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[HE NUMBER OF TWO-TERMINAL SERIES-PARALLEL NETWORKS

ular infinite convgl,
o2z, ' By Joun Riorpan anp C. E. SHANNON p
7(1938), pp. 233 5, (e )
' One of the first attempts to list all electrical networks meeting certain specified -
_nditions was made in 1892 by P. A. MacMahon' who investigated combina-
tions of resistances in series and in parallel, giving without proof a generating
' junction from which the number of such combinations could be determined and
. table of the numbers for combinations with 10 or less elements.’
The series-parallel combinations do not exhaust the possible networks since
they exclude all bridge arrangements like the Wheatstone net,’ but they are an
ymportant subclass because of their simplicity. When the number of elements
i« less than 5, all networks are series-parallel; at 5 there is one bridge-type net-
work, the Wheatstone net; as the number of elements rises, bridge type networks
increase faster than series-parallel until at 9 e.g. bridge-type are about 409,
of the total. It appears from this (and it is known to be true) that for a large
number of elements, series parallel networks are a relatively small part of the
total; nevertheless the problem of enumerating all networks is so difficult that
an extended study of the series-parallel networks is welcome on the principle
that a little light is better than none.
Apart from this, the series-parallel networks are mterestmg in themselves in
another setting, namely the design of switching circuits.* Here it becomes
important to know how many elements are required to realize any switching
function f(z;, - - - , z,) of n variables—that is, a number N(n) such that every
one of the 2% different functions f can be realized with N elements and at least
one with no less. An upper bound for the number of two terminal networks
with B branches determines a lower bound for N since the number of different
B networks we can construct with N branches, taking account of different assign-
ments of variables to the branches, can not be exceeded by 2%; there must be
! ' enough networks to go around. This general fact is equally true if we limit the
networks to the series-parallel type, and since switching networks are particu-
larly easy to design in this form, the number of elements necessary for series-
parallel realization of a function is of immediate interest.
These considerations have led us to work out a proof of MacMahon’s generat-
ing function, which is given in full below; to develop recurrences and schemes of
computation from this with which to extend MacMahon’s table; to investigate

! “The Combination of Resistances,” The Electrician, April 8, 1892; cf. also Cayley,
Collected Works, I1I, 203, pp. 242-6 for development of the generating function in another
problem.

! It may be noted here that the number for 10 clements is given 1ncorrectly as 4984; the
correct value, 4624, is shown in Table I below.

'Complete enumerations of all possible circuits of 7 elements with n small classified in
various ways are given by R. M. Foster, ““The Geometrical Circuits of Electrical Net-
works,” Trans. A. I. E. E., 61 (1932), pp. 309-317.

¢ C. E. Shannon, “A Symbolic Analysis of Relay and Switching Circuits,”” Trans. A. I

\ E.E., 67 (1938), pp. 713-723.
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unnecessary. However, since no definition seems to h
equivalent definitions may be formulated as follows:

through each clement of N the
twice, and no two of these paths pass throu

of two series-parallel networks,

serics-parallel i'ntnrchangcs directly; thus:

changes are listed; this is because for
parallel is of no account,
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the behavior of the series-parallel numbers when the num
large, and finally to make the application to switching functions mentioneg
above. These subjects are treated in separate sections.

For brevity in what follows we use the initials s,
essentially series, and e.p. for essentially parallel.®

ber of elements i

p. for series-parallel, e.s, for

1. Derivation of Generating Function

For a single element, obviously only one network, the element itself, is possible. *
For 2, 3 and 4 elements, Fig. 1 shows all the §.p. networks obtainable divideg
into e.s. and e.p. classes for reasons which will appear. :

#
NUMBER OF NUMBER OF
ELEMENTS ESSENTIALLY SERIES ESSENTIALLY 'PARALLEL CIRCUITS, !
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It will be observed that no networks equivalent under series or parallel inter-

electrical purposes position in series or

* The concept of serics-parallel connection is so intuitive that a formal definition seems

ave been given in the literature, two

Definition I—A network N is series-parallel with respect to two terminals a and b if '

re is at least one path from a to b not touching any junction

gh any element in opposite directions. 1

Definition IT—A network ig series-parallel if it is either a series or a parall

el connection
A single element is a serics-parallel network.

Definition IT is an inductive definition. Note that it serves to define equivalence under

Two series-parallel networks are the same under series-parallel interchanges if they are

series or parallel connections of the same two networks.

Note also the following:
A petwork i3 essentially series
tion of two s.p. networks.

(essentially parallel) if it is the series (parallel) connec-
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o ven. - Th e o soseapondene is tht . e, net
:rﬂafikmbicc;nels ?lf)lieiplf; iﬁe \.vvords series and parallel in the description of the
rj;?\zcrn:niﬁ;f;t?f: Zﬁ%;ises it is convenie13t toﬂl:a:f a ?ﬁﬁiﬂoip:fét?;iz:
ek ?ﬁz‘g&z} siTmhp}lseI;l,cz?j(ugie:t(iloozi1 iobgeiilzegele;engtz in parallel, 1 to denote &

ES

series, . + 1 (n elements in series)
- and abbreviating 1 + 1 + :

e slimeft, - - - 1 (n elements in parallel) to 1"; e.g. the symbol 21 repre- .
wnand1 -1 -

i i ies and a single element. -
llel connection of two elements in series a ‘ )
M’]I'ti ZP&T: neetworks of Fig. 1 correspond in order to those in the following

e : ‘

table: «

n Essentially Series Essentially Parallel No. Cts.
2 2 1 i
3
3, P+1 C1% 21
Z 4,1°+2,21+1 1421, (1*+ 11 10
i'+1,1’+1’ 31, 22

Fixing attention on the e.p. networks, it will be Potxce(_i t,sth;t f(;; 1tche— pi:t?g(i;
the representations are the partitions of n, excluding n 1t eor.ks e reimesentod
n itself is taken to mean the e.s. networks, then all s.p. n.e .w S
by the partitions of n, for n < 4. For n = 4 a non-partition e.p. _p csentetion
{J’f’ + 1) 1 appears. But 1* 4 1 is one of the es. ne_tworks for n ; . Tence
all networks are included in the partition notation 1f each pa.r:, (2, rlz:.s Pirgl o
is interpreted to mean the totality of the correspomzimg 1e.sl. netw ; €.8.
partition 31 is interpreted as the networks 31 and (1° + .)_ . b s numerical

For enumerative purposes this means that each partition ; o numencsl
cocfficient attached to it determined by the number of tfa.s. ne e ks for 7
sponding to each of its component parts. If the l_nfmber of es. neil e oo
clements is denoted by a,, the colffﬁcient for a fa;;tclzxzézgro} .t:]:)lewcombinations

isa,a,a, --- witha; = a2 = 1, : )
?;ir:iﬁiﬁg topa gq'iven part may be put in parallel with those'corrris;);)alildnf
to the remaining parts. The coefficient for a r.epeated pali't, say pt 1,1 :fl repeater 2
times, is the number of combinations ™ at a.6 time of a, things wi
repetition, which is the binomial coefficient:

ap + x* — 1)
x .
Hence the total number of s.p. networks s, for n elements may be written as:
E(ap + m - 1)(09 + 7 _'1)
F 2t T2

X London
* Netto, Lehrbuch der Combinatorik, Leipzig, 1901, p. 21 or Chrystal, Algebra 11, Lo )
1928, p. 11,

1)

8 = 2an
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where the sum is over all integral non-negative Pyg -, m, - such that

Pt gmtrnt - =g
~anda; = a, = 1. That is, the sum is over all partitions of n.
Thusforn = 5the partitions are:

5, 41, 32, 31°, 2°1, 21°, 1",
and

Ss=05+ac+as+as+1+1+1,
or since s, = 2a,

Ss =8 + 25 + 6 = 24,
Similarly:

se=s5+234+2(a‘;-l)+'23;+8=66.

The generating function” given by MacMahon, namely:
III I—-2)= =14 8. 1" 2
1

where ]| signifies a product, may be derived from (1) by an argument not

essentially different from that used for the Euler generating-function® for the
partitions of n, which is :

I;[(l - Ht =1 +Z.:p,.z"

2. Numerical Calculation

Direct computation from the generating identity (2) or
tion (1), becomes cumbersome for relatively small values o
of terms is equal to the number of partitions. Moreove
serial, each number depending on its predecessors, involving cumulation of
errors; hence independent schemes of computation are desirable.

The three schemes used in computing the series-parallel numbers shown in
Table I* follow closely schemes for computing the number of partitions, namely

those due respectively to Euler and Gupta, and that implicit in the recurrence
formula.

its equivalent, equa-
f n, since the number
r, the computation is

? It should be observed that this is not a generating funetion in the sense that the coeffi-
cients of the power series are completely determined by expansion, but rather a generating
identity determining cocfficients by equating terms of like powers.

* C1., for example, Hardy and Wright “An Introduction to the Theory of Numbers,”
Oxford, 1938, p. 272.

* We are indebted to our associate Miss J. D. Goeltz for the actual computation.
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TABLH I
Series-Parallel and Askociated Numbers
n 2 \V L
1 1
2 2 1
3 4 1
4 10 3
5 24 5
6 66 17
7 180 41
8 522 127
9 1,532 365
10 4,624 1,119
11 14,136 3,413
12 43,930 10,685
13 137,908 33,561
14 437,502 106,827
15 1,399,068 342,129
16 4,507,352 1,104,347
17 14,611,576 3,584,649
18 47,633,486 11,701,369
19 156,047,204 38,374,065
20 513,477,502 126,395,259
21 1,696,305,720
22 5,623,993,944
23 18,706,733,128
24 62,408,176,762 ;
25 208,769,240,140
26 700,129,713,630
27 2,353,386,723,912
28 7,927,504,004,640
29 26,757,247,573,360
30 90,479,177,302,242

L0 -2 =1+ 2 sn(k)z",

with s, = s,(N), N > n. _ N
A recurrence ,formula, for these numbers follows directly from the definition
and reads as follows:

salk) = 3 (‘“ i 1) Smasll — 1),

=0

The first depends essentially on the computation of an allied set of numbers
&(k) defined by:

&)
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with ¢ the integral part of n/k and sk — 1) = s(k) = 1. Clearly s,(1) =
$4(2) = 1 + [In), where the brackets indicate “integral part of.” .

Note that s,(k) enumerates the number of e.p. (or es.) networks with
elements that can be formed from parts no one of which contains more than }
elements; e.g., the e.p. network: snumerated by s,(2) are 2°, 21% and 1°. This
remark, coupled with the interpretation of the binomial coefficients given i
Section 1, gives a ready network interpretation of the recurrence (4).

Although, as indicated, the numbers s,(k) may be used directly for compy. §
tation of s, , they are more efficiently used in the following formula:

Sn = Sno1 t Sa2St + ot F SamiSmyr + 25.(m) (5
where m = [4n]. :
The negwork interpretation of this is seen more readily in the equivalent form: |

Sn = Qn t Gnaals + GusS2 -0 F GaomiSmgr + Sa(m) (5.1

Thus the total number of networks with n elements is. made up of e.s. networks !
with 7 elements enumerated by a., plus e.p. networks formed by combining
all e.s. networks of n — 7 elements with all networks of 7 elements, 7 = 1 to the !
smaller of m + 1 and n — m — 1, plus finally the networks enumerated by
s.(m) as described above.

This is essentially all that is used in what may be called the Euler computs- |
tion.

The Gupta computation rests upon division of partitions into classes according
to size of the lowest part; e.g. if the partitions of 7 with lowest part k are desig-
nated by p., i, then the classes for n = 4 are:

i1 = (31,21° 1Y

- P2 = (2)
P4, s = None
P, e = (4)

Recurrence formulae for the corresponding network classes s,, , are derived
by appropriate modification of a procedure given by Gupta; thus e.g. if a unit
is deleted from each of tbe partitions in p,, 1, the result is exactly p._;, hence:

Sn,1 = 8p.
Similarly:
8n,2 = QafSn 2,2+ 82,3+ v 84 s na]
= 812 — 8n-2,1 = Sp2 — Sp_3.

In general:

[ t

8nk = Zq (ak + 1’ - 1) A»_.'J;,L, (ﬁ"
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=ith

g = [n/k]

Ao =1,

A =0, r=1,2---k,

A g =8 — 8,1 — """ — 8,1, r>k.

snother form of (6), derived by iteration and simpler than (6) for small values
:;I' k and large values of n, is as follows:

= 3 (‘;.*>AH,,,;T,. o B ‘ ®6.1)

Tl
1t should be noted that vacuous terms appear in the sum1f qg> O .
The third scheme of computation consists in determining a third set of num-
bers, on , defined by:

Ta-==1- i " )

Coupling this definition with the MacMahon generating identity, equation ),
it follows that:

8n = E Gi8ni, (8)
jml
with s, taken by convention as unity. '
The recurrence formula for these numbers is as follows:

n—m—1

Opn = Gn — Z 0ini + oa(m) 9)
=1
. . .. ).
where, as above m = [in] and o.(k) is defined in a manner similar to 8a(
Note that o7 = 03 = 03 ; 1. These numbers are included in Table I (n < 20).

3. Asymptotic Behavior .

The behavior of s, for large n is ideally specified by an exact formula or, faihn_g
that, an asymptotic formula. It is a remarkable fact that Tfhe asymptotic
formula for the partition function is an “exact” formula, that is, can be used
to caleulate values for large n with perfect accuracy. We have no!: befen able
10 find either for s, ; we give instead comparison functions bounding it from

above and below. o
It is apparent, first of all, that s, > p, for all values of . This is very poor.

Somewhat better is
3n 2 Tn ’ (10)

where x, = 277! is the number of compositions of n, that is, partitions of n
in which the order of occurrence of the parts is essential.
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.. . . 1 = = d
This is proved as follows. From equation (5), s. > ¢, if “hen, in general, $a > Ta ifry=1,mn=2an
n—1
¢S ns4 Tn = gr._1+i§:r-rm-, n>2 (13)
- 1
n = @n- + So@n n>4 § . .
O = D T S #riting the generating function for the r. as:
The solution of the last, taking gy = 4, g« = 8, is: Anting ®
gn=2""1 = 5, Rz) = 21 E

More terms of equation (5) push the lower bound up but at a relati\'e!;' . rrence (13) together with the initial conditions entail:
slow rate and the analysis increases rapidly in difficulty; the best we have bee: | the recu ) R(z) + 4z — zt = 0;
able to show in this way is: R@ — (¢ — 6k

]
S, > A3" (11 that is:

14
with A a fixed constant. ! R@@) =2-3 —2V1-4z+2 (9

An alternative, more intuitive, way, however, is much better. F irst, notice . The asymptotic behavior of the r, may be determined from E(z) by the
that the networks for n elements are certainly greater in number than thes - othod of Darboux™® with the following result:
obtained by connecting a single element in series or in parallel with the networks © e

n, —3/2 (15)

for n — 1 elements, a doubling operation; hence, s, > =, where n ™ 4)‘ "

n— n-- . - =2+\/§=3'414'..'

Ta = 2mpy = 2%, , = 2", = 2" with 4 a fixed constant and X ing that:
which is the result reached above , . An upper bound follows by the same process on remarking
The networks of n elements with a single element in series or in paralle] are | Sp, i S GiSai
exactly those enumerated by s, ; in the Gupta classification. Hence the s, <t if h=1,4=2 and
approximation may be bettered by considering more terms in the expansion: ~ HEBCe, " e 16)
m X In = laa + 5 Z titni (
=2 s, mo= [n]. ‘

Tl

. By ed above:
The term s,, ; enumerates the es. networks in which the smallest e.p. part has By the procedure follow

exactly 7 elements. If this part is removed from each of these networks, the T@) = i tz" = 1—z—+1—-14z an
networks left are certainly not less than the e.s. networks with n — 7 elements i n=0
if i < m; that is
and
Sni 2 0y 1< — 3)!
" t, = i(u! n > 1
For n even, s=v 2m; » J nl(n — 2)
| 2
1 : & a1 32
som = (") =30+ 0 = 6+ 200, ~ AT
for n odd; , ' A comparison of 7, , s, and t, for n < 10, taking for convenience the integral
part only of r, (denoted by [r,]) is as follows:
S2m4l, m = Am410m = %Sm+lsm . 8 9 10
: n 12 3 4 5 8 7
Hence: ] 1 2 4 9 22 57 154 429 1225 3565
e 1 N 1 2 4 10 24 66 180 522 1532 4624
Sm 2 280 + 5 ; R (s + 2s.) . 1 2 4 10 28 84 264 858 2860 9724
A n ) . . 1,
1 e ¥ Hilbert-Courant: Methoden der Mathematischen Physik I, pp. 460-2 (Springer, 193
Stmp1 2> 2 a0y + Q; Si8n— 2nd ed.).
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Note that the lower bound is cldser to the true value for the larger values of
A third, semi-empirical, bound lis worth noting. From table I note that, for
n > 2, 40, is approximately equal to s, . Taking this as an equality and Using
equation (8) and the known valueb o; = ¢; = 1 the equation for the generatin,
function U(z) of the approximatign u, turns out to be: i

U) = 35 — 3z — 22" /9 = 30z — 1122 + 1228 + ] (s

A comparison of s, and the integtal part of u, is shown in Table II for » <1l
The approximation is remarkably flose; the worst percentage difference is 10
for n = 4, but from n = 7 to 20 the agreement is within 3%, !

itching elements (make or break contacts) for their realization in an s.p.
swit

Del’?“éor}i{umber of functions that can be realized with h elements is ce_rtamly
Jess tlian the number of s.p. networks s, multiplied by the nul?lbler :ef djﬁzgr;f‘
.vs that the elements in each network may be labeled. This af: r nu .
“ai;n)” since each element has a choice of 2n labels corresponding to eac
g

variable and its negative. Hence, not more than
@)'s < (2n)'4" = (8n)*

different functions can be realized with h elements. If

= — e>0
BLE II 1 h=pgn 9
2pprozimolion lfferies-Porallel Numbers ‘ {he {raction of all 2 functions of n variables that can be realized is less than.
n [ua) s, 2 N —
: N (8T (1-0) _ giu—oz :::Hu St
1 1 } o
2 2 2 . < Q¥ logs 1e1t
3 4 4
4 9 10 and since this approaches zero as n — « for any positive ¢, the result is proved
5 23 24
6 63 66 | BeLL TELEPHONE LABORATORIES.
7 177 ‘ 180
8 514 522
9 1,527 1,532 (
10 4,625 4,624
11 14,230 14,136 7
12 44,357 43,930 ‘ ,
13 139,779 137,908
14 444,558 437,502
15 1,425,151 1,399,068
16 4,600,339 4,507,352
17 14,939,849 14,611,576
18 48,778,197 47,633,486
19 160,019,885 156,047,204
20 527,200,711 513,477,502

The asymptotic behavior of u, is found to be:
Up ~ Axnn—ﬂll
with A about 3/7, X about 3.56.
4. Series-Parallel Realization of Switching Functions

As an application of these results it will be shown now that almost all switch-
ing functions of n variables require at. least

2n
log, n

(1 — ¢ e>0
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