Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Euler totient function phi(n): count numbers <= n and prime to n.
(Formerly M0299 N0111)
4125

%I M0299 N0111 #584 Dec 23 2024 17:48:21

%S 1,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8,16,6,18,8,12,10,22,8,20,12,18,12,

%T 28,8,30,16,20,16,24,12,36,18,24,16,40,12,42,20,24,22,46,16,42,20,32,

%U 24,52,18,40,24,36,28,58,16,60,30,36,32,48,20,66,32,44

%N Euler totient function phi(n): count numbers <= n and prime to n.

%C Number of elements in a reduced residue system modulo n.

%C Degree of the n-th cyclotomic polynomial (cf. A013595). - _Benoit Cloitre_, Oct 12 2002

%C Number of distinct generators of a cyclic group of order n. Number of primitive n-th roots of unity. (A primitive n-th root x is such that x^k is not equal to 1 for k = 1, 2, ..., n - 1, but x^n = 1.) - _Lekraj Beedassy_, Mar 31 2005

%C Also number of complex Dirichlet characters modulo n; Sum_{k=1..n} a(k) is asymptotic to (3/Pi^2)*n^2. - _Steven Finch_, Feb 16 2006

%C a(n) is the highest degree of irreducible polynomial dividing 1 + x + x^2 + ... + x^(n-1) = (x^n - 1)/(x - 1). - _Alexander Adamchuk_, Sep 02 2006, corrected Sep 27 2006

%C a(p) = p - 1 for prime p. a(n) is even for n > 2. For n > 2, a(n)/2 = A023022(n) = number of partitions of n into 2 ordered relatively prime parts. - _Alexander Adamchuk_, Jan 25 2007

%C Number of automorphisms of the cyclic group of order n. - _Benoit Jubin_, Aug 09 2008

%C a(n+2) equals the number of palindromic Sturmian words of length n which are "bispecial", prefix or suffix of two Sturmian words of length n + 1. - _Fred Lunnon_, Sep 05 2010

%C Suppose that a and n are coprime positive integers, then by Euler's totient theorem, any factor of n divides a^phi(n) - 1. - _Lei Zhou_, Feb 28 2012

%C If m has k prime factors, (p_1, p_2, ..., p_k), then phi(m*n) = (Product_{i=1..k} phi (p_i*n))/phi(n)^(k-1). For example, phi(42*n) = phi(2*n)*phi(3*n)*phi(7*n)/phi(n)^2. - _Gary Detlefs_, Apr 21 2012

%C Sum_{n>=1} a(n)/n! = 1.954085357876006213144... This sum is referenced in Plouffe's inverter. - _Alexander R. Povolotsky_, Feb 02 2013 (see A336334. - _Hugo Pfoertner_, Jul 22 2020)

%C The order of the multiplicative group of units modulo n. - _Michael Somos_, Aug 27 2013

%C A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - _Michael Somos_, Dec 30 2016

%C From _Eric Desbiaux_, Jan 01 2017: (Start)

%C a(n) equals the Ramanujan sum c_n(n) (last term on n-th row of triangle A054533).

%C a(n) equals the Jordan function J_1(n) (cf. A007434, A059376, A059377, which are the Jordan functions J_2, J_3, J_4, respectively). (End)

%C For n > 1, a(n) appears to be equal to the number of semi-meander solutions for n with top arches containing exactly 2 mountain ranges and exactly 2 arches of length 1. - _Roger Ford_, Oct 11 2017

%C a(n) is the minimum dimension of a lattice able to generate, via cut-and-project, the quasilattice whose diffraction pattern features n-fold rotational symmetry. The case n=15 is the first n > 1 in which the following simpler definition fails: "a(n) is the minimum dimension of a lattice with n-fold rotational symmetry". - _Felix Flicker_, Nov 08 2017

%C Number of cyclic Latin squares of order n with the first row in ascending order. - _Eduard I. Vatutin_, Nov 01 2020

%C a(n) is the number of rational numbers p/q >= 0 (in lowest terms) such that p + q = n. - _Rémy Sigrist_, Jan 17 2021

%C From _Richard L. Ollerton_, May 08 2021: (Start)

%C Formulas for the numerous OEIS entries involving Dirichlet convolution of a(n) and some sequence h(n) can be derived using the following (n >= 1):

%C Sum_{d|n} phi(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k)) [see P. H. van der Kamp link] = Sum_{d|n} h(d)*phi(n/d) = Sum_{k=1..n} h(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). Similarly,

%C Sum_{d|n} phi(d)*h(d) = Sum_{k=1..n} h(n/gcd(n,k)) = Sum_{k=1..n} h(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).

%C More generally,

%C Sum_{d|n} h(d) = Sum_{k=1..n} h(gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))/phi(n/gcd(n,k)).

%C In particular, for sequences involving the Möbius transform:

%C Sum_{d|n} mu(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)), where mu = A008683.

%C Use of gcd(n,k)*lcm(n,k) = n*k and phi(gcd(n,k))*phi(lcm(n,k)) = phi(n)*phi(k) provide further variations. (End)

%C From _Richard L. Ollerton_, Nov 07 2021: (Start)

%C Formulas for products corresponding to the sums above may found using the substitution h(n) = log(f(n)) where f(n) > 0 (for example, cf. formulas for the sum A018804 and product A067911 of gcd(n,k)):

%C Product_{d|n} f(n/d)^phi(d) = Product_{k=1..n} f(gcd(n,k)) = Product_{d|n} f(d)^phi(n/d) = Product_{k=1..n} f(n/gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),

%C Product_{d|n} f(d)^phi(d) = Product_{k=1..n} f(n/gcd(n,k)) = Product_{k=1..n} f(gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),

%C Product_{d|n} f(d) = Product_{k=1..n} f(gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(1/phi(n/gcd(n,k))),

%C Product_{d|n} f(n/d)^mu(d) = Product_{k=1..n} f(gcd(n,k))^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(mu(gcd(n,k))/phi(n/gcd(n,k))), where mu = A008683. (End)

%C a(n+1) is the number of binary words with exactly n distinct subsequences (when n > 0). - _Radoslaw Zak_, Nov 29 2021

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

%D T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 24.

%D M. Baake and U. Grimm, Aperiodic Order Vol. 1: A Mathematical Invitation, Encyclopedia of Mathematics and its Applications 149, Cambridge University Press, 2013: see Tables 3.1 and 3.2.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 193.

%D C. W. Curtis, Pioneers of Representation Theory ..., Amer. Math. Soc., 1999; see p. 3.

%D J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, Paris, 2004, Problème 529, pp. 71-257.

%D L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, Chapter V.

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-119.

%D Carl Friedrich Gauss, "Disquisitiones Arithmeticae", Yale University Press, 1965; see p. 21.

%D Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2n-d ed.; Addison-Wesley, 1994, p. 137.

%D R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B36.

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 60, 62, 63, 288, 323, 328, 330.

%D Peter Hilton and Jean Pedersen, A Mathematical Tapestry, Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, pages 261-264, the Coach theorem.

%D Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.21 pp. 281-294.

%D G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 2 vols., 1976, Vol. II, problem 71, p. 126.

%D P. Ribenboim, The New Book of Prime Number Records.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Daniel Forgues, <a href="/A000010/b000010.txt">Table of n, phi(n) for n = 1..100000</a> (first 10000 terms from N. J. A. Sloane)

%H Milton Abramowitz and Irene A. Stegun, eds., <a href="https://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972.

%H Dario A. Alpern, <a href="https://www.alpertron.com.ar/ECM.HTM">Factorization using the Elliptic Curve Method (along with sigma_0, sigma_1 and phi functions)</a>

%H Joerg Arndt, <a href="https://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, section 39.7, pp. 776-778.

%H F. Bayart, <a href="https://www.bibmath.net/dico/index.php?action=affiche&amp;quoi=./i/indicateureuler.html">Indicateur d'Euler</a> (in French).

%H Alexander Bogomolny, <a href="https://www.cut-the-knot.org/blue/Euler.shtml">Euler Function and Theorem</a>.

%H Chris K. Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/page.php?sort=EulersPhi">Euler's phi function</a>

%H Robert D. Carmichael, <a href="/A002180/a002180.pdf">A table of the values of m corresponding to given values of phi(m)</a>, Amer. J. Math., 30 (1908), 394-400. [Annotated scanned copy]

%H Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, <a href="https://math.dartmouth.edu/~carlp/iterate.pdf">On the normal behavior of the iterates of some arithmetic functions</a>, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.

%H Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, <a href="/A000010/a000010_1.pdf">On the normal behavior of the iterates of some arithmetic functions</a>, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]

%H Kevin Ford, <a href="https://arxiv.org/abs/math/9907204">The number of solutions of phi(x)=m</a>, arXiv:math/9907204 [math.NT], 1999.

%H Kevin Ford, Florian Luca and Pieter Moree, <a href="https://arxiv.org/abs/1108.3805">Values of the Euler phi-function not divisible by a given odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields</a>, arXiv:1108.3805 [math.NT], 2011.

%H H. Fripertinger, <a href="https://web.archive.org/web/20150910232858/http://www.uni-graz.at/~fripert/fga/k1euler.html">The Euler phi function</a>.

%H Daniele A. Gewurz and Francesca Merola, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL6/Gewurz/gewurz5.html">Sequences realized as Parker vectors of oligomorphic permutation groups</a>, J. Integer Seqs., Vol. 6, 2003.

%H E. Pérez Herrero, <a href="https://psychedelic-geometry.blogspot.com/2010/07/totient-carnival.html">Totient Carnival partitions</a>, Psychedelic Geometry Blogspot.

%H Peter H. van der Kamp, <a href="https://arxiv.org/abs/1201.3139">On the Fourier transform of the greatest common divisor</a>, arXiv:1201.3139 [math.NT]

%H M. Lal and P. Gillard, <a href="https://dx.doi.org/10.1090/S0025-5718-69-99858-5">Table of Euler's phi function, n < 10^5</a>, Math. Comp., 23 (1969), 682-683.

%H Derrick N. Lehmer, <a href="https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-26/issue-3/Dicksons-History-of-the-Theory-of-Numbers/bams/1183425137.full">Review of Dickson's History of the Theory of Numbers</a>, Bull. Amer. Math. Soc., 26 (1919), 125-132.

%H Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/EulerTotient">Sequences related to Euler's totient function</a>.

%H R. J. Mathar, <a href="/A000010/a000010_2.pdf">Graphical representation among sequences closely related to this one</a> (cf. N. J. A. Sloane, "Families of Essentially Identical Sequences").

%H Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/301837/is-the-euler-phi-function-bounded-below">Is the Euler phi function bounded below?</a> (2013).

%H Mathforum, <a href="http://mathforum.org/library/drmath/view/51541.html">Proving phi(m) Is Even</a>.

%H Keith Matthews, <a href="http://www.numbertheory.org/php/factor.html">Factorizing n and calculating phi(n), omega(n), d(n), sigma(n) and mu(n)</a>.

%H Graeme McRae, <a href="https://web.archive.org/web/20130508193928/http://2000clicks.com/MathHelp/NumberFactorsTotientFunction.aspx">Euler's Totient Function</a>.

%H François Nicolas, <a href="https://arxiv.org/abs/0806.2068">A simple, polynomial-time algorithm for the matrix torsion problem</a>, arXiv:0806.2068 [cs.DM], 2009.

%H Matthew Parker, <a href="https://oeis.org/A000010/a000010_5M.7z">The first 5 million terms (7-Zip compressed file)</a>.

%H Carl Pomerance and Hee-Sung Yang, <a href="https://www.math.dartmouth.edu/~carlp/uupaper7.pdf">Variant of a theorem of Erdős on the sum-of-proper-divisors function</a>, Math. Comp., to appear (2014).

%H Primefan, <a href="https://primefan.tripod.com/Phi500.html">Euler's Totient Function Values For n=1 to 500, with Divisor Lists</a>.

%H Marko Riedel, <a href="https://web.archive.org/web/20170406154901/http://www.mathematik.uni-stuttgart.de/~riedelmo/combnumth.html">Combinatorics and number theory page</a>.

%H J. Barkley Rosser and Lowell Schoenfeld, <a href="https://dx.doi.org/10.1215/ijm/1255631807">Approximate formulas for some functions of prime numbers</a>, Illinois J. Math. 6 (1962), no. 1, 64-94.

%H K. Schneider, <a href="https://planetmath.org/eulerphifunction">Euler phi-function</a>, PlanetMath.org.

%H Wacław F. Sierpiński, <a href="http://matwbn.icm.edu.pl/ksiazki/mon/mon42/mon4206.pdf">Euler's Totient Function And The Theorem Of Euler</a>.

%H N. J. A. Sloane, <a href="/A115004/a115004.txt">Families of Essentially Identical Sequences</a>, Mar 24 2021 (Includes this sequence)

%H N. J. A. Sloane, <a href="https://arxiv.org/abs/2301.03149">"A Handbook of Integer Sequences" Fifty Years Later</a>, arXiv:2301.03149 [math.NT], 2023, p. 14.

%H Ulrich Sondermann, <a href="https://web.archive.org/web/20110823215228/http://home.earthlink.net/~usondermann/eulertot.html">Euler's Totient Function</a>.

%H William A. Stein, <a href="https://wstein.org/edu/Fall2001/124/lectures/lecture6/html/node3.html">Phi is a Multiplicative Function</a>

%H Pinthira Tangsupphathawat, Takao Komatsu and Vichian Laohakosol, <a href="https://www.emis.de/journals/JIS/VOL21/Laohakosol/lao8.html">Minimal Polynomials of Algebraic Cosine Values, II</a>, J. Int. Seq., Vol. 21 (2018), Article 18.9.5.

%H László Tóth, <a href="http://arxiv.org/abs/1310.7053">Multiplicative arithmetic functions of several variables: a survey</a>, arXiv preprint arXiv:1310.7053 [math.NT], 2013.

%H G. Villemin, <a href="http://villemin.gerard.free.fr/Wwwgvmm/Nombre/TotEuler.htm">Totient d'Euler</a>.

%H K. W. Wegner, <a href="/A002180/a002180_1.pdf">Values of phi(x) = n for n from 2 through 1978</a>, mimeographed manuscript, no date. [Annotated scanned copy]

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ModuloMultiplicationGroup.html">Modulo Multiplication Group</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MoebiusTransform.html">Moebius Transform</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotientFunction.html">Totient Function</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Euler%27s_phi_function">Euler's totient function</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n">Multiplicative group of integers modulo n</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Ramanujan&#39;s_sum">Ramanujan's sum</a>

%H Wolfram Research, <a href="http://functions.wolfram.com/NumberTheoryFunctions/EulerPhi/03/02">First 50 values of phi(n)</a>.

%H Gang Xiao, Numerical Calculator, <a href="https://wims.univ-cotedazur.fr/wims/en_tool~number~calcnum.en.html">To display phi(n) operate on "eulerphi(n)"</a>.

%H <a href="/index/Cor#core">Index entries for "core" sequences</a>

%H <a href="/index/Di#divseq">Index to divisibility sequences</a>

%F phi(n) = n*Product_{distinct primes p dividing n} (1 - 1/p).

%F Sum_{d divides n} phi(d) = n.

%F phi(n) = Sum_{d divides n} mu(d)*n/d, i.e., the Moebius transform of the natural numbers; mu() = Moebius function A008683().

%F Dirichlet generating function Sum_{n>=1} phi(n)/n^s = zeta(s-1)/zeta(s). Also Sum_{n >= 1} phi(n)*x^n/(1 - x^n) = x/(1 - x)^2.

%F Multiplicative with a(p^e) = (p - 1)*p^(e-1). - _David W. Wilson_, Aug 01 2001

%F Sum_{n>=1} (phi(n)*log(1 - x^n)/n) = -x/(1 - x) for -1 < x < 1 (cf. A002088) - _Henry Bottomley_, Nov 16 2001

%F a(n) = binomial(n+1, 2) - Sum_{i=1..n-1} a(i)*floor(n/i) (see A000217 for inverse). - _Jon Perry_, Mar 02 2004

%F It is a classical result (certainly known to Landau, 1909) that lim inf n/phi(n) = 1 (taking n to be primes), lim sup n/(phi(n)*log(log(n))) = e^gamma, with gamma = Euler's constant (taking n to be products of consecutive primes starting from 2 and applying Mertens' theorem). See e.g. Ribenboim, pp. 319-320. - Pieter Moree, Sep 10 2004

%F a(n) = Sum_{i=1..n} |k(n, i)| where k(n, i) is the Kronecker symbol. Also a(n) = n - #{1 <= i <= n : k(n, i) = 0}. - _Benoit Cloitre_, Aug 06 2004 [Corrected by _Jianing Song_, Sep 25 2018]

%F Conjecture: Sum_{i>=2} (-1)^i/(i*phi(i)) exists and is approximately 0.558 (A335319). - Orges Leka (oleka(AT)students.uni-mainz.de), Dec 23 2004

%F From _Enrique Pérez Herrero_, Sep 07 2010: (Start)

%F a(n) = Sum_{i=1..n} floor(sigma_k(i*n)/sigma_k(i)*sigma_k(n)), where sigma_2 is A001157.

%F a(n) = Sum_{i=1..n} floor(tau_k(i*n)/tau_k(i)*tau_k(n)), where tau_3 is A007425.

%F a(n) = Sum_{i=1..n} floor(rad(i*n)/rad(i)*rad(n)), where rad is A007947. (End)

%F a(n) = A173557(n)*A003557(n). - _R. J. Mathar_, Mar 30 2011

%F a(n) = A096396(n) + A096397(n). - _Reinhard Zumkeller_, Mar 24 2012

%F phi(p*n) = phi(n)*(floor(((n + p - 1) mod p)/(p - 1)) + p - 1), for primes p. - _Gary Detlefs_, Apr 21 2012

%F For odd n, a(n) = 2*A135303((n-1)/2)*A003558((n-1)/2) or phi(n) = 2*c*k; the Coach theorem of Pedersen et al. Cf. A135303. - _Gary W. Adamson_, Aug 15 2012

%F G.f.: Sum_{n>=1} mu(n)*x^n/(1 - x^n)^2, where mu(n) = A008683(n). - _Mamuka Jibladze_, Apr 05 2015

%F a(n) = n - cototient(n) = n - A051953(n). - _Omar E. Pol_, May 14 2016

%F a(n) = lim_{s->1} n*zeta(s)*(Sum_{d divides n} A008683(d)/(e^(1/d))^(s-1)), for n > 1. - _Mats Granvik_, Jan 26 2017

%F Conjecture: a(n) = Sum_{a=1..n} Sum_{b=1..n} Sum_{c=1..n} 1 for n > 1. The sum is over a,b,c such that n*c - a*b = 1. - _Benedict W. J. Irwin_, Apr 03 2017

%F a(n) = Sum_{j=1..n} gcd(j, n) cos(2*Pi*j/n) = Sum_{j=1..n} gcd(j, n) exp(2*Pi*i*j/n) where i is the imaginary unit. Notice that the Ramanujan's sum c_n(k) := Sum_{j=1..n, gcd(j, n) = 1} exp(2*Pi*i*j*k/n) gives a(n) = Sum_{k|n} k*c_(n/k)(1) = Sum_{k|n} k*mu(n/k). - _Michael Somos_, May 13 2018

%F G.f.: x*d/dx(x*d/dx(log(Product_{k>=1} (1 - x^k)^(-mu(k)/k^2)))), where mu(n) = A008683(n). - _Mamuka Jibladze_, Sep 20 2018

%F a(n) = Sum_{d|n} A007431(d). - _Steven Foster Clark_, May 29 2019

%F G.f. A(x) satisfies: A(x) = x/(1 - x)^2 - Sum_{k>=2} A(x^k). - _Ilya Gutkovskiy_, Sep 06 2019

%F a(n) >= sqrt(n/2) (Nicolas). - _Hugo Pfoertner_, Jun 01 2020

%F a(n) > n/(exp(gamma)*log(log(n)) + 5/(2*log(log(n)))), except for n=223092870 (Rosser, Schoenfeld). - _Hugo Pfoertner_, Jun 02 2020

%F From _Bernard Schott_, Nov 28 2020: (Start)

%F Sum_{m=1..n} 1/a(m) = A028415(n)/A048049(n) -> oo when n->oo.

%F Sum_{n >= 1} 1/a(n)^2 = A109695.

%F Sum_{n >= 1} 1/a(n)^3 = A335818.

%F Sum_{n >= 1} 1/a(n)^k is convergent iff k > 1.

%F a(2n) = a(n) iff n is odd, and, a(2n) > a(n) iff n is even. (End) [Actually, a(2n) = 2*a(n) for even n. - _Jianing Song_, Sep 18 2022]

%F a(n) = 2*A023896(n)/n, n > 1. - _Richard R. Forberg_, Feb 03 2021

%F From _Richard L. Ollerton_, May 09 2021: (Start)

%F For n > 1, Sum_{k=1..n} phi^{(-1)}(n/gcd(n,k))*a(gcd(n,k))/a(n/gcd(n,k)) = 0, where phi^{(-1)} = A023900.

%F For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(gcd(n,k)))*rad(gcd(n,k))/gcd(n,k) = 0.

%F For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(n/gcd(n,k)))*rad(n/gcd(n,k))*gcd(n,k) = 0.

%F Sum_{k=1..n} a(gcd(n,k))/a(n/gcd(n,k)) = n. (End)

%F a(n) = Sum_{d|n, e|n} gcd(d, e)*mobius(n/d)*mobius(n/e) (the sum is a multiplicative function of n by Tóth, and takes the value p^e - p^(e-1) for n = p^e, a prime power). - _Peter Bala_, Jan 22 2024

%F Sum_{n >= 1} phi(n)*x^n/(1 + x^n) = x + 3*x^3 + 5*x^5 + 7*x^7 + ... = Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(4*n-2)). For the first equality see Pólya and Szegő, problem 71, p. 126. - _Peter Bala_, Feb 29 2024

%F Conjecture: a(n) = lim_{k->oo} (n^(k + 1))/A000203(n^k). - _Velin Yanev_, Dec 04 2024 [A000010(p) = p-1, A000203(p^k) = (p^(k+1)-1)/(p-1), so the conjecture is true if n is prime. - _Vaclav Kotesovec_, Dec 19 2024]

%e G.f. = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 2*x^6 + 6*x^7 + 4*x^8 + 6*x^9 + 4*x^10 + ...

%e a(8) = 4 with {1, 3, 5, 7} units modulo 8. a(10) = 4 with {1, 3, 7, 9} units modulo 10. - _Michael Somos_, Aug 27 2013

%e From _Eduard I. Vatutin_, Nov 01 2020: (Start)

%e The a(5)=4 cyclic Latin squares with the first row in ascending order are:

%e 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

%e 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3

%e 2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2

%e 3 4 0 1 2 1 2 3 4 0 4 0 1 2 3 2 3 4 0 1

%e 4 0 1 2 3 3 4 0 1 2 2 3 4 0 1 1 2 3 4 0

%e (End)

%p with(numtheory): A000010 := phi; [ seq(phi(n), n=1..100) ]; # version 1

%p with(numtheory): phi := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := n*mul((1-1/t1[i][1]),i=1..nops(t1)); end; # version 2

%p # Alternative without library function:

%p A000010List := proc(N) local i, j, phi;

%p phi := Array([seq(i, i = 1 .. N+1)]);

%p for i from 2 to N + 1 do

%p if phi[i] = i then

%p for j from i by i to N + 1 do

%p phi[j] := phi[j] - iquo(phi[j], i) od

%p fi od;

%p return phi end:

%p A000010List(68); # _Peter Luschny_, Sep 03 2023

%t Array[EulerPhi, 70]

%o (Axiom) [eulerPhi(n) for n in 1..100]

%o (Magma) [ EulerPhi(n) : n in [1..100] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006

%o (PARI) {a(n) = if( n==0, 0, eulerphi(n))}; /* _Michael Somos_, Feb 05 2011 */

%o (Sage) def A000010(n): return euler_phi(n) # _Jaap Spies_, Jan 07 2007

%o (Sage) [euler_phi(n) for n in range(1, 70)] # _Zerinvary Lajos_, Jun 06 2009

%o (Maxima) makelist(totient(n),n,0,1000); /* _Emanuele Munarini_, Mar 26 2011 */

%o (Haskell) a n = length (filter (==1) (map (gcd n) [1..n])) -- _Allan C. Wechsler_, Dec 29 2014

%o (Python)

%o from sympy.ntheory import totient

%o print([totient(i) for i in range(1, 70)]) # _Indranil Ghosh_, Mar 17 2017

%o (Python) # Note also the implementation in A365339.

%o (Julia) # Computes the first N terms of the sequence.

%o function A000010List(N)

%o phi = [i for i in 1:N + 1]

%o for i in 2:N + 1

%o if phi[i] == i

%o for j in i:i:N + 1

%o phi[j] -= div(phi[j], i)

%o end end end

%o return phi end

%o println(A000010List(68)) # _Peter Luschny_, Sep 03 2023

%Y Cf. A002088 (partial sums), A008683, A003434 (steps to reach 1), A007755, A049108, A002202 (values), A011755 (Sum k*phi(k)).

%Y Cf. also A005277 (nontotient numbers). For inverse see A002181, A006511, A058277.

%Y Jordan function J_k(n) is a generalization - see A059379 and A059380 (triangle of values of J_k(n)), this sequence (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5).

%Y Cf. A054521, A023022, A054525.

%Y Row sums of triangles A134540, A127448, A143239, A143353 and A143276.

%Y Equals right and left borders of triangle A159937. - _Gary W. Adamson_, Apr 26 2009

%Y Values for prime powers p^e: A006093 (e=1), A036689 (e=2), A135177 (e=3), A138403 (e=4), A138407 (e=5), A138412 (e=6).

%Y Values for perfect powers n^e: A002618 (e=2), A053191 (e=3), A189393 (e=4), A238533 (e=5), A306411 (e=6), A239442 (e=7), A306412 (e=8), A239443 (e=9).

%Y Cf. A003558, A135303.

%Y Cf. A152455, A080737.

%Y Cf. A076479.

%Y Cf. A023900 (Dirichlet inverse of phi), A306633 (Dgf at s=3).

%K easy,core,nonn,mult,nice,hear

%O 1,3

%A _N. J. A. Sloane_