Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A000171
Number of self-complementary graphs with n nodes.
(Formerly M0014 N0780)
17
1, 0, 0, 1, 2, 0, 0, 10, 36, 0, 0, 720, 5600, 0, 0, 703760, 11220000, 0, 0, 9168331776, 293293716992, 0, 0, 1601371799340544, 102484848265030656, 0, 0, 3837878966366932639744, 491247277315343649710080, 0, 0
OFFSET
1,5
COMMENTS
a(n) = A007869(n)-A054960(n), where A007869(n) is number of unlabeled graphs with n nodes and an even number of edges and A054960(n) is number of unlabeled graphs with n nodes and an odd number of edges.
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 139, Table 6.1.1.
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. Fripertinger, Self-complementary graphs
Victoria Gatt, Mikhail Klin, Josef Lauri, Valery Liskovets, From Schur Rings to Constructive and Analytical Enumeration of Circulant Graphs with Prime-Cubed Number of Vertices, in Isomorphisms, Symmetry and Computations in Algebraic Graph Theory, (Pilsen, Czechia, WAGT 2016) Vol. 305, Springer, Cham, 37-65.
Richard A. Gibbs, Self-complementary graphs J. Combinatorial Theory Ser. B 16 (1974), 106--123. MR0347686 (50 #188). - N. J. A. Sloane, Mar 27 2012
Sebastian Jeon, Tanya Khovanova, 3-Symmetric Graphs, arXiv:2003.03870 [math.CO], 2020.
R. C. Read, On the number of self-complementary graphs and digraphs, J. London Math. Soc., 38 (1963), 99-104.
Eric Weisstein's World of Mathematics, Self-Complementary Graph
D. Wille, Enumeration of self-complementary structures, J. Comb. Theory B 25 (1978) 143-150
FORMULA
a(4n) = A003086(2n).
a(4*n+1) = A047832(n), a(4*n+2) = a(4*n+3) = 0. - Andrew Howroyd, Sep 16 2018
MATHEMATICA
<<Combinatorica`; Table[GraphPolynomial[n, x]/.x -> -1, {n, 1, 20}] (* Geoffrey Critzer, Oct 21 2012 *)
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := 4 Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + 2 Total[v];
a[n_] := Module[{s = 0}, Switch[Mod[n, 4], 2|3, 0, _, Do[s += permcount[4 p]*2^edges[p]*If[OddQ[n], n*2^Length[p], 1], {p, IntegerPartitions[ Quotient[n, 4]]}]; s/n!]];
Array[a, 40] (* Jean-François Alcover, Aug 26 2019, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {4*sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + 2*sum(i=1, #v, v[i])}
a(n) = {my(s=0); if(n%4<2, forpart(p=n\4, s+=permcount(4*Vec(p)) * 2^edges(p) * if(n%2, n*2^#p, 1))); s/n!} \\ Andrew Howroyd, Sep 16 2018
CROSSREFS
Cf. A008406 (triangle of coefficients of the "graph polynomial").
Sequence in context: A181501 A213704 A278099 * A054922 A289651 A342588
KEYWORD
nonn,nice
EXTENSIONS
More terms from Ronald C. Read and Vladeta Jovovic
STATUS
approved