depending on the size 

of the time-constant, the system might (depending on its characteristics) experience a shift of 

the crossover frequency to the lower side, as well as a decrease in phase, according to  

                         (3.3.2) 

 

This effect must be taken into consideration when designing a control system for the process 

– either by including it in the model or by making sure to stay out of its range of operation. 

The latter can be achieved by tuning the whole system to have a crossover frequency 

relatively less than the area of effect of the actuator and thus be minimally affected by its 

amplitude and phase-shift.  
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4 Analysis 
The following chapter is devoted to analysing various characteristics of the system and its 

behaviour for the parameters which are varying during implementation. It is assumed that the 

leading vehicle is not moving and hence     . The first part consists of frequency-plane 

bode-analysis while the second part deals with analytical expressions and investigations of the 

poles and zeros of the system.  

 

4.1 Frequency Analysis 

Based on the model introduced in the previous chapter, the transfer-function from the input to 

the last state    is derived as  

                    (4.1.1) 

where   [       ] since the last state is of interest, and      Therefore,  

       
         

  (
                        

  
)             

   (
     

  
)   (

         

  
    )  

 (4.1.2) 

 

where the varying quantities    and   are extracted from  the vehicle parameters and the 

remaining parameters involve quantities that are assumed not to vary at all or negligibly 

during manoeuvres, such as vehicle mass, cornering stiffness, various lengths, etc.  

 

Thus, the replaced relations are as follows.  

 

    
     

 
 (4.1.3) 

 

   
         

 
 (4.1.5) 

 

    
         

  
 (4.1.6) 

 

    
    

      
 

  
  (4.1.7) 

 

   
  

 
 (4.1.8) 

 

    
    

  
 (4.1.9) 

 

It is apparent that the varying parameters   and    influence the position of the zeros of the 

system, while    in addition to this also moves the poles. These relations are discussed in 

detail in the next section. 

 

The last state is chosen to be evaluated as it is of interest to control, since the objective is to 

drive it to zero. Hence, it is of relevance to tailor the open-loop frequency characteristics of 

this system to maintain desirable margins.  
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The frequency response of the open-loop plant        for different values of the look-ahead 

distance and longitudinal velocity are shown below in figure 4.1.1. Note that no actuator 

dynamics are included at this point. 

 

 
Figure 4.1.1: Open-loop frequency response of system for various look-ahead distances and 

velocities 

It is noted that the system presents different characteristics depending on the velocity and 

distance to the point followed, and while not unstable, has insufficient phase-margin. The 

effect is more noticeable for low look-ahead distances and high speed, as will be shown later 

on. This is augmented when the actuator dynamics with a time-constant of 100ms, described 

in Section 3.3 are introduced.  

The stability margins of the combined system 
      

    
 are shown in figure 4.1.3, for the same 

look-ahead distances and velocities as in the previous case.  
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Figure 4.1.2: Open-loop frequency response of system for various look-ahead distances and 

velocities, with actuator dynamics included 

Viewing the plot above it is immediately apparent that the actuator dynamics present a 

negative effect on the phase-margin. The system is now either unstable or relatively close. 

Hence, it is in the design of the controller of relevance to shift the crossover frequency of the 

open-loop system outside the range of the actuator-dynamics, in order to reduce its influence. 

Furthermore, in the event of delays appearing in the system, it is beneficial to have a low 

crossover frequency, since the negative phase-contribution of the delay grows linearly with 

the frequency according to the relation 

         
   

 
 (4.1.10) 

where    is the amount of pure delay in seconds, and    the phase in degrees.  

From a control aspect, it is also immediately apparent that a purely proportional controller is 

not sufficient for the system and a derivative acting part is necessary to raise the phase [7]. 

Thus, in order to be able to cope under all operating conditions, a PD-controller should be 

considered at first.  

 

4.2 Pole-Zero Analysis 

In this part, analysis of the system’s poles and zeros are presented. However, analysis on the 

coefficients appearing in the transfer function is performed in terms of signs. 

Below are listed the coefficients appearing in the transfer-function (4.1.2) and the inequality 

restrictions associated with them according to the vehicle parameters shown in Table 3.1.1. It 

should be noted that since the vehicle considered has a length from the centre of gravity to the 
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rear end of the car which is longer than the distance to the front, the relation           will 

always hold for the same cornering stiffnesses.  

            (
             

   
)    (4.2.1) 

            (
    (     )

   
)                               (4.2.2) 

                                                     (4.2.3) 

                     

         (
           

   
)    (4.2.4) 

         
  (      

 )   (      
 )

   
   (4.2.5) 

            
    (     )

 

   
   (4.2.6) 

             
     

    (     )
 
    

            

     
    (4.2.7)  

 

4.2.1 Open-Loop Poles 

The characteristic equation to be solved is shown below.  

  (   (
     

  
)   (

         

  
    ))    (4.2.1.1) 

Since the system has a double integrator, two poles appear at the origin. The other two poles 

are found to be as follows 

     

(
     

  
) √((

     
  

)
 
  (

         

  
    ))

 
 (4.2.1.2) 

One interesting factor to consider is when the poles go from being purely real into a complex 

pair. Since it is known from (4.2.1.7) that the second term in the square-root expression is 

always positive, the following condition on    can be derived for the poles to be complex. 

   √
              

   
 (4.2.1.3) 

Thus, for the vehicle considered, the following inequality should hold for the open-loop poles 

to be complex. 

           m/s 
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The following figure shows how the poles move for all velocities    ranging from 5m/s to 

50m/s. 

 

Fig 4.2.1.1: Open-loop plant poles moving from left to right and becoming complex as the 

velocity is increased.  

 

4.2.2 Open-Loop Zeros 

The equation to be solved is as follows 

         
  (

                 

  
)                 (4.2.2.1) 

The solution would then be 

  
 (

                 

  
) √((

                 

  
)
 
                     )

         
  (4.2.2.2) 

The system will have complex zeros based on the values of    and  . Thus, the system will 

have complex zeros under the following condition. 

    √
                  

         
 (4.2.2.3) 

The following figure shows the relation where the equality holds. 
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Fig. 4.2.2.1: The crossing point where the zeros of the system turn complex, with the lower 

half belonging to the real region, and the upper to the complex.  

The following figure shows how the zeros move for look-ahead distances ranging from 1.54m 

to 31.54m, with a velocity of 25m/s. It is consistent with the figure introduced previously; 

when the look-ahead is increased, the zeros go from complex to purely real. 

  
Fig. 4.2.2.2: The movement of the open-loop zeros as the look-ahead is increased. 

Thus it can be seen that the system exhibits multiple characteristics depending on the 

operating range; for low look-ahead distances and high velocities the plant presents inherent 

complex poles.  
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5 Control Design 
This chapter will describe the various approaches that were made in the control design and the 

assumptions and limitations of each.  

The aim of the controller is to stabilize the two-vehicle following system, meaning that the 

follower should be able to follow the leading vehicle. The nature of the problem is that the car 

is bounded in the lateral direction by the lane it is within. Thus, the step response of the 

follower should ideally be an over-damped response. If not possible, then the overshoot 

should be as small as possible. Another important factor is that the rise time of the response 

should be acceptable, preferably within one second. Lastly, the settling time of the response 

should not be very long. 

From the previous chapter it was concluded that a purely proportional controller is not enough 

to stabilize the plant, and thus there is a need to increase complexity.  

A conventional PID-controller can be formulated as 

              ∫       
 

 
   

 

  
      (5.1) 

where    is the proportional gain,    the integral gain,    the derivative gain and      the 

error signal acted upon [8]. The corresponding transfer-function from error to control-signal 

would thus be 

        
    

    
    

  

 
     

           

 
 (5.2) 

However, in this case the integral part is not necessary due to the inherit integration in the 

plant, and hence the controller takes on the form of a Proportional-Derivative (PD) controller.  

 

5.1 PD-Controller 

Since there are no sensor measurements available for the rate of change of the lateral error, a 

filtered PD controller is used. The filter is used to reduce the influence of high frequency 

noise [8]. The controller is therefore of the following form 

         (  
   

     
)    

       

(  
   

 
)
 (5.1.1) 

where the following relations were used for the last equality. 

          (5.1.2) 

  
  

  
 (5.1.3) 

Since the aim is to increase the open-loop phase margin, the tuning method will be similar to 

that of a lead compensator. The following rules govern how to tune the controller to a desired 

phase margin    at a desired crossover frequency    : 
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1) Determine the gain |       | and phase            of the plant at the desired 

frequency    . 

2) Determine how much phase-margin increase is needed from the following equation: 

                           (5.1.3) 

3) Calculate the parameter   from the following relation: 

  
                

                
 (5.1.4) 

4) Next, obtain    from the following relation: 

   
√ 

  
 (5.1.5) 

5) Finally, calculate the proportional gain    as follows: 

   
 

√  |       |
 (5.1.6) 

This simple method gives the user freedom to choose the crossover frequency and phase-

margin that is desired. For a simple second order system, there is a direct relationship between 

crossover frequency and rise-time [9]. However, since this system is of more complex nature, 

only approximate relations can be made regarding the rise-time.  

 

5.2 PDD-Controller 

Next, another derivative was added to the controller for an extra degree of freedom when 

performing pole placement design and to possibly achieve better performance. The controller 

takes on the following form. 

          (  
   

        
 

   
 

(      )(      )
) (5.2.1) 

 
  ((               ) 

  (          )   )

                
 

The formulation above can be rewritten as: 

          
               

(      )(      )
 (5.2.2) 

It can be seen from (5.2.2) that the compensator resembles two cascaded PD-controllers. 

Since the aim is to increase the open-loop gain to a desired value, depending on how the poles 

and zeros of the controller are placed, it has the capability of adding up to      phase margin. 

This property is especially good when the system might have time delays as it can provide 

higher tolerance to higher delays compared to a PD-controller while maintaining the desired 

performance. The tuning can be achieved by cascading two lead filters where each of them 

contributes by adding a part of the desired open-loop phase margin. This method can add up 
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to 180 degrees of additional phase at a desired crossover frequency. The tuning rules for the 

lead filter are similar to those described for the PD controller. 

Thus, the controller can be rewritten in this form 

 

          
(      )

(  
   

 

  
)

(      )

(  
   

 

  
)
                       (5.2.3) 

 

With having to tune two lead filters, the question becomes how to choose the amount of phase 

each of them should contribute to the desired open-loop phase margin. Since the aim is to 

only increase the phase to values less than 90 degrees, the following rules are considered. 

 

1) The first lead controller is used to increase the open-loop phase margin to half of the 

desired phase margin. Thus, 

           
  

 
              (5.2.4) 

2) Then, the second lead filter compensates for the rest of the desired phase. 

           
  

 
 (5.2.5) 

3) The proportional gain is chosen such that the crossover frequency is at the desired 

point. 

   
 

√   √   |       |
 (5.2.6) 

 

5.3 Pole-Placement Design 

For pole placement requirements, a higher order controller is needed to correctly place all 

poles as desired (actuator dynamics ignored). The controller has the following form: 

        
   

     
        

       
          

 (5.3.1) 

This controller has 7 tuning parameters and rather than using it for open-loop frequency 

design (there are too many tuning parameter for two requirements), it will be solely used for 

closed-loop pole placement. Although the actuator dynamics are ignored in the pole 

placement, it will have an impact on the results of the pole placement.  

The poles are placed in a pattern similar to those of resulting from the PD-controller explained 

in Section 5.1. However, there exist three extra poles which are placed purely real. Since the 

positioning of 7 poles in relation to 5 zeros is rather difficult to motivate in terms of 

overshoot, rise-time or other parameters of relevance, the placements were determined 

through rigorous testing. The investigations were conducted with an initial look-ahead 

distance and longitudinal velocity of 1.5m and 10m/s, respectively. Thus, by modifying the 

pole-positions as these parameters were increased, a relevant tuning law was sought.  

As seen in equation (4.2.2.2) explained in Section 4.2, the zeros of the plant will move closer 

to the imaginary axis with the increase of velocity. Therefore, the damping of the dominant 

complex conjugate poles is tuned to increase proportionally. This is equivalent with letting 
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their angle to the real axis decrease linearly with the velocity. Furthermore, it was deemed 

necessary to increase the radius of the three dominant poles at higher velocities. It was noted 

that pulling the dominant poles to the left also moved the zeros in the same direction. If 

uncompensated for, a pair of complex zeros will dominate the system at high speeds and low 

look-ahead distances and lead to poor performance. This resulted in the first tuning rule 

described below.  

  

  
            

  

  
 (5.3.2) 

 

where   ,        , is the radius of the poles   ,   ,   . The angle from the real axis can be 

chosen as 

 

            (5.3.3) 

 

The next pair of complex poles were placed similarly, albeit with a real part depending on the 

ratio 
  

    
 (which is the real part of the complex conjugate zeros of the plant), where 

 

             
           

  
 (5.3.4) 

         (5.3.5) 

 

and an imaginary component making the damping similar to that of the first pair of complex 

poles, but changing with a ratio of      . 

 

Thus, the real part of the poles can be chosen as 

 

 
  

    
                

  

    
   (5.3.6) 

 

Let the damping of the complex poles determined in (5.3.2) and (5.3.3) be  

 

        
            √                    (5.3.7) 

 

Then, to achieve a similar damping for the poles in (5.3.6), however with a ratio of      , the 

imaginary component should be chosen as 

 

  (    )  
√    (    )

 
(        

   )  

        
 

  

  
 (5.3.8) 

 

The real pole is placed such that 

 

 
  

    
       

  

    
 (5.3.9) 

 

holds. 

 

The last remaining pole was moved far to the left, basically to ignore its dynamics.  
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       (5.3.10) 

 

The poles’ positions will change as the look-ahead distance and velocity changes; this change 

in operating region will in turn lead to the zeros of the plant moving as well. Thus it cannot be 

expected for the same position to perform the same for every operating region. 

These restrictions will, once combined, define a region in which poles can be placed to yield 

relatively consistent behaviour for a large range of look-ahead distances and velocities. 

However, it should be noted that once the actuator is implemented, the poles will not remain 

in their original positions. The experiments presented in Section 7.4 were nevertheless 

performed with the actuator included.  

 

 

 

Figure 5.3.2: Plot of the movement of poles according to the rules set above, as the velocity is 

varied between 10m/s to 30m/s, and the look-ahead distance between 1m and 15m.  

5.4 State Feedback 

In this section, both full state feedback and output feedback are discussed along with the 

limitations introduced by considering the actuator dynamics. The system is shown in its state-

space form in (3.2.5).  

 

5.4.1 Full State Feedback 

Normal state feedback can be written in the following form 
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where   is the feedback gain matrix. However, in the system considered, full-state feedback 

with reference following is derived. Hence, the controller is written as follows. 

      (      )   [        ]  (      ) (5.4.1.2) 

where   ,   ,   ,    are the feedback gains and      is the vector of references to the states. 

Thus, the system (3.2.5) can be rewritten as 

  ̇               (5.4.1.3) 

where  

          

[
 
 
 
 
 
  

  
 

  

  
   

  

  
       

  

  
   

  

  
   

  

  
  

       
  

  
               

    
      ]

 
 
 
 
 

 (5.4.1.4) 

and 

       

[
 
 
 
 
  

  
  

  

  
  

  

  
  

  

  
  

                

    
    ]

 
 
 
 

 (5.4.1.5) 

The poles of the closed-loop system are the eigenvalues of the    matrix. The characteristic 

equation is written as follows. 

   (
           

  
     )     

 (
     

  
    (

 

  
)                         )    (5.4.1.6) 

  ((           ) (
 

  
))          

where                             and              . 

Suppose the poles are to be placed such that the characteristic equation of the closed-loop 

system is written in the following form: 

∏       
 
      (5.4.1.7) 

Then, by expanding (5.4.1.7) and equating it to (5.4.1.6), the following sets of equations have 

to be satisfied to place all the poles at the desired locations. 
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 (5.4.1.8)-(5.4.1.11) 

where   {  }       has to be satisfied for stability. 

Since there are four variables and four equations, there is a unique solution for the gain vector 

 . Next, the actuator dynamics are considered which will lead to having the system’s order 

increase to five instead of four. The dynamics are introduced as follows. 

    

    
 

 

    
 (5.4.1.12) 

Performing an inverse Laplace-transform yields 

     ̇    (5.4.1.13) 

      (      ) (5.4.1.14) 

Equating the two previous equations yields 

 ̇   
 

 
 

 

 
    

 

 
       (5.4.1.15) 

Thus, the new extended state space equations can be written as: 
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) (5.4.1.16) 

where 
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 (5.4.1.17) 

and 
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 (5.4.1.18) 
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The poles of the closed-loop system are the eigenvalues of the    matrix. The characteristic 

equation is as follows: 

   (
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  )    (5.4.1.19) 

  ((           ) (
 

   
))   (

   

 
)    

where   is the time constant of the actuator. As can be seen, the system to be solved can be 

written as in (5.4.1.8)-(5.4.1.11) with one important distinction; when the poles are chosen, 

the following condition must always hold: 

      

  
 

 

 
                (5.4.1.20) 

that is, the sum of all the poles is fixed. 

Full state feedback has not been considered so far since it was not possible to gain access to 

all the states. Hence, the output feedback approach was considered.  

 

5.4.2 Output Feedback 

The outputs of interest are the yaw-rate and the lateral deviation, since these are measurable.  

       *
    
    

+    (5.4.2.1) 

The controller is written as follows. 

                [    ]  *
    
    

+  (      ) 

      (      )    [      ]  (      ) (5.4.2.2) 

As can be seen, it is equivalent to setting    and    to zero. Thus, the system matrices are the 

same as in (5.4.1.17) and (5.4.1.18) but with      and     . Hence, the characteristic 

equation can be written as follows 

   (
      

  
 

 

 
)       (

    
 

 
 

 
(
      

  
)  

 

   
   )    

 (
 

   
    (

 

   
)  

  

 
         

 

 
  )    (5.4.2.3) 
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Other that the limitation expressed by (5.4.1.20), it can be seen that there are more equations 

than variables and hence exact pole placement is not possible. The solution for the set of 

equations will yield dominating poles that are always complex as will be shown in Section 

7.1.  

Next, the rate of change and acceleration of the lateral deviation were estimated from their 

definitions shown below. 

  ̇    ̇              ̇               (5.4.2.4) 

  ̈    ̈      ̇     ̇     ̇               (5.4.2.5) 

to include only the yaw-rate while the rest of the terms were lumped as disturbances. Thus, 

the expressions reduce to the following. 

  ̇    ̇  (5.4.2.6) 

and  

   ̈     ̇ (5.4.2.7) 

This approach was tested to see if it would add one more degree of freedom for pole 

placement. The output of the system is now described by 

       [
    
     
    

]    (5.4.2.8) 

As can be seen, the rank of the output matrix   is still two, which means that and hence the 

problem is the same as before. It will only add redundancy to the characteristic equation with 

no added flexibility in placing several poles.  
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6 String Stability 
After stabilizing the two cars following system, it is of interest to look at the stability of a 

platoon of vehicles. The concept of string-stability is of great of importance once extending 

the two-vehicle model into a platoon with an arbitrary number of vehicles  , and has been 

discussed in great detail by researchers, however mostly longitudinal string stability (see [10] 

and [11]). If the case is such that the lateral error from the first follower propagates back and 

is amplified, it can lead to vehicles further down the platoon cutting corners or leaving the 

lane due to too large errors. Thus, it is of significance to investigate and verify whether a 

platoon is string-stable or not. 

6.1 Definition of String Stability 

Let   
       denote the measured lateral error from vehicle   to vehicle    , in [12] and [13] 

A platoon of   vehicles is said to be string stable in the    norm sense if for every   [   ], 

the relation ‖  
       ‖

 
 ‖  

         ‖
 
 holds. 

If string-stability holds, a disturbance in the system will always attenuate as it propagates 

throughout the platoon. This approach is different from the one discussed in [12] and [13], 

where the    norm is considered instead of the    norm. That former approach imposes a 

condition on the infinity norm          as well as having the sign of the impulse response 

of       be non-changing which proved to be difficult to analyse. A translation of the 

definition above to the frequency domain would mean that if the transfer function from the 

error of a vehicle to that of its following vehicle has a magnitude less than 1, string stability is 

ensured. Thus, the condition is that 

         ‖
      

        
‖

 
     |

      

        
|        (6.1.1) 

holds, where        denotes the Laplace transform of  the lateral error   
       from vehicle   

to the preceding vehicle, and          similarly from vehicle     to its preceding vehicle. 

The requirement is therefore that the infinity norm          is strictly less than one.  

In order to investigate whether the system is string stable or not, proper error functions must 

be determined. Hence, since the error would in this case be the lateral deviation, the following 

relations are set up. 

Let the error from vehicle   to vehicle     be defined as the projected lateral offset from the 

center of gravity of the following vehicle to the rear bumper of the leader, as defined in 

(3.2.3) where 

 ̇ 
   

   ̇    ̇                              ̇    (6.1.2) 

        (  ̇           )        ̇                   
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where the term     ̇    is introduced from following the rear bumper given by (3.2.7) Since 

every vehicle in the platoon is assumed to be identical and thus having the same controller 

acting on the lateral error, the control signal for vehicle   can be written as         where 

  is the controller used by the vehicle. It is assumed at this point that there is no 

communication between the vehicles in the platoon. Thus, by performing a Laplace transform, 

the previous relation can be rewritten as 

     (   ̇ 
      

      
)   (      ̇   

        
        

)     (6.1.3) 

Since it has been assumed that all the vehicles are identical,   ̇ 
   ̇   

 must hold and 

similarly for the rest of the expressions. Hence, the indices can be omitted and the relation can 

be written as 

   
(   ̇          )

 
   

(      ̇          )

 
     (6.1.4) 

where the expression 
(   ̇          )

 
, similar to that in (4.1.2) can be written as    , whereas 

the other expression 
(–     ̇          )

 
 represents the dynamics of the movement of the point 

on the rear bumper that is to be tracked by the sensor. It is similar to that of     but with   

replaced by      and will for distinction be denoted    .  

       
         

  (
                 

  
)             

   (
     

  
)   (

         

  
    )  

 (6.1.5) 

       
           

  (
                    

  
)             

   (
     

  
)   (

         

  
    )  

 (6.1.6) 

The relation in (6.4) can therefore be written as 

                 (6.1.7) 

By substituting for the control signals the relation can be written as 

                                        (6.1.8) 

Thus, the ratio of the errors can finally be written as follows. 

  

    
 

    

      
 (6.1.9) 

A couple of remarks on the expression (6.9) have to be taken into consideration: 

     and     share the same poles and only differ in their zeros. 

 At steady-state, 
    

      
 and 

    

      
 are the same. 
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From the remarks above, it is clear that at best when the system is controlled to achieve an 

over-damped response, the ratio will be ‖
      

        
‖

 
   with equality. It means that for low 

frequencies, the error will propagate equally along the platoon. In the case where the 

controlled system experiences overshoot, that overshoot will propagate down the platoon 

causing the error to grow with respect to the leader. Although all vehicles will converge to the 

path of the leader eventually, the system is bound by the lane it is moving within and should 

not move unnecessarily in the lateral direction since it might cause the cars to cross into the 

other lanes. Thus, for the decentralized platoon, it should hold that the controlled system 

should not have any overshoot at all.  

Next, inter-vehicle communication is considered where feed-forward from previous vehicles 

in the platoon is conveyed down the platoon. The figure below shows how the feed-forward 

information is fed to the system, where F is the feed-forward filter. 

 

 

 

 

 

Figure 6.1: Illustrative picture of feed-forward from previous vehicles. 

Different topologies for vehicle communication along with their limitations are introduced. 

Four different approaches are presented along with their assumptions and information streams 

required.  

6.2 Information from Preceding Vehicle Only 

In this part, the lateral deviation of the preceding vehicle is transmitted to the vehicle 

immediately following it, as illustrated in the figure below.  

  
reference = 0 

   

disturbance 
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Feed-forward 
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Figure 6.2.1: Illustrative picture of first communication topology considered. 

The control signals for vehicles   and     are defined as follows  

              (6.2.1) 

                  (6.2.2) 

where   is the feed-forward filter and is assumed to be the same for all followers. Substituting 

the signals in (6.1.7) the relation between the errors can be written as  

                 

                                   (6.2.3) 

                                    

Grouping the similar error terms yields 

                                    (6.2.4) 

The relation above cannot be written as a simple ratio of the lateral errors between only 

vehicles   and     and is dependent on follower    . The unwanted term from follower 

    prevents making any conclusion about string stability. Simulation results using this 

approach are shown in Section 7.6. 

6.3 Information from All Preceding Vehicles 

In this part, the sum of the lateral deviations from all the preceding vehicles is transmitted to 

the     vehicle. After adding more information from previous vehicles, it was found that there 

is a possibility to eliminate the appearance of lateral error terms other than those of the 
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immediate preceding vehicle by communicating the sum of the lateral deviations from all the 

preceding vehicles. Consider the figure below showing a part of a platoon. 

Figure 6.3.1: Illustrative picture of the second communication topology considered. 

The control signals for vehicles   and     are defined as follows 

         (∑     
   
   )                      (6.3.1) 

             (∑     
   
   )                      (6.3.2) 

where   is the feed-forward filter. Substituting the signals in (6.1.7), the relation between the 

errors can be written as follows. 

                 

    (                   )     (                     ) (6.3.3) 

                                                               

Grouping the similar error terms yields 

(      )   (         )                             (6.3.4) 

As in the previous case, the relation above is dependent on previous vehicles and cannot be 

written as a simple ratio of the lateral errors between only vehicles   and    . However, 

under the condition that 

           (6.3.5) 

∑   
        

     

Vehicle (     Vehicle (     Vehicle (   Vehicle (     

∑   
        

     ∑   
        

     ∑   
      

     



32 
 

the ratio of the errors can be simplified and written as 

  

    
 

      

    
    (6.3.6) 

By choosing       where   is a constant, the ratio becomes 

  

    
 

       

    
   (6.3.7) 

By making a correct choice of  , string stability of a platoon of   vehicles can be achieved by 

having  

|
  

    
|  |

       

    
 |       (6.3.8) 

Next, the conditions under which         holds are discussed. 

6.3.1 Conditions for String Stability 

For the equality condition (6.3.5) on     and     to hold, their corresponding expressions 

have to be evaluated.  

       
         

  (
                 

  
)             

   (
     

  
)   (

         

  
    )  

 (6.3.1.1) 

       
           

  (
                    

  
)             

   (
     

  
)   (

         

  
    )  

 (6.3.1.2) 

 

Thus, for the equality condition to hold, it should hold that       ̇     ̇   . There are 

two ways to make sure it holds. First, the term       ̇ is introduced because of following the 

rear bumper and can be made to disappear by following the vehicle’s centre of gravity 

instead, or by set-point manipulation. Thus, it is possible to write     as follows 

    
     

  (
               

  
)             

   (
     

  
)   (

         

  
    )  

 (6.3.1.3) 

Next, it has to be made that the look-ahead term is set to zero. One way to do so is to set 

    which would lead to    ̇   . This is called the look-down scheme as defined in 

Section 2.1. By manipulation of the lateral error sensor measurements, it is possible to 

emulate the movements of the vehicle with respect to the path of the previous vehicle and 

control the system as if it were operating based on a look-down scheme. Under these 

assumptions, string stability is guaranteed for a platoon of vehicles regardless of how many 

vehicles are in the platoon. However, having a system of this kind of situation is no different 

than having a lane following algorithm and the concept of a platoon does not hold anymore. 
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The other way is to assume that the vehicles exhibit no yaw-movement and moves in the y-

direction only. This would yield that       ̇     ̇   . The results of this approach will be 

discussed in Section 7.6. 

6.3.2 If Equality Assumption Does Not Hold 

If the assumption (6.3.5) does not hold for the system, the only way to get rid of the unwanted 

terms in (6.3.4) is to let the feed-forward filter   be defined as a function of every vehicle. 

Thus, in this case the assumption that all vehicles have the same feed-forward filter does not 

hold however they do have the same controller  . 

The control signals in (6.3.1) and (6.3.2) are then rewritten as follows 

                        (6.3.2.1) 

                              (6.3.2.2) 

which results in the change of (6.2.3) to the following relation. 

                 

     (                    )     (                        ) (6.3.2.3) 

             (                      )     (                       ) 

yielding 

(      )   (          )                                  (6.3.2.4) 

The next step is to rewrite     and     as the ratio of their respective polynomials as follows. 
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 (6.3.2.6) 

where     and     are the polynomials representing the zeros of     and     respectively. 

Substituting the expressions in the right-hand side of (6.3.2.4) yields 

(      )   
 

 
(          )     

 

 
                            (6.3.2.7) 

for    . To find a suitable selection for the filter for each follower, analysis on the error 

ratios from every vehicle to the next starting from the second follower has to be done. 

For the second follower, the expression (6.3.2.7) is written as follows. 

(      )   
 

 
(          )    (6.3.2.8) 
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Thus, a suitable choice of the filter    would be 

       
   

   
  (6.3.2.9) 

where   is a constant. Thus, the ratio of the second follower’s lateral error to the first follower 

becomes 

  

  
 

         

(      )
 (6.3.2.10) 

Similarly as in (6.3.8),   can be selected such that the infinity norm of the ratio can be forced 

to be less than one. Next, for the third follower, the expression (6.3.2.7) is written as follows. 

(      )   
 

 
(          )   

 

 
                 (6.3.2.11) 

For the influence on the error from the first follower to disappear, a suitable choice of the 

filter    would be 

   
   

   
       (

   

   
)
 

 (6.3.2.12) 

By substituting in (6.3.2.11), the term involving    would disappear. Thus, the ratio of the 

third follower’s lateral error to the second follower becomes 

  

  
 

    ( (
   
   

)  )

(      )
 (6.3.2.13) 

For the general case, by letting the feed-forward filter for follower     be chosen as 

   
   

   
         (

   

   
)
   

 (6.3.2.14) 

and substituting into (6.3.2.7), the following relation is derived 

(      )   
 

 
(    (

   

   
)
   

    )            ( (
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  )       (6.3.2.15) 

Thus, the ratio of the error from the follower   to follower     can be written as follow 

  

    
 

    ( (
   
   

)

   

  )

(      )
 (6.3.2.16) 

Disadvantages of using this approximation are 

 The feed-forward filter is a function of the vehicle’s order in the platoon. 

 The feed-forward filter increases in complexity with the vehicle’s position in the 

platoon, order                where   is the vehicle’s order in the platoon. 
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 The ratio is dependent on the operating conditions of the platoon in terms of look-

ahead distance and longitudinal velocity and thus the number of vehicles guaranteed to 

maintain string stability might change depending on the operating points. 

This approach is discarded due to the reasons mentioned above and will be discussed further 

in Section 7.6.  

Along with the approaches mentioned above, two more have been investigated to eliminate 

the need for selecting the filter depending on the vehicles position in the platoon. Due to a 

pending patent, they cannot be presented here and can be referred to through patent number, 

I2828SE00. 
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7 Simulation Results 
In this section, the results of tuning the controllers according to the rules introduced 

previously are presented and discussed. Long runs have been made for variations of the 

desired tuning parameters and thereafter the effects these parameters have on the step 

response of the system are discussed. 

7.1 Output Feedback 

A few runs have been made by varying the gains    and    from 0.01 to 25. The following 

plots shows how the poles move with the varying gains in both cases of ignoring and 

including the actuator dynamics. 

Figures 7.1-7.2: Plots of the dominating poles as feedback-gains are increased, without 

actuator and with, respectively. 

As can be seen, there is no way the dominating poles can be placed all real and hence an over-

damped response cannot be achieved. 

7.2 PD-Controller 

Long runs have been made over the values of    from 0 to 30 meters,    from 0 to 50m/s (or 0 

– 180km/h) and desired phase-margin from 40 to 89 degrees. Each run was conducted with 

setting the desired crossover frequency to a fixed value. The results displayed below are for 

the crossover frequencies of 1 and 2rad/s. The design criteria are as mentioned in the 

beginning of chapter 5. 

First, a look at the minimum overshoot achieved for a given crossover frequency and the 

phase margins under which they are achieved along with the rise-time for the responses is 

desired. The figures below show the results. 
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Figures 7.2.1-7.2.3: Plots of minimum overshoot, its associated phase-margin and rise-time, 

respectively for a crossover frequency of 1rad/s.  
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Figures 7.2.4-7.2.6: Plots of minimum overshoot, its associated phase-margin and rise-time, 

respectively for a crossover frequency of 2rad/s.  

Next, some typical step responses associated with achieving minimum overshoot is of interest 

and is shown in the figures below. 

   
Figures 7.2.7-7.2.8: Plots of the step responses that achieve minimum overshoot, for 

crossover frequencies of 1rad/s and 2rad/s respectively.  
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As can be seen from the figures above, it is possible with a PD-controller to achieve relatively 

low overshoot for the desired operating areas, i.e. high speeds and low look-ahead distances. 

Furthermore, by selection of the crossover frequency, these minimum overshoots could be 

achieved while maintaining the desired rise-time of about 1 second. However, as mentioned in 

the beginning of Section 5 it is also desired that the system maintains a reasonable settling-

time, and from what can be seen from the step-responses, the settling-time is rather high and it 

manifests itself similar to a slowly dissipating steady-state error. Thus, tuning the controller to 

maintain a minimum overshoot presents the drawback of having long settling-time.  

Since it is also desired to maintain a fixed rise time, the following plots show the associated 

overshoot and phase margins with fixing the rise-time to one second. Since it is not possible 

to maintain the same rise time for every operating point, the best results with rise time within 

20% of the desired one are selected. In case no point exists within the 20% range, those points 

are set to zero in the plotted data and would appear as dark blue squares. 

 

Figures 7.2.9-7.2.11: Plots of chosen rise-time, its associated over-shoot and phase-margin, 

respectively for a crossover frequency of 1rad/s.  
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Figures 7.2.12-7.2.14: Plots of chosen rise-time, its associated over-shoot and phase-margin, 

respectively for a crossover frequency of 2rad/s.  

Similar to before, typical step responses associated with achieving a fixed rise-time of about 

one second and the control signals requested are also of interest and are shown in the figures 

below. 
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Figures 7.2.15-7.2.16: Plots of the step responses that achieve a fixed rise-time of about 1 

second, for crossover frequencies of 1rad/s and 2rad/s respectively.  

The figures above show that if having the criteria to maintain a fixed rise-time, larger 

overshoot than in the previous case will be present. However, the settling-time will be 

considerably lower for the cases where the overshoot is not minimized as some of them have 

a rise time of about 1 second. Thus, it can be concluded that, for this system and this set-up, 

one of the criteria mentioned in Section 5, must be violated in order for the other two to hold.  

The two figures below present the maximum overshoot that may occur using this controller 

for the settings mentioned in the beginning, to visualize the worst-case scenario during tuning.  

 
Figures 7.2.17-7.2.18: Plots of maximum over-shoot over all operating range for a crossover 

frequency of 1rad/s and 2rad/s respectively. 
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with the rise-time for the responses. 
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Figures 7.3.1-7.3.3: Plots of minimum overshoot, its associated phase-margin and rise-time, 

respectively for a crossover frequency of 1rad/s.  
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Figures 7.3.4-7.3.6: Plots of minimum overshoot, its associated phase-margin and rise-time, 

respectively for a crossover frequency of 2rad/s.  

Similar to the PD case, it is also desired to look at some typical step responses associated with 

achieving minimum overshoot and the control signals requested. They are shown in the 

figures below. 

Figures 7.3.7-7.3.8: Plots of the step responses that achieve minimum overshoot, for 

crossover frequencies of 1rad/s and 2rad/s respectively.  

The figures above show similar characteristics to the PD-controller case. However, one 

difference that can be noted is that minimum overshoot is not attained in the same in the same 

area as in the previous case, using this tuning rule. Furthermore, using this controller yields a 

somewhat faster settling-time.  
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Figures 7.3.9-7.3.11: Plots of chosen rise-time, its associated over-shoot and phase-margin, 

respectively for a crossover frequency of 1rad/s.  
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Figures 7.3.12-7.3.14: Plots of chosen rise-time, its associated over-shoot and phase-margin, 

respectively for a crossover frequency of 2rad/s.  

Similar to before, a look at some typical step responses associated with achieving a fixed rise-

time of about one second and the control signals requested is also of interest and is shown in 

the figures below. 

Figures 7.3.15-7.3.16: Plots of the step responses that achieve a fixed rise-time of about 1 

second, for crossover frequencies of 1rad/s and 2rad/s respectively. 
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again, shorter settling-time is noted. 

 

The two figures below present the maximum overshoot that may occur using this controller 
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Figures 7.3.17-7.3.18: Plots of maximum over-shoot over all operating range for a crossover 

frequency of 1rad/s and 2rad/s respectively. 

7.4 Pole-Placement Design 

Using the rules specified in Section 5.3 for placing the poles, will for each velocity between 

10m/s and 30m/s, over a range of look-ahead distances from 1m to 15m, result in a maximum 

of 37% overshoot and a minimum of 13%, while the rise-time is kept between roughly 0.5s to 

1.5s (the faster rise-times belonging to higher velocities). 

 

The figures 7.4.1-7.4.6 below show the step-responses of the closed-loop system, including 

actuator, for some velocities and look-ahead distances.  
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Figures 7.4.1-7.4.6: Step-responses of closed-loop system with actuator included. Each figure 

is for a set velocity of 10, 14, 18, 22, 26 and 30m/s respectively, displaying look-ahead 

distances ranging from 1m to 15m 

At each velocity, the responses are rather similar regardless of the amount of look-ahead. 

Although it is apparent that it is possible to achieve acceptable behaviour and consistency to 

some extent even when excluding the look-ahead distance from the tuning rules, using the 

same controller for a large range of velocities and look-ahead distances presents issues. As an 

example, at velocities less than 10m/s when including the actuator the system would be 

unstable. In contrast to the previous two approaches, this method presents rather fast settling-

time. 

 

7.5 Control signals 

In this part, the control signals for selected tuning rules are displayed. This is to ensure that 

the tuning rules do not output unreasonable signals to the actuator. 

 

7.5.1 PD-Controller 

The parameters tuned are      and       for the minimum overshoot requirement. The 

plotted data are for speeds between 20-40 m/s and look-ahead distances from 0-5m 
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Figure 7.5.1.1: Control signal for PD-controller with crossover frequency of 1rad/s and 

phase margin of 85 degrees. Speeds and look-ahead distances varied as specified above. 

As can be seen, no more that 4.5 degrees in the worst case are requested from the actuator and 

the control signals are smooth. 

 

In the case where      and       for minimum overshoot. 

 

 

Figure 7.5.1.2: Control signal for PD-controller with crossover frequency of 2rad/s and 

phase margin of 76 degrees. Speeds and look-ahead distances varied as specified above. 

As can be seen, in the two cases the system achieves almost similar overshoots but in the case 

where      the response of the system is much faster. That results in the control signal 

having increased in magnitude compared to the previous case. 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

0

1

2

3

4

5

Step Response

Time (sec)

A
m

p
lit

u
d
e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1

0

1

2

3

4

5

6

7

8

Step Response

Time (sec)

A
m

p
lit

u
d
e



49 
 

7.5.2 PDD-Controller 

Similar to the PD case, the plots of the input signals are shown below 

 

 

Figure 7.5.2.1: Control signal for PDD-controller with crossover frequency of 1rad/s and 

phase margin of 89 degrees. Speeds and look-ahead distances varied as specified above. 

 

Figure 7.5.2.2: Control signal for PDD-controller with crossover frequency of 2rad/s and 

phase margin of 89 degrees. Speeds and look-ahead distances varied as specified above. 

It can be noted that this method requires less control action when compared to the PD-

controller.  

7.5.3 Pole-Placement Design 

The control signals for velocities ranging from 20-30m/s and look-ahead distances from 1m to 

5m are shown below, for the tuning rules specified in Section 5.3.  
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Figure 7.5.3.1: Control signal for Pole-Placement Design with velocities and look-ahead 

distances ranging as specified above.  

As can be seen from the figure above, the controller does ask for unreasonable signals from 

the vehicle and is within the same range as the other controllers discussed above. 

7.6 String Stability 

Before presenting the results from the topologies discussed, it is of interest to see why the 

topology introduced in Section 6.3.2 was abandoned. Since the aim is to have a platoon 

moving at high velocities and short look-ahead distances, the following figure shows the 

magnitude of the ratio of the lateral error of the fourth follower to the third follower for 

velocities between 15m/s and 40m/s and look-ahead distances ranging from 1.54m to 11.54m. 

The controller is a PD chosen to maintain a crossover frequency of 1rad/s and a desired phase 

margin of 50 degrees with the absolute look-ahead distance (from bumper to bumper) chosen 

at the discrete values    [        ]m. 

 

0 1 2 3 4 5 6 7
-2

-1

0

1

2

3

4

5

6

Step Response

Time (sec)

A
m

p
lit

u
d
e

10
-2

10
-1

10
0

10
1

-40

-35

-30

-25

-20

-15

-10

-5

0

5

M
a
g
n
itu

d
e
 (

d
B

)

 

 
Bode Diagram

Frequency  (rad/sec)

La = 1

La = 4

La = 7

La = 10

10
-2

10
-1

10
0

10
1

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

M
a
g
n
itu

d
e
 (

d
B

)

 

 
Bode Diagram

Frequency  (rad/sec)

La = 1

La = 4

La = 7

La = 10



51 
 

 

Figures 7.6.1-7.6.4: The ratio of error for look-ahead distances ranging from 1 to 10 for a 

fixed velocity of 15m/s, 25m/s, 35m/s and 40m/s respectively.  

As can be seen, the ratio is dependent on the operating condition of the platoon. However, 

maintaining a look-ahead distance less that 4m would guarantee string stability up until the 

fourth follower under all operating points evaluated. 

A note should be made on the selection of the constant  . Let   be selected to   , thus, 

starting from follower 2 and substituting   in (6.3.2.10)   

   
          

(      )
        (7.6.1) 

This basically means that the second follower anticipates the first follower’s movements and 

moves accordingly and hence achieves perfect following. Moving to the third follower’s 

expression in (6.3.2.13) 

   
    ( (

   
   

)  )

(      )
   

    ( (
   
   

)  )

(      )
          (7.6.2) 

and similarly for the vehicles further down the platoon. This means that the vehicles in the 

platoon will move in synchronization as soon as the first follower has a deviation from the 

leader. This can be seen from the following figure where the movement of a platoon of six 

followers is shown when a disturbance is given to the leader’s position. 
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Figures 7.6.5: Simulation results of the movements of a platoon of six followers when a 

disturbance is given to the leader for 30m/s velocity and 7.54m look-ahead distance. 

As can be seen, all followers from the second onwards follow the first follower and it was 

observed that each has zero lateral deviation to the vehicle in front of it. This, however, does 

not mean that the platoon is string stable. As can be seen from figures 7.6.1-7.6.4, if a 

disturbance is introduced from the third follower to the fourth at the frequencies where the 

amplitude of the norm is greater than one, that error will increase in magnitude for the fourth 

follower. Hence, this platoon of six followers is not string stable. This shows the necessity to 

look at the explicit expression as in (6.3.2.16) for every index   and show how the infinity 

norm is always kept strictly less than one.  

Thus, the focus of the remainder of the chapter will be on the remaining topologies.  

For the different communication topologies presented in Section 6, a number of simulations 

were done with a platoon of 17 vehicles. There are two main cases that are simulated. The 

first is that the platoon will move in a straight trajectory, while a disturbance acts on the 

second following vehicle at some point in time. The other case is that the second follower will 

get that same disturbance while the platoon is performing a lane change manoeuvre. The 

interest would lie in observing how this error will propagate in the platoon starting from the 

third follower. In the two following cases, a PD-controller was used with a set-up of crossover 

frequency of 1rad/s and a phase-margin of 60 degrees, while the platoon was moving with a 

velocity of 30m/s with a look-ahead distance of 1.5m. The feed-forward filter   was in 

topologies 1 and 2 chosen to be      
   

   
; for the settings of the remaining topologies, please 

refer to Patent I2828SE00. For the sake of simplification, the communication topology 

described in Section 6.2 will be called topology 1, the one in Section 6.3.1 topology 2, the 

ones described in Patent I2828SE00 will be called topology 3 and topology 4 respectively. 
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7.6.1 Case 1: Disturbance While on a Straight Trajectory 

The plots below illustrate the maximum of the absolute lateral error relative to the preceeding 

vehicle as a function of vehicle number in the platoon for the four topologies introduced in 

Section 6.  

 

Figures 7.6.1.1-7.6.1.4: Maximum of the absolute lateral error for a platoon of seventeen 

followers when a disturbance is given to the second follower. 

As can be seen from the first figure in the above set, by using topology 1, that is having 

information from only the preceding vehicle, makes the platoon string unstable. However, the 

other three methods clearly resolve in a string stable platoon, as the error attenuates and 

reaches 0. Comparing topology 3 and topology 4, it can be seen that in the latter case there is 

control over the rate of dissipation of the error. It is to be noted, although topology 2 presents 

a string stable platoon, it has been assumed that the vehicles move with no yaw.  

It is also of interest to look at the maximum steering wheel angle performed by each follower. 

The following figures show that kind of information. 
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Figures 7.6.1.5-7.6.1.8: Maximum control signal requested for a platoon of seventeen 

followers when a disturbance is given to the second follower. 

As can be seen, the two latter topologies require larger control signals in order to keep the 

platoon string stable. Furthermore, it can be noted that the demand on the steering-wheel 

angle is increasing for vehicles further down the platoon, although not at a very high rate. The 

absolute maximum is less than 2.7 degrees. 

7.6.2 Case 2: Disturbance While Performing a Lane Change 

Similar to the previous case, the plots below illustrate the maximum of the absolute lateral 

error as a function of each vehicle in the platoon for the four topologies introduced in Section 

6.  
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Figures 7.6.2.1-7.6.2.4: Maximum of the absolute lateral error for a platoon of seventeen 

followers when a disturbance is given to the second follower while the leader is performing a 

lane change manoeuvre. 

Similarly, for this kind of manoeuvre, the same conclusions can be drawn about string 

stability as in the previous case. However, it has to be noted that the latter two topologies 

require a larger maximum control signal, as can be seen in the following plots. 
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Figures 7.6.2.5-7.6.2.8: Maximum control signal requested for a platoon of seventeen 

followers when a disturbance is given to the second follower while the leader is performing a 

lane change manoeuvre. 

7.6.3 In Case of Model Uncertainties 

In the previous cases, perfect knowledge on the parameters of vehicles involved in the platoon 

guaranteed string stability to an infinite number of vehicles. Thus, the results of the effect that 

model uncertainties have on the number of vehicles in a platoon that can be guaranteed to be 

string stable is shown below. The simulation was conducted with the PD-controller described 

in Section 5.1, with a crossover frequency of 0.5rad/s and a phase-margin of 45 degrees. 
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Figure 7.6.3.1:                                                      . 

It is clearly evident that string-stability can only be guaranteed up till the 8
th

 vehicle. This is a 

rather conservative estimation. For more information, please refer to Patent I2828SE00. 
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8 Discussion and Conclusions 

8.1 Controller Methods 

From the results presented in the previous section, there are several interesting notes that can 

be made. For the PD-controller, it is seen that, for the tuning methods used, at the worst case 

no more than 40% overshoot occurs. If the aim in the design is to maintain a rise-time around 

1 second, the overshoot would be approximately 20-25%, with a reasonable settling time, for 

the case of setting the crossover frequency to 2rad/s, while it is relatively lower for the case of 

the crossover being 1rad/s. This is mainly due to the fact that there is a variation in the rise-

time chosen within the tolerance range as it is higher in the latter case. The least overshoots 

were achieved at high speeds and small look-ahead distances or at low speeds and large look-

ahead distances. Thus it is possible to achieve relatively low overshoots in the desired 

operating ranges. To achieve the least overshoot, the requirement on the desired phase margin 

has to be set high, on the downside that the rise-time in the case where crossover is 1rad/s 

would be considerably higher than 1 and considerably lower in the other case. There is also 

the fact that having a higher phase margin results in a response with a slower settling time 

than in the normal settings of close to 60 degrees. This could be compensated for by choosing 

a higher crossover frequency, which would correspond to larger proportional action and 

subsequently larger overshoot.  

Correspondingly, for the PDD-controller, by using the design in Section 5.2, the maximum 

overshoot is around 45%, and does not show any added value over the PD-controller, since 

the former presents less overshoot over more operating regions, especially the desired ones 

with high speeds and small look-ahead distances. However, the controller does not ask of as 

large control signals as the PD controller. Also, it can be seen that the control signals are 

slower than in the PD case, resulting in a slower rise-time. Thus, the less overshoot desired 

from the response of the system the more demand on a faster control signal there is. One 

advantage to using this method is that more phase may be added to the system, making it 

more resilient to delays that might appear.  

The full pole-placement using additional derivatives presents difficulties when implementing, 

since the inclusion of the actuator will move them out of their positions. For velocities less 

than 10m/s, it was noted that either a non-minimum phase effect occurs or a dominating pair 

of complex conjugate zeros are introduced by the controller. These zeros would not move 

remarkably as poles were shifted, and thus this controller presents issues when working out of 

its range of operation. A suggestion would be to use a different tuning method for this area. 

However for the ranges the experiment was conducted in the responses were rather consistent. 

On the downside, the method lacks the simple and intuitive tuning offered by the PD- and 

PDD-controllers. In addition, the control signals required were larger than the other two cases, 

mainly because the resulting step-responses were larger. 

In all cases it can be seen that overshoot cannot be avoided in the system, due to several 

reasons observed during various simulations. It was noted that a zero would be introduced by 

the controller that is always closer to the imaginary axis than the dominating pole also  
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introduced by the controller. The pair moves together and as overshoot decreases, they get 

closer and closer to each other until they cancel out at the origin when    goes to zero. This 

constitutes to having no proportional term in the controller. Another reason is that the 

dominating poles are complex and hence leading to an oscillatory response. In addition, 

having more than one zero in between the two dominating real poles leads to overshoot as 

well. Based on these observations, the nature of double integrator systems was investigated. 

Thus, an analytical proof of inherent overshoot in double integrator systems, when using the 

conventional controllers mentioned above, is given in Appendix A. The proof states that in 

order to avoid overshoot, the proportional gain of the controller should be set to zero. Using a 

purely derivative-acting controller would mean that solely the rate-of-change of the error is 

being corrected for. In a vehicle following application, there might be cases where a 

stationary error occurs, i.e. there is a lateral offset between the vehicles, but it is neither 

increasing nor decreasing, rendering the controller non-acting. 

Furthermore, it can be seen that a fixed rise-time cannot be achieved under all operating 

condition for a fixed desired crossover frequency and desired phase margin. The same goes 

for achieving minimal overshoot. This is due to the plants dynamics, and thus there is no fixed 

setting method that would satisfy all demands under all operating regions. 

8.2 String Stability 

As mentioned in the results section, the proposed strategies 2, 3 and 4 do guarantee string 

stability for an infinite number of vehicles in a platoon assuming perfect knowledge of the 

vehicles parameters. It was also shown that topology 4 can guarantee string stability for a 

finite number of vehicles in a platoon when there are reasonable uncertainties in the 

parameters of the vehicles. Also, topologies 3 and 4, as a consequence of guaranteeing string 

stability, also include path following. Thus, it is a case where path following is integrated as a 

part of the regulation problem and has proven to perform very well in the lane change 

manoeuvre. However, more testing on real road profiles need to be done to validate the 

performance of the proposed topologies. For topologies 3 and 4, it was also noted that the 

maximum steering-wheel angle requested increases down the platoon and hence will possibly 

limit the number of vehicles in the platoon. In general, it is shown that string stability cannot 

be achieved without communication from preceding vehicles. 
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9 Future Work 
This work was restricted to vehicles considered travelling at a constant velocity and with 

equal spacing between individuals in the platoon. Since the characteristics of the plant is 

heavily dependent on both velocity and look-ahead distance, controllers designed for specific 

parameters would be rendered useless or inconsistent in behaviour. If one of these parameters 

would vary during manoeuvres it would lead to the model considered turning nonlinear, and 

thus further analysis would be required. 

Furthermore, as assumptions were made that parameters concerning the vehicle are 

predetermined and known, robustness tests and evaluations should be conducted to see the 

effect of parameter perturbations. Testing and validation in vehicles would provide a stronger 

basis to the claims and relations presented in this report.  

In the case of working with controllers with high complexity, a complete analysis of 

conditions regulating the positioning of poles must be made. The inclusion of dynamics 

presented from the actuator will distort and move the poles from their desired positions. 

Taking the actuator into consideration would simplify the design process; however it will also 

place more requirements on the amount of signals measured (in this case, higher order 

derivatives), and in the case of unavailable information lead to sensitivity to noise since 

numerical differentiation is needed to be performed.  

Since it is proven in Appendix A that it is impossible to achieve a over-damped response for 

double integrator systems using conventional methods, more focus should be put on finding 

more advanced control structures that would remove overshoot.  

Proper tests have to be made to validate the accuracy of the vehicle model being used, as it 

will reflect on the string stability results.  
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Appendix A 

A.1   Proof of inherent overshoot in double integrator plants 

It can be verified analytically that it in fact is not possible to avoid overshoot in a system 

consisting of a double integrator, using simple controllers. 

Consider the plant  

     
 

  
 (A.1.1) 

and the PD-controller  

            (A.1.2) 

The closed loop system would thus be 

           
        

          
 

      

         
  (A.1.3) 

The step-response of this system can be written as 

          

 
 

 

 

      

         
  (A.1.4) 

Performing the replacement      yields 

 

  

       

           
 

       

                (A.1.5) 

The magnitude of this function can be evaluated by separating the real and imaginary parts. 
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|  

√  
    

   

√     (      )
 
  (A.1.6) 

Thus, the condition holds that equation (A.1.6) must, for all frequencies, be less than or equal 

to 1 in order to avoid overshoot.  

  
    

       
  (      )

 
  (A.1.7) 

Reformulating the above equation, it is easily seen that the proportional gain is upper-

bounded.  

  
     

  (      )
 
   

     (A.1.8) 

At frequency      the following inequality must hold.   

  
     (A.1.9) 
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Thus the only valid choice of proportional gain is 0, and the controller reduces to one with 

purely derivative action. The same result follows when using higher order derivative 

controllers.  

In this application, this leads to the problem of only regulating the change-of-rate in the lateral 

deviation; thus if the vehicle has a stationary error, no corrections will be made.  

A.2  Proof of inherent overshoot in general double integrator plants 

The proof above can be expanded to the general case, where the plant is assumed to be  

     
    

      
  (A.2.1) 

Its frequency-domain equivalent can be divided into two parts; one containing the real 

components of the system and another containing the imaginary. 

                  (A.2.2) 

                  (A.2.3) 

For the system to be of double integrator form, it is required that  

        (A.2.4) 

otherwise it would constitute to the numerator of equation (A.2.1) only consisting of terms 

involving the complex Laplace variable  , and would thus cancel out the integrator.  

Furthermore,  

        (A.2.5) 

is required to hold, since, by definition, it contains the imaginary terms involving  . 

Thus, using the same controller as in the previous case, the closed-loop system can be written 

as 
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  (A.2.6) 

The magnitude of a step-response is 
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  (A.2.7) 

Thus, the requirement is that  
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(A.2.8) 
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Evaluating this function at     yields 

  
         

         (A.2.9) 

and it is proved that    must be zero in order to avoid overshoot, since      is non-zero by 

the condition (A.2.4), and      is by definition zero.  


