Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000353
Primes p == 7, 19, 23 (mod 40) such that (p-1)/2 is also prime.
3
7, 23, 47, 59, 167, 179, 263, 383, 503, 863, 887, 983, 1019, 1367, 1487, 1619, 1823, 2063, 2099, 2207, 2447, 2459, 2579, 2819, 2903, 3023, 3167, 3623, 3779, 3863, 4007, 4127, 4139, 4259, 4703, 5087, 5099, 5807, 5927, 5939, 6047, 6659, 6779, 6899, 6983, 7247
OFFSET
1,1
COMMENTS
The decimal expansion of 1/a(n) will produce a stream of a(n)-1 pseudo-random digits. - Reinhard Zumkeller, Feb 10 2009
The condition in the name is sufficient for primes p such that the decimal expansion of 1/p recurs after p-1 digits, which is the maximum-possible cycle length. - Robert A. J. Matthews, Oct 31 2023
LINKS
Robert A. J. Matthews, Maximally periodic reciprocals, Bull. Institute of Mathematics and Its Applications, vol. 28, p. 147-148, 1992.
FORMULA
a(n) = 2*A000355(n)+1. - Reinhard Zumkeller, Feb 10 2009
MAPLE
q:= p-> irem(p, 40) in {7, 19, 23} and andmap(isprime, [p, (p-1)/2]):
select(q, [$1..10000])[]; # Alois P. Heinz, Oct 31 2023
MATHEMATICA
Select[Prime[Range[1000]], MatchQ[Mod[#, 40], 7|19|23] && PrimeQ[(#-1)/2]&] (* Jean-François Alcover, Feb 07 2016 *)
PROG
(PARI) is(n)=my(k=n%40); (k==7||k==19||k==23) && isprime(n\2) && isprime(n) \\ Charles R Greathouse IV, Nov 20 2014
CROSSREFS
Subset of A005385.
Subsequence of A001913, A006883.
Sequence in context: A031371 A176557 A370643 * A097149 A185007 A308732
KEYWORD
nonn
EXTENSIONS
More terms from Reinhard Zumkeller, Feb 10 2009
STATUS
approved