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Abstract

Starting from a self-referential and recursive definition of the Kolakoski
sequence, we introduce the Kolakoski transforms of words on 2 numbers.
We then make conjectures allowing us to propose an approach tackling
the Keane’s conjecture [Kea]1 using a probability perturbation method
or a deterministic perturbation method. This way we brought the prob-
lem from discrete to semi-continuous mathematics and chaotic dynamical
systems.

Introduction
The Kolakoski word (or sequence) (K(n))n≥1 is the sequence A000002 [Slo] and
was studied in [Kol] by William Kolakoski in the 60’s. In fact this sequence
was considered earlier [Old] by Rufus Oldenburger in 1939. It is completely
determined by the recursive and self referential scheme K(1) = 1,K(2) = 2 and
for n ≥ 3 by the following formula:

K(n) = w0 (k(n))

where

k(n) = inf {t ≥ 1 | K(1) + ...+K(t) ≥ n}

is the sequence A156253 [Slo] and where w0 is the word 12121212... defined
by w0(n) =

3+(−1)n

2 for n ≥ 1. The proof is omitted here and is easy. Next it is
natural to generalise this self-referential construction using any primitive word
on 2 numbers as follows. We may emphise that we can work with integers but
also with real values as we shall see. This study relies indeed more on analytic
aspects of the transform than on combinatorial considerations related to words.
To this end we define firstly the simple Kolakoski transform and thereafter the
weighted Kolakoski transform of words.

1Keane was apparently the first to suggest that the density of 1’s is 1
2 in the Kolakoski

word. It is still an open question and probably the most important regarding the Kolakoski
sequence.
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The simple Kolakoski transform For a given word w on the alphabet {r, s}
where r and s are distinct positive reals we define the simple Kolakoski transform
of the word w by Kw(1) ∈ {r, s} ,Kw(2) ∈ {r, s} and for n ≥ 3 by

Kw(n) = w(kw(n))

where kw(n) = inf {t ≥ 1 | Kw(1) + ...+Kw(t) ≥ n}.

For our purpose it is worth to go further and we consider the following more
general transform.

The weighted Kolakoski transform Let u = (ui)i∈N be a sequence of
strictly positive reals2. Then the weighted Kolakoski transform of the word w
on the alphabet {r, s} where r and s are distinct positive reals of weight u is
defined by

Kw,u(1) ∈ {r, s} ,Kw,u(2) ∈ {r, s} and for n ≥ 3 by

Kw,u(n) = w(kw,u(n))

where kw,u(n) = inf {t ≥ 1 | u1Kw,u(1) + ...+ utKw,u(t) ≥ n}.

Hence the simple Kolakoski transform of the word w is the weighted Ko-
lakoski transform of constant weight u = 1, 1, 1, 1, 1, ....

In the sequel we write SKT for the simple Kolakoski transform and WKT
for the weighted Kolakoski transform.

Plan of paper
In the first section we make the conjecture (1) related to SKT on words on the
alphabet {1, 2} which is a generalisation of the Keane’s conjecture. Another big
amount of experiments led us to consider non constant weights as a possible
tool to circumvent problems like the Keane’s conjecture.

Hence in the second section we study a tractable WKT of the word w0 and
then we introduce a probability perturbation method on the weights. We make
a general conjecture (2) related to words on {1, 2} and allowing us to deal with
the Keane’s conjecture via the conjecture(4). The conjecture (3) is more specific
and related to the word w1 := 13131313... on {1, 3} for which the conjecture (2)
clearly doesn’t hold.

In the third section we consider a deterministic perturbation method re-
lated to the primitive word and not to the weight. The word w1 seems then
surprisingly connected to the Golden ratio Φ = 1+

√
5

2 allowing us to state the
conjectures (5) and (6) related to the words w1 and w0 respectively. This yields
the conjecture (7) related to w0 and proving the Keane’s conjecture. We provide
a conjecture (8) generalising the conjecture (6).

2The weight u can be a word or any suitable sequence, i.e. the weight must allow us the
computation of infinitely many terms of the transform. We could also consider a weight un,k

depending also on n but we don’t consider this transform here.
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In a fourth section we state a very ambitions conjecture (9) where we try
to summarize our thoughts in a single and general conjecture related to a de-
terministic perturbation of the SKT of words w on a real alphabet {a, y} with
a, y > 0.

Finally in the fifth section we study the SKT of the perturbated words
w = y(y+1)y(y+1)y(y+1)... where y > 0 is a real value and provide the con-
jecture (10) yielding an explicit family of words satisfying a generalized Keane’s
conjecture.

More properties of the WKT will be described elsewhere [Clo] as well as the
extension of the WKT to words over alphabet containing more than 2 numbers.

1 Generalisation of the Keane’s conjecture
We generalise the Keane’s conjecture to any SKT of words on the alphabet
{1, 2}.

Conjecture (1)

Whatever the word w on the alphabet {1, 2} you consider and verifying

lim
n→∞

w(1) + ...+ w(n)

n
= λ

where 1 ≤ λ ≤ 2 then the SKT of w always satisfies

lim
n→∞

Kw(1) + ...+Kw(n)

n
= λ (1)

In particular, taking w = w0 (so that λ = 3
2 ) the conjecture (1) implies that

lim
n→∞

K(1) + ...+K(n)

n
=

3

2

and the Keane’s conjecture [Kea] would be true for the Kolakoski sequence.
Hundreds of experiments support the conjecture (1) and we provide there-

after 4 examples illustrating this fact.

Examples supporting the conjecture (1)

Taking a word w on the alphabet {1, 2} satisfying

lim
n→∞

w(1) + ...+ w(n)

n
= λ

we start from Kw(1) = 1 and Kw(2) = 2 and we compute the SKT of w. Then
we plot for 1 ≤ n ≤ 30000

Kw(1) + ...+Kw(n)

n
− λ

Although we compute few terms in each case, the repeated observation that
Kw(1)+...+Kw(n)

n − λ stays close to zero supports somewhat the conjecture (1).
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Example n°1

w(n) =
⌊
(n+ 1)

√
2
⌋
−
⌊
n
√
2
⌋

so limn→∞
w(1)+...+w(n)

n =
√
2 .

Plot of
(

Kw(1)+...+Kw(n)
n −

√
2
)

Example n°2

w(n) = 2 if n is squarefree w(n) = 1 so limn→∞
w(1)+...+w(n)

n = 1 + 6
π2 .

Plot of
(

Kw(1)+...+Kw(n)
n −

(
1 + 6

π2

))
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Example n°3

w(n) = 2 if n is divisible by 3 w(n) = 1 so limn→∞
w(1)+...+w(n)

n = 4
3 .

Plot of
(

Kw(1)+...+Kw(n)
n − 4

3

)

Example n°4

w(n) = 2 if n is divisible by 5 w(n) = 1 otherwise so limn→∞
w(1)+...+w(n)

n = 6
5 .

Plot of
(

Kw(1)+...+Kw(n)
n − 6

5

)
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2 Perturbation of SKT
At first glance the SKT doesn’t allow us to have any clue to undersand better the
Kolakoski word since it is quite apparent that working only with {1, 2} hides
what is going on. With the WKT however we were able to observe intrinsic
asymptotic properties of the SKT using a perturbation method based on ran-
dom weights. Then we checked out that these properties are not shared by the
WKT of words on {1, 3} giving credence to this approach to the Keane’s conjec-
ture. We state thereafter the conjecture (2) and suggest to tackle the Keane’s
conjecture via the conjecture (4). The conjecture (3) shows that the conjecture
(2) doesn’t work for words on the alphabet {1, 3} like w1 = 13131313...

2.1 A tractable weighted transform of w0

Before stating the conjecture (2) let us consider a concrete example of weighted
transform of w0 which is well understood since it relies on something known.

Suppose the weight u is constant and ∀n ≥ 1, un = 2. Then the WKT of
w0 with starting values Kw0,u(1) = Kw0,u(2) = 1 satisfies

• Kw0,u(n) = A157129(n) [Slo]

Next it is easy to see

• Kw0,u(n) =
1
2A071928(n) [Slo]

where A071928 is the generalisation Kol(2, 4) considered and solved in a paper
of Bernd Sing [Sin]. Therefore we have (details omitted)

Kw0,u(1) + ...+Kw0,u(n) =
3

2
n+O(1)

More precisely let A(n) = 3n− 2 (Kw0,u(1) + ...+Kw0,u(n)) then A(n) sat-
isfies a multiple recurrence relation modulo 12.

Namely for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 we have A(n) = 1, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1
and for k ≥ 1 the following recurrence formulas hold:

• A(12k) = A(4k)

• A(12k + 1) = A(4k + 1)

• A(12k + 2) = A(4k + 2)

• A(12k + 3) = A(4k + 2)− 1

• A(12k + 4) = A(4k + 2)− 2

• A(12k + 5) = A(4k + 2)− 1

• A(12k + 6) = A(4k + 2)

• A(12k + 7) = 4−A(4k + 3)
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• A(12k + 8) = 4−A(4k + 4)

• A(12k + 9) = 4−A(4k + 3)

• A(12k + 10) = 4−A(4k + 2)

• A(12k + 11) = A(4k + 3)

Hence one may notice this cousin sequence of the Kolakoski sequence satisfies
the Keane’s conjecture.

Thus the WKT of w0 of constant weight u = 2 is much easier to handle than
the WKT of w0 of constant weight u = 1. This trivial observation led us to
think about perturbating the constant weight 1, 1, 1, 1, 1, 1, ... by adding extra
2′s (or anything else) in some places according to a suitable rule. From a big
amount of experiments it appears some random perturbations yield interesting
behavior. Thus we make the following conjecture (2) using random weights u
such that the probability that a term of u has value 1 can be very close to 1.

In some way the SKT preserves randomness when we consider words on
{1, 2}. There are many ways to define random weigths able to support our con-
jectures but here we define the following simple ones which are easy to simulate
using low discrepancy sequences.

Definition of our random weights Let α > 0 be a real value. Let fα > 0
be a function of regular variation of index α3. Let δ be a function. Then
ufα,δ = (ufα,δ(n))n≥1 is the infinite random weight defined as follows:

• ufα,δ(n) = δ(n) with probability 1
fα(n) otherwise ufα,δ(n) = 1

2.2 Conjecture (2)

Let w be a word on {1, 2} satisfying

lim
n→∞

w(1) + ...+ w(n)

n
= λ

Suppose δ is any positive bounded function. Then ∀α ∈]0, 1[ and for any
function of regular variation fα > 0 of index α the random WKT of w of weight
ufα,δ satisfies

lim
n→∞

Kw,ufα,δ (1) + ...+Kw,ufα,δ (n)

n
= λ (2)

In the APPENDIX 1 we provide graphics supporting somewhat the conjec-
ture (2) using the low discrepancy sequence

({
n
√
2
})

n≥1
to generate the weight

ufα,δ where {x} is the fractional part of x.
3f is a function of regular variation of index α if we have f(x) = xαL(x) where L is slowly

varying i.e. ∀x > 0 limy→∞
L(xy)
L(y) = 1
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Remark From our conjecture (1) the SKT of any word w on {1, 2} satisfies
limn→∞

Kw(1)+...+Kw(n)
n = λ. From the previous conjecture (2) a suitable ran-

dom WKT has the same property. However many WKT of words on {1, 2}
don’t have the property. For instance experiments suggest that for words w on
{1, 2} satisfying limn→∞

w(1)+...+w(n)
n = λ the self WKT of w (the WKT of w

of weight w) starting with 1, 2 satisfies “almost surely”

lim
n→∞

Kw,w(1) + ...+Kw,w(n)

n
=

3λ− 2

λ

In an other hand if you consider for a given integer p ≥ 2 the WKT of w0 of
weight up(n) =

p
p−1 if n is even and up(n) = 1 otherwise, starting with 1, 2, it

seems we always have

lim
n→∞

Kw0,up(1) + ...+Kw0,up(n)

n
=

3p− 2

2p− 1

So it is not 3
2 except when p → ∞. These observations and many others will

be described in more details elsewhere. They underline that the conjecture (2)
is far from being obvious and was stated after a lot of experiments.

2.3 Conjecture (3)
This conjecture is more specific in order to see the different behavior between
WKT of w0 = 12121212... and WKT of w1 = 13131313....

Note that the SKT of w1 starting with 1, 3 is the Kolakoski (1, 3) sequence
A064353 [Slo] for which the frequency of the number 3 is 0.6027847 not 1

2 [Baa].
So we may expect that the conjecture (2) doesn’t work for w1. It appears
it is the case and moreover in some cases the limit (2) doesn’t exist. So we
conjecture the random WKT of w1 considered above don’t always satisfy (2).
More precisely let uα be the weight

• uα(n) = 1 + 1
n with probability 1

nα otherwise uα(n) = 1

Then ∀α ∈]0, 1[ the WKT of w1 of weight uα satisfies

lim
n→∞

Kw1,uα(1) + ...+Kw1,uα(n)

n
)= 2 (3)

In the APPENDIX 2 we provide graphics supporting clearly the conjecture
(3) making again use of low discrepancy sequences to generate the weight uα .

2.4 Conjecture (4)

Let w be a word on {1, 2} satisfying

lim
n→∞

w(1) + ...+ w(n)

n
= λ
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Then from the conjecture (2) letting α → 1 and δ(n) = 2 − α we have
uα,δ → 1, 1, 1, 1, 1, ... and we claim the WKT of w of weight uα,δ converges
toward the SKT of w as α → 1. Then we add that we can infer from the
conjecture (2) that the SKT of w verifies

Kw(1) + ...+Kw(n) = λn+O
(
n1/2+ε

)
(4)

In particular this means that the Keane’s conjecture is true taking w = w0.

3 Perturbation of the initial words w0 and w1

Instead of perturbating the SKT using random weights, we can also perturbate
the primitive word w in a simple deterministic way keeping the SKT . It turns
out we unearth a surprising connection between the SKT of the perturbated
word w1 and the golden ratio Φ = 1+

√
5

2 .
We recall we have limn→∞

Kw1 (1)+...+Kw1 (n)
n = λ1 where λ1 = 2.205569 is

the unique real root of the cubic polynomial x3 − 2x2 − 1 which was proved by
Bernd Sing in [Sin]) and we guess that limn→∞

Kw0 (1)+...+Kw0 (n)
n = 1.5 from

the Keane’s conjecture. Hereafter the conjecture (5) relates a deterministic
pertubation of w1 to the outcome of this perturbation under the SKT. The
conjecture (6) is the analogue of (5) for w0.

Conjecture (5)

Let w1,x be the sequence w1,x(n) = 1 if n is odd and w1,x(n) = 3 + x if n is
even. Then ∃η1 > 0 such that for any 0 < ε<η 1 there exists an integer value
N(ε) such that the averages of the SKT of w1,ε satisfies (with suitable starting
values)

lim
n→∞

Kw1,ε(1) + ...+Kw1,ε(n)

n
= 2 +O(ε)

and for n ≤ N(ε)

∣∣∣∣
Kw1,ε(1) + ...+Kw1,ε(n)

n
− λ1

∣∣∣∣ < f1(ε)

whereas the averages of the SKT of w1,−ε satisfies (with suitable starting
values)

lim
n→∞

Kw1,−ε(1) + ...+Kw1,−ε(n)

n
= 2 +O(ε)

and for n ≤ N(ε) we have

9



∣∣∣∣
Kw1,−ε(1) + ...+Kw1,−ε(n)

n
− Φ

∣∣∣∣ < g1(ε)

where f1 and g1 are 2 functions satisfying limx→0 f1(x) = limx→0 g1(x) = 0
and where we have limε→0 N(ε) = ∞.

Remark

Since λ1 )= Φ we can’t infer from the conjecture (5) the result of Sing i.e.
limn→∞

Kw1 (1)+...+Kw1 (n)
n = λ1 but we now imagine what is going on in the

Kolakoski sequence. The conjecture (6) is trying to reveal the existence of 2
adjacent sequences forcing the Keane’s conjecture to be true.

Conjecture (6)

Let w0,x be the sequence w0,x(n) = 1 if n is odd and w0,x(n) = 2 + x if n is
even. Then ∃η0 > 0 such that ∀ε, 0 < ε < η0 the averages of the SKT of w0,ε

satisfies with suitable starting values

lim
n→∞

Kw0,ε(1) + ...+Kw0,ε(n)

n
=

3

2
+O (ε)

whereas the averages of the SKT of w0,−ε satisfies with suitable starting values

lim
n→∞

Kw0,−ε(1) + ...+Kw0,−ε(n)

n
=

3

2
+O (ε)

Remark The conjecture (6) is appealing since there is only a unique outcome
and allows us to make the following conjecture (7).

Conjecture (7)

From the conjecture (6) we claim that the average of the SKT of w0 (wich is
the Kolakoski sequence K ) satisfies

lim
n→∞

K(1) + ...+K(n)

n
= lim

x→0

(
lim
n→∞

Kw0,x(1) + ...+Kw0,x(n)

n

)
=

3

2

and the Keane’s conjecture would be true. We provide experiments support-
ing the conjectures (5)(6) in the APPENDIX 3 and 4 respectively. Finally we
state the conjecture (8) allowing us to prove the conjecture (1) generalising the
conjecture (6).
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Conjecture (8)

Let w be a word on the alphabet {1, 2} satisfying

lim
n→∞

w(1) + ...+ w(n)

n
= λ

and let wx be the sequence wx(n) = 1 if w(n) = 1 wx(n) = 2 + x if w(n) = 2.

Then ∃ηw > 0 such that ∀ε, 0 < ε < ηw the SKT of wε satisfies

lim
n→∞

Kwε(1) + ...+Kwε(n)

n
= λ+O (ε)

andt he SKT of w−ε satisfies

lim
n→∞

Kw−ε(1) + ...+Kw−ε(n)

n
= λ+O (ε)

From this we claim we can infer the conjecture (1) is true in the same way
than the conjecture (7) ,i.e.

lim
n→∞

Kw(1) + ...+Kw(n)

n
= λ

Remark We believe that a key ingredient to tackle the Keane’s conjecture is
to understand better the SKT of w1,x and where the golden ratio comes from
in the conjecture (5). In particular the limits observed in the conjecture (3) are
certainly related to the Golden ratio and λ1 too.

It seems quite possible to state a very general conjecture for the words on
the alphabet {a, y} where a, y are strictly positive distinct real values. In fact
we should say hypothesis instead of conjecture since we speculate about the
existence of 2 dual functions.

4 Conjecture (9) of dual functions
We state a very general conjecture regarding the simple Kolakoski transform
(SKT) of any word on 2 strictly positive and distinct reals numbers.

Let a > 0 be a fixed real value and y > 0 be a real value different from a. Let
w denotes a word on {a, y} such that the limit average

λa(y) := lim
n→∞

w(1) + ...+ w(n)

n

exists with min(a, y) ≤ λa(y) ≤ max(a, y). Let us define the other limit average

µa(y) := lim
n→∞

Kw(1) + ...+Kw(n)

n
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where Kw is a SKT of w with any suitable starting values Kw(1) > 0 and
Kw(2) > 0 not necessarily in {a, y}. Next let us define

µ−
a (y) := lim

x→y−
µa(x)

µ+
a (y) := lim

x→y+
µa(x)

Then we conjecture that there are 2 dual real functions fa,y and ga,y associ-
ated to the SKT of wa,y yielding the following properties.

Case 1

The associated functions fa,y and ga,y have no positive real root. Then there is
no attractive value for µa(x) as x → y and necessarily the average of the SKT
converges toward the limit average of the primitive word, i.e.

µa(y) = lim
x→y

µa(x) = µ+
a (y) = µ−

a (y) = λa(y)

Case 2

The associated functions fa,y and ga,y have each one a largest positive root αa,y

and βa,y respectively satisfying

min(αa,y, βa,y) ≤ λa(y) ≤ max(αa,y, βa,y)

Then µa(y) equals αa,y or βa,y which is an attractive value for µa(x) as
x → y− or x → y+ but not both. In other words a proposition is true among
the 4 following ones:

1. µa(y) = µ−
a (y) = αa,y ⇒ µ+

a (y) = βa,y

2. µa(y) = µ−
a (y) = βa,y ⇒ µ+

a (y) = αa,y

3. µa(y) = µ+
a (y) = αa,y ⇒ µ−

a (y) = βa,y

4. µa(y) = µ+
a (y) = βa,y ⇒ µ−

a (y) = αa,y

Each of these 4 situations seems to occur quite randomly except for some specific
words like the following ones.

Illustration of the conjecture
We consider a = 1 and the words w = 1y1y1y1y1y1y... where y > 1 is a real
value. Then we claim that we are in the case 2 only if y is an odd integer value.
So that we have two possibilities.
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Possibility 1 y /∈ {2k + 1 | k ∈ N} Then for any y > 0 real value but not
an odd integer the associated functions fa,y and ga,y have no positive real root
and we have from the conjecture (9)

µ1(y) = lim
x→y

µ1(x) = µ+
1 (y) = µ−

1 (y) = λ1(y) =
1 + y

2

Possibility 2 y ∈ {2k + 1 | k ∈ N} Then the associated functions f1,y and
g1,y are polynomials with integer coefficients of degree y with a largest real
positive root α1,y and β1,y respectively satisfying

β1,y <
1 + y

2
< α1,y

and we have

µ1(y) = µ+
1 (y) = α1,y ⇒ µ−

1 (y) = β1,y

For instance if y = 3 we claim that f1(y) = x3−2x2−1 and g1(y) = x3−2x2+1
so that α1,3 = 2.205... and β1,3 = Φ.

We fill thereafter a table with 20000 computed terms for the limits.

y µ1(y) µ+
1 (y) µ−

1 (y)
1+y
2

2.7 1.849 1.849 1.850 1.850
2.8 1.899 1.898 1.899 1.900
2.9 1.948 1.947 1.948 1.950
3.0 2.205 2.205 1.618 2.000
3.1 2.049 2.048 2.049 2.050
3.2 2.099 2.102 2.099 2.100
3.3 2.155 2.153 2.155 2.150

Apart y = 3 we have roughly the same limit in each line. The case y = 2
yields the truth of the Keane’s conjecture. This case provide examples of words
falling mostly in case 1 of the conjecture (9). However there are families of
words which seem to fit mostly the case 2 as shown thereafter.

5 Conjecture (10)

We can bring this study in the realm of dynamical systems. Indeed there is
experimental evidence showing the limits defined in the conjecture (9) are some-
what sensitive to the value of a andy. However we think it is not a chaotic dy-
namical system since the Kolakaski map we will introduce below doesn’t seem
to diverge. This way we were able to exhibit a family of words which satisfy
always the case 1 of the conjecture (9). Since this family encapsulates w0it could
be interesting to explore this idea further. To see this let us consider words w
on the alphabet {y, y + 1} defined by w = y(y + 1)y(y + 1)y(y + 1).... SKT of
Kw with suitable starting values (the Kolakoski sequence is obtained for y = 1).
Then we define similarly as above:
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µ(y) := lim
n→∞

Kw(1) + ...+Kw(n)

n

and

µ−(y) := lim
x→y−

µ(x)

µ+(y) := lim
x→y+

µ(x)

We are looking here for properties of the so called Kolakoski map

y →
(
µ(y), µ+(y), µ−(y)

)

where y > 1
2 since the map seems always well defined .

Conjecture (10)
We claim that for any y > 1

2 the image of y under this map exists and y is in
one of the 3 sets F1, F2, F3 defined as follows:

F1 =

{
y >

1

2
| µ(y) = µ+(y) = µ−(y) = y +

1

2

}

F2 =

{
y >

1

2
| µ(y) = µ−(y) < µ+(y)

}

F3 =

{
y >

1

2
| µ(y) = µ+(y) > µ−(y)

}

Here a table showing this fact using colors: red for y ∈ F1, blue for F2 and
green for F3.
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y µ(y) µ+(y) µ−(y) y + 0.5

0.50 1.000 1.000 undefined 1.000
0.55 1.000 1.072 1.000 1.050
0.60 1.099 1.099 1.099 1.100
0.65 1.126 1.170 1.126 1.150
0.70 1.155 1.239 1.155 1.200
0.75 1.342 1.342 1.140 1.250
0.80 1.299 1.299 1.299 1.300
0.85 1.330 1.369 1.330 1.350
0.90 1.363 1.436 1.363 1.400
0.95 1.433 1.468 1.433 1.450
1.00 1.500 1.499 1.499 1.500
1.05 1.534 1.566 1.5345 1.550
1.10 1.568 1.631 1.568 1.600
1.15 1.634 1.664 1.634 1.650
1.20 1.700 1.700 1.700 1.700

So we see the set F1 contains isolated values and the set F3 seems almost
empty. What is striking is that the red lines appear with a regular frequency.
So we conjecture that for k ≥ 1 integer value we have

y =
3 + k

5
∈ F1

In particular for k = 2 the word y(y+1)y(y+1)... = 12121212.. = w0. Next the
above claim means that we have µ(1) = 3

2 . Thus the Keane’s conjecture would
be true again.
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APPENDIX 1
Experimental support of the conjecture (2)
We provide experiments supporting the conjecture (2) for words w on {1, 2}

lim
n→∞

w(1) + ...+ w(n)

n
= λ

For computational purposes we compute our random weight uα,δ = (uα,δ)n≥1
as follows:

• uα,δ(n) = δ(n) if
{
n
√
2
}
< n−α and uα,δ(n) = 1 otherwise

where {} is the fractional part function. Indeed the sequence {nx} (where
x is irrationnal) is a low discrepancy sequence and produces a quasi random
sequence. For instance suppose u is a sequence such that the n-th term is
different from 1 with probability P (n) and equals δ(n) otherwise. Then the
sequence v defined by

• v(n) = δ(n) if {nx} < P (n) and v(n) = 1 otherwise

is a quasi random sequence which mimics well u for 0 < α ≤ 1.

Conventions

We choose δ(n) = 1 + 1
n and start with Kw,uα,δ (1) = w(1) and Kw,uα,δ (2) =

w(2). Then we compute Kw,uα,δ the WKT of w of weight uα,δ for various word
w and α = 1

4 , α = 1
2 and α = 3

4 .

Presentation of results

For each word w we plot on the same graphic the function of n

Kw,uα,δ (1) + ...+Kw,uα,δ (n)

n
− w(1) + ...+ w(n)

n

for α = 0.25 α = 0.5 α = 0.75 and for 1 ≤ n ≤ 20000.

Comment

Although the convergence to zero is chaotic it seems likely that each case satisfies
the conjecture (2).
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The word w0

The word w(n) = 2 if n ≡ 0 [3]
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The word w(n) = 2 if n ≡ 0 [4]

The word w(n) = 2 if n is squarefree
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APPENDIX 2
Experimental support of the conjecture (3)
We provide experiments supporting the conjecture (3) for the word w1 = 13131313...
for which

lim
n→∞

w1(1) + ...+ w1(n)

n
= 2

For computational purposes we compute our random weight uα,δ = (uα,δ)n≥1
like in the APPENDIX 1.

• uα,δ(n) = δ(n) if
{
n
√
2
}
< n−α and uα,δ(n) = 1 otherwise

Conventions

We choose again δ(n) = 1+ 1
n and start with Kw1,uα,δ (1) = 1 and Kw1,uα,δ (2) =

3. Then we compute Kw1,uα,δ the WKT of w1 of weight uα,δ for α = 1
4 , α = 1

2
and α = 3

4 .

Presentation of results

We plot on the same graphic the functions of n

Kw1,uα,δ (1) + ...+Kw1,uα,δ (n)

n
− 2

for α = 0.25 α = 0.5 α = 0.75 and 1 ≤ n ≤ 20000.

Comment

None of them seems to converge to zero supporting the conjecture (3). For
α = 0.25 and α = 0.5 the graphs seem to converge smoothly toward a value
∼ 0.2. For α = 0.75 the graph seems to converge smoothly toward another value
∼ −0.4. This is a completely different situation than with the previous random
WKT of words w on the alphabet {1, 2}.

We add at the end an extra example showing the randomWKT transform of
w1 could even diverge.

20



Plot of
Kw1,uα,δ

(1)+...+Kw1,uα,δ
(n)

n − 2

It can be even worse if you take δ(n) = 1+ 1
nα instead of 1+ 1

n . For instance

we plot thereafeter
Kw1,uα,δ

(1)+...+Kw1,uα,δ
(n)

n − 2 for α = 1
2 and for n = 1 up

to 200000.

It seems the graph oscillates around zero and doesn’t converge to zero. This
phenomenom should be interesting to understand in order to prove the conjec-
ture (3) and to handle the conjecture (2).
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APPENDIX 3
Experimental support of the conjecture (5)

Let w1,x be the sequence w1,x(n) = 1 if n is odd and w1,x(n) = 3 + x if n is
even.

Presentation of results

Then we plot for each ε ∈ {0.1, 0.01, 0.001} on the same figure

Kw1,ε(1) + ...+Kw1,ε(n)

n

with color black and

Kw1,−ε(1) + ...+Kw1,−ε(n)

n

with color red.

Comment

One can see the black graphics are closer longer to λ1 as ε → 0 and the red ones
are closer longer to Φ until a value of n = N(ε) which is growing to ∞. Then
black and red graphics are adjacent around 2. This supports the conjecture (5).
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APPENDIX 4
Experimental support of the conjecture (6)

Let w0,x be the sequence w0,x(n) = 1 if n is odd and w0,x(n) = 3 + x if n is
even.

Presentation of results

For ε = 0.001 and ε = 0.0001 we plot for each ε on the same graphic

Kw0,ε(1) + ...+Kw0,ε(n)

n

and

Kw0,−ε(1) + ...+Kw0,−ε(n)

n

with colors black and red respectively.

Comment

One can see the black and red graphics are closer to 3
2 as ε → 0. The distance

to 3/2 seems also to behave like O(ε) as n → ∞ supporting somewhat the whole
conjecture (6).

ε = 0.001
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ε = 0.0001
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APPENDIX 5
Experimental support of the conjecture (9)

Let w0,x be the sequence w0,x(n) = 1 + x if n is odd and w0,x(n) = 2(1 + x) if
n is even.

Presentation of results

For ε = 0.1, 0.01, 0.001, 0.0001 we plot for each ε on the same graphic

Kw0,ε(1) + ...+Kw0,ε(n)

n

and

Kw0,−ε(1) + ...+Kw0,−ε(n)

n

with colors black and red respectively.

Comment

The fact these are 2 adjacent averages seeming to converge toward 3
2 (1+ ε) and

3
2 (1 − ε) respectively supports the conjecture (9). However the chaotic aspect
of the graphs when ε → 0 can’t tell much.

ε = 0.1
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ε = 0.01

ε = 0.001
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ε = 0.0001
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