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1. INTRODUCTION

Among the various classification methods of Boolean
switching functions, the method used in the Harvard
Table!) is the most common. The Harvard method
may be called PN classification, because functions which
coincide with one another by permutation and negation
of variables are classified into one type of class. In
another commonly used method, the negation of
functions, is introduced for defining equivalence relations
within a class, and this may be called NPN classification.

In this paper, a new method to be called SD (self-dual)
classification is presented. Two extra operations, self-
dualization and anti-self-dualization, are introduced

= defining equivalence relationships of functions

1n a SD class.

SD diasification is specially suitable for threshold
logic. For example, all switching functions belonging
to the same SD class can be realized with essentially
the same threshold logical circuit. SD classification in
threshold logic is very similar to PN classification in
relay logic. It is well known that all functions within
a PN class are realizable with essentially the same
contact network.

In SD classification, the number of different types of
function is considerably reduced, since more operations
are included than in PN or NPN classification. There-
fore, SD classification is believed to be helpful for
studying threshold logic, especially for tabulative or
enumerative types of work.

As self-dualization is an operation which induces a
self-dual Boolean function of » + 1 variables, from a
non-self-dual function of » variables, the explicit rule
of self-dualization will provide a convenient method
for designing threshold logical circuits including self-
dual functions.

The evaluation of the number N(n) of linear input
functions, i.e., the number of different Boolean functions
of up to n variables, realizable with a single threshold
device, is one of the interesting problems in threshold
logic. For example, N(n) will give a measure of the
complexity of linear input functions.

CSELF-DUALIZATION AND SD CLASSIFICATION

Definition 1.

Given an arbitrary Boolean function b(x;) of n
variables 1 < i < n, then b%x;) associated with

747

okyo, Japan

b(x1) by
b*(xi) = (b(Z) *

is said to be the dual of b(x;). If b¥(x;) = b(x;),
the function b(x;) is said to be self-dual.

The Boolean function B(x;) of n + 1 variables xy,
0 < i< n, associated with b(x;) of n variables xi,
1 <i<nby

B = xob(xs) + x0b%x;) ... (B) (Boolean)
is called the self-dualized of b, where (B) indicates a
Boolean expression.

It is to be understood that the self-dualized of a self-
dual function means the function itself. Actually, if

b = b, then B = xob + Zob? = (x0 + Lo)b = b ... (B)

The Boolean function b(x;) of n variables, associated
with a self-dual Boolean function B(x;) of n + 1
variables, by the relation

b(X1, xn) = B(xo = 1, X1 ...Xn)

is called the anti-self-dualized of B.

It is to be understood that the anti-self-dualized
function of a non-self-dual function b means the
function b itself.

Consistency of definition 1.

A Boolean function B defined as B = xob + Zob? is
always self-dual. The anti-self-dualized function b of
a self-dual function B is not a self-dual function, unless
xp 1s an idle variable. Hereafter, it will be understood
that “function of m variables” means that all variables
are non-idle. Conversely, “up to m variables” means
that some of the variables may be idle. The following
are well known properties of dual and self-dual functions.
1. The dual of the dual is the original:
ie. (b1 = b.

(B)
2. The dual is unique:
ie. if b= (b))% and b = (b2)¢, then by = ba. (B)

3. The dual of the function A of functions by ... bmn,

* The bar denotes negation.
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equals the dual function A¢ of the dual functions By definition, the self-dualized H, of h; is given by
Syl bt ... bpt: _
( - _ " Hay(xi; x0) = Xoho(x) + Fo(ha(x0))e. (B)
Wy 1e.  (h(by, bz ... bp))® = hi(by?, bod, ... by®). (B)

On the other hand, the self-dualized function of the
4. The self-dual function H of the self-dual functions self-dualized functions H, (regarded as function of the
By ... By, 1s a self-dual function;: x;’s and xp) is given by

i.e. (H(B; ... Bm))d = HYB," ... Bpt)y = H(B; ... Bm). Hx'(xi; Xp) = H(B(x;; X0) ... Bi(xy; X0); X0), (B)

B .
(B) where H, By .. By are respectively the self-dualized’s of
Notice that some of the B;’s may be the variables them- /> b1... 0w, ie.,
:Z}\f/iisuacir their negatives, since x; and &; are both H(y1... ym; x0) = xoh(p1 ... ym) + xohd(yy ... Ym),
The self-dualized has propertics similar to the above, and
provided that none of the variables is idle:

Bi(xi; x0) = .X(Jb:j(xl') + TobjH(x), 1 < j < m.

Theorem 1., Putting X0 = I or xp =0 and using property (3)
1.1 The self-dualized of the anti-self-dualized of a self- ©f dual functions, we obtain

dual function is the original, and the anti-self- Hy'(xi: x0 = 1) = h(b B) = h, = o w

dualized of the self-dualized of a non-self-dual = (x5 %o ) = Mbr-bm) = h i X0 = 1)

function is also the original. and

1.2 The correspondence between the self-dualized B Hy'(xi5 x0 = 0) = hd(bi® ... bin®) = (ha(x))? =
and the anti-self-dualized b is one-to-one. oy (\""XO — 0), (B)
= Hz{Xy; = U

1.3 The self-dualized of a function 4 of functions and therefore
bi...bm is equal to the self-dualized function H Hy = H,.
of the self-dualized functions By ... Bj. Definition 2.

A Boolean function b, is said to belong to the
same SD class as a Boolean function by, if b,
coincides with bs by sell-dualization, anti-self-
dualization, and negation of the functions, and
permutation and negation of the variables. (The
sequence and the number of applications of these
operations are not important.) These five operations
ha(xi) = h(bi(x;) ... bp():). (B) will be called the self-dual class operations.

Proofs. 1.1 and 1.2 are almost self-evident by
definition. To prove 1.3, let the variables be
xi, i =1,2...n, and let x¢ be the variable introduced
for self-dualization. The function /, having m Boolean
functions b ... b,, as its arguments, can be regarded
as a Boolean function /. of the x;’s:

Table 1. Classification and Numbcr of Types of Switching Functions

Number ol |
Variables » 0 | il 2 3 4 5 6
|
2n) 1 2 8 48 384 . 3,840 46280
A0 22 2 4 16 256 65,536 4.3 % 100 1.8 x 1019
.‘ ‘ . . e ol ) g e e e
'1':-; ?7' General Functions * 2 2 10 218 64,594 4.3 < 10° 1.8 x 10t ‘-/
B ‘ | \/
; G,g___ Linear Input Fens.* 2 2 8 72 | 1,536 86,080 14,487,040
é (%-—' GC * 2 1 3 16 380 1,227,756 4.0 x 10
i PN Class
g @ (7 LIF * 2 1 2 | 5 17 92 994
B —— GF * 1 1 2 10 | 208 615,904 ~
el [g‘l NPN Class 3 S04
| ; - 1 3 9 4
\6% —LIF 1 I N A L S
‘ . GF * )+ 1 ()-+0 ) 2 (2) + 4 4+ 76 (76) + 109, 875 (109, 875) 4 ~
| e SD Class**
LIE® O+1 1 (H+0 ©)+ 1 ©0) + 1 (1) + 4 @414 | a9
|

* All numbers are given for exactly n variables.

** In SD Class, the number in parcntheses indicates the number of different types of self-dual functions of # variables, and the number
without parenthesis indicates the number of different types of non-self-dual functions of n variables.
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3. SELF-DUAL TRANSFORMATION AND THRESHOLD
Loacic

A single threshold device may best be characterized
mathematically by the non-linear unit step function
D(x). (cf. table 3).

Definition 3.

A Boolean function f of n variables x4, 1 < i < n,
/fand x; taking either of the values 0 or 1, is said
to be a linear input function if and only if there
exists a set of real numbers W; and T, to be called
weight and threshold, such that

f=D(3 Wixi—T). (A) (3.1)

Definition 3 is in agreement with the most commonly
used definition of linear input functions5-7:19), The
general synthesis problem in threshold logic may be
characterized as: “Express a given Boolean switching
function b(x;) in terms of k linear input functions
S l<r< k>

It can easily be shown that a combinatorial threshold
logical circuit, with no feed back loops and having x;’s
as inputs and b(x;) as the output, is expressible in the
following functional form.

fr:c = fr(xi,flz, .- -ferIZz)
and (3.2)
b(x:) = frz

where f; is a linear input function of at most n + r — 1
arguments, and the suffix x as in f;; means that f; is
regarded as a function of the x;’s. From the absence of
feedback loops it should be possible to number the
functions (or the threshold devices) in such a way that
any f; has only functions with smaller suffix numbers
as its arguments. In minimization problems we are
asked to minimize the number N;( = k in (3.2)) of
linear input functions. The minimum of Ny is a charac-
teristic number of the given function b(x;), e.g., min
Ny =1 obviously means a linear input function. Sub-
stitution of (3.1) into (3.2) will give an algebraic expres-
sion of D functions which take the required values
b(x;) = 0 or 1 on all switching vertices of the input
switching cube x; = 0 or 1.

The minimum number of non-linear step functions
Npin an algebraic expression having the above property
will also be a characteristic number of b(x;). Min Np
may be regarded as a measure of non-linearity of the
Boolean function &(x;). One might think that Np = Ny,
but this is not always the case. Function Bs (part or {ull
sum of three inputs) of table 3 gives a counter example.
Bs is obviously not a linear input function: min Ny = 2,
but it can be expressed in terms of one non-linear
function D. One of the two D functions in the second
expression of table 3 is replaccable by an identity
function /(x) == x which is obviously linear. In general
therefore, Ny = Np + Ny will hold instead of Ny = Np,
where Ny i1s the number of 7 functions.

The following thcorem indicates the importance of
self-dual classification in threshold logic.

Theorem 2.

All Boolean functions belonging to the same self-
dual class can be expressed in terms of the same

number of linear input functions Ny, nomn- luu..n
step functions Np, and I functions Ny Using
definition 2, this may be rewritten as: All of e
self-dual class operations preserve the nuwber,
Ny, Np and Nj.

Proof. From (3.1) and (3.2)
rr = D/I(Ar + Cr), b(xi) :sz-

=1

Ay = Z Wirxi + z W irfiz— 17, (53,3

i= ji=1

where Cy is a constant which may have to be asicod |
case D is replaced by an [/ function. The theeen |
proved by finding for each of the sclf-dual clzsy wrn.,

tions, explicit transformation rules which are ::;.~_.=..,‘mu
to (3.3) without changing Np and N; (and

Ny= Np -+ Np).

Permutation: Rename the variables.

2. Negation of a variable, say xi: Replaze »
I —xyin all 4’s, ie., replace Ty by T, — i . w
Wir by — Wir.

3. Negation of a function: Change the sign of «, n
the case of a D function, i.c., change t:_—: ST 0
all Wi's, Wyg's and Ty In the case «f J. umt
replace Cyby 1 — C;.

4. Anti-Self-Dualization. In case b(x;) is seif-dual
rename one of the x;, say xi, as xo and set 1 1o |,
i.e. set x1 to 1.

5. Self-Dualization: Let the largest negative vulue of
each 4, on the switching vertices x; = 0. 1 bs — W/,
M; should be positive and non-zero since there are
only finite vertices 6).

n r=1 .
Wor =3 Wi 4 My— 2T, + S W, 74
i=1 i=1
and
Z Wir -I- Y Wi+ M, —T.. (55
i=1
Replace 7, by 7»% and add a term Woxg in 4. 17 oas

of I, put M =1 and do the same.

While transformation rules (1) to ()
obvious, (5) may need extra explamtion L
shown 8) that the dual of any linear input 1
be obtained by changing only the threshol d 1 3kl
change of 77 to T,¢ gives the dual f;7. Since the ;:.".:..-.:_‘.n

functions f;’s into f;2’s, b(x;) is also switched w700 i
dual b%x;). By definition this means sclt=duaiizzion
As a special case of theorem 2 in which

N/Z/VD-}— Nr=1

we obtain: Functions belonging to the same sali<Tin
class are either all linear input or all not hmear i
functions.

The following examples will indicate the wweliines
of the explicit self-dualizing rules 1 dernving wom
practical circuits.

Example 1. Self-dualization of a parity check i
of 2m inputs gives a parity check ciremt of om0
inputs.
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Example 2. Self-dualization of a combinatorial
binary counter circuit gives a reversible counter. Suppose
we have a combinatorial circuit of #» + | inputs a and
x1, X2 ... xn, and of n outputs yi...ys, such that
Y = X + a (mod 27), where

n n
X = Y2i1x; and Y = 3 2ty
1 1

By self-dualizing the circuit and putting Zo=s, we
obtain a circuit such that ¥ = X + a—s (mod 2%).
This circuit not only counts in both additive (a) and
subtractive (s) modes but also operates correctly even
if @ and s are applied simultaneously, i.c., ¥ = X if
a=s=1.

4, A Lower BOUND OF N(n)
Theorem 3.

N(n), the number of Boolean functions of up to n
variables realizable with a single threshold ele-
ment, is larger than 20.2572°,

Proof. Let f be a linear input Boolean function of
2m variables xi ... Xen, with integral weights Wi, W;
such that W; =21 for 1 = i< mand 1 < W; < 27
for m+ 1 < j < 2m and with threshold T = 2™, i.e.

f: D( Z Wix; -+ -E Wix; — 2my,
1 m+1
Suppose the two set of weights WU and W;@ differ
at j = k, so that Wi > Wi® > 1. Setting xg = 1,
x; =0 for j # k and

m
2m 2 > Z Wixi = 2m — Wi > 0
1

(obviously giving unique values to x;’s) results in
f® = 1 but £@& = 0. Hence, different sets of Wj, (2m)™
in number, give different linear input functions. All the
x; are non-idle variables, since putting all x; = 1 and
all x; = 0 gives /= 0, but all x; = 1 and at least one
xj = 1, gives f= 1. Since, all possible negations of
non-idle variables of a linear input function give different
linear input functions, we obtain when n = 2m:

N(n) = 2m@2mym = 20.257% for m = 1.

When n = 2m—1, putting Wap = 0 instead of
| < Wom < 2™ and using the same argument as above,
we obtain:

N(n) > 2m=1(2mym = 2n*+inth)/4 > 20.260°

for n > 3. These two cases and N(0) = 2, N(1) = 4

prove the theorem. This lower bound is much larger
than that given by Muroga 8). The upper bound U(n)
of N(n) given by Willis and Winder &.9),

Un) =2 i 27 — 1),

i=0

behaves asymptotically like 27'/n! for large n, and also
satisfies
lim ((logz U(n))[n?) = 1.

fnl— 00

The most interesting feature of the new lower bound
is its similarity to U(n) in its functional form. This leads
to a conjecture that N(n) would behave like

lim (loge N(n))/n? = k or N(n) ~ 2k7,

n— 00

with & being a certain constant between 1/4 and L.

It may be worth noting that, although 2¥7* is much
smaller than the total number 22" of Boolean functions
of up to n variables, it is much larger than 27,! which is
the number of all possible ways of negating and per-
muting the n variables.
Since

lim (loga 27n!)/n® = O,

n— o0

negation and permutation of variables do not have any
significance in any kind of argument which leads to
bounds on &, or which would lead to the determination
of the value of k.
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ABSTRACTS

A new method of classifying Boolean functions, called
self-dual classification. and specially suited for threshold logic,
is presented. Besides permutation and negation of variables,
two other operations, self-dualization and anti-self-dualization,
are introduced to define the equivalence of functions within
a class. These operations preserve the number of non-linear
threshold elements in combinatorial switching circuits. The
self-dual classification considerably reduces the number ol
different types of switching function in threshold logic, e.g,
for up to 4 variables, 83 instead of the 402 in the conven-

tional classification.

Lower and upper bounds of the number N(n) of linear
input functions, ie., functions realizable with a single
threshold clement, of up to n variables are given. Upper
bounds show that N(n) is smaller than 27* and a lower
bound shows that N(n) is larger than 2027* _ From these
bounds it is conjectured that for large n, N(n) would behave
asymptotically like 2%¥7* where k is a certain constant pe-
tween ¥4 and I.



