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Since several years .. the graph-theory is interested in
generalized graphs. We start with a set N= {1’,..e,n} of
vertices. By a generalized edge of an m-graph we mean
an uaordered set {a‘i 9o a D,am}of vertices., For m=2 we have
the classical graphs (undirected, without loops).
We want to know the number G’r(1m) of non-isomorphic

m-graphs over N. We are interested in an exact formula,
but even more in an asymptotic approximation for n—oeo .

. Two m-graphs G, G, are isomorphic iff there is a permutation
Te ’Tn which transforms .the edges of G‘i into the edges of Gza

We want to prove the

Theorem: Co(n (0
. m
For m»2 : Gz(zm) = 2-3-5-7(1 + 121_2 (1+0(1))).
m-1
2), am) 2(3)
Corollary™’: G, ~ S
| & .,
Classical Case: m=2: Grgz) = -‘-?-ﬁ-,-n-(‘i + gnﬂggg(wo(‘i)))
i . 2

1) This paper was read at the Mathematical Inatitute Ober-
wolfach, Germany, on July 3,1967 at & meeting on graph th«
2) The corollary was £irst announced for the classical case
m=2 by HARARY [2], pP. 258. The better approximation in the
. classical case appears in [3],§4,, satz 20,




We can interpre: the resuli in terms of the order of the
autumorphism-griup of m~grapns: If all vhcse m-graphs wou.d
have the trivisl automorphism group, we wovld have Gémj
to be exact]y-%T.E(ﬂj. So sur result seys, that nearly all
grapns nave the trivial automorphism-grcup, and such cases
like the complste m-graph or the null--graph, who admit the
whole'ﬁhg ars e oapiions.
Wa here only contine for convenience (o the “pure" case.
As variants of h+ problem one can solve in an anaiogous
manner the Iallowing genera .izations:
a) Admit all M-sets with 13r5m (m»2;, s3> that we admit
lower dimens onal edges like loops «i.
b} Adam.t manyfo'd sccurenceas o the same edges, which are
3

eystema of verious-placed relations cer N. These probisms
4)

are evan eas er to solve than those §_.scussed here

POLYA (1937). Without going iato the det.ils of this theory,
we can state the most importan’ formula 1) below with the
Tollowing coneceito: EveryitﬁTL induces a permutation Tvgﬁlw;
of a so-called m»LinenGrcuplﬁgm}; which :8 a permuiaiion

n

group over the im3 n-sets over N of order n'. If ¥ has the

31 The rases a) and bt) are handled with ‘he method of Hadamar:
products mentioned in [}].
4j C?T. [}], Thecrem 3.
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eycle par%;tion'gtw3 - {p?;..;dpn); whicii means, “hat M hes
P, cycles of lergin J, ther the induced Permutation {| has

the partition'pfﬂﬁ = (P, vP o)
' fa}
‘m

LA
Now “he Podya-theory gives us a straightforwarc proof for ~

: w= Pite-.4P
(m) _ 3% 1 ()
(1) G!l 14 ‘;-—.2 1
NET
The problem is “only" the computa tion o the numbers Pj.,
This has been sclved in the case m=2 by “"0lya and Harcary
6)

and in a form, wh:ch is somewhat simpler by the muthor
W# also have a formula for mm3?)p and i is laboriocus, though
in principle possible to writie down the :‘ormulas for each m.

Fortunateiy for our purpcse of asymptotic computation we only

need the numberz P,, &s will be seen under (3). Here we have

P P
(2) P () = g (ay).-- (gD |

=(q?97:§m)
whers the sum is ¢ver all pa rtitions of m.
Proof of (2): The um-set (edge) M is fixed by ¥ ifi the follo-
wing is true: M contains all elements of a cyclie ¢cf W, if it
contains one el«ment cof thes cyele at all. Given a partition
(gq5:0:99,) of m;, #e nave the choice of Ey cyeles ¢f T for tne
q. cyeles needed in M.

| Now our thecrem is proved by using the idea, that the main
parté of the fornula of the theorsm is given by the icentical

h

permutation W=¢ in (1), the courrection term is given by ths Lol

e e e

L
5! Ci’.[}]g §1, Satz 3 M for the two-dimersional case.
&) Ci“[qx- r-45° {0} and [3]v §2. sats L2,

iy er.[3], §2, setz 1Ll3.
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transpositions T of the T

n’ and all other permutations are

contained in of{1).

X)TW=¢ - 8(15) = (n,0,...,0), 8O p(“) = ((E)ros"°90)° The
1
term in (1) is %T.z(‘).

II) Let =T a transposition. Since '8(17) = (n-2,1,0,...,0),

we have with (2) .P1(n0 = (nEZ) + (ﬁ:g), and we see

n-2

elementarily, that P, = (3

Jo All other Pj are zero. 5o
we have as term in (1)

(P2 (@ 3+ (D)

-G
i =1
=gr(z)2 ™ "

%T (2),2 » the second

term of our theoremn.

III) Now we have to look for all other permutationan Let

\8(1!:) = (n-;e,pepnwpn) with>3. Let
- H(T®)

mwmtkp1=n=m
for the exponent in (1). We state the following:

—-‘i—-:

en® = 7 , where H(w) is an abbreviation
L ]

2%
a) There are at most 2 partitions (919..°,pn) of n with
p1=n—z-

b) The number of permutations to the partition (pﬁgo.agpn)

1 ! i
I ya n: Zn

D = T o =
Dyleeep,! 1 T,n 8 (n-0)

is known %o be

e) H(T)

Potooot P(n) L P, %(2P2+3P3+ooo+(E)P(n))
m m

P, + 2((H-2y) = 5((2) + B,).

So we only need Py in the estimation of Z, .. Thus we have




1 3 ( m ) 'q'hz-, z- ( ‘t){ z)eon(q J - Eaﬁh tﬁrm ﬂf ‘{he
=

a ] =M=A

k- 2 q Goteo +q m-A+ (goye . 4q, )
= n = 0 e ¢ 9 = L e s F
Since Qotowotqy, & -%(2q2+3q3+.”-+mqm) = -E,»{m-qﬂ = % ; We can

continue m = %
&n . Since the sum has finitely meny terms.

and since the sums for A= 2,3 turn out explicitly %o be

. x0(n™"°), we have

(4) P, = (n;"') +20(n™ %), the O-constant depending on m
and not on® . Now we can -ompute the Exrponent E in {3):

We have by (4) (g) N P1 . (2\'__{21;32)@(11![!*2}*

= %?3 nm”1(1+0{-§)}~0(nm"2){. the first O=-constant depen-
ding on®, and finally

(9} E = 1m:" nm"‘i(1-l-o(1)}0 the o-constant depernding on ¥

We elsc want to estimate the difference (g)-(“;")ug(nm‘—z;
EE?.‘:QEE,];X inz‘ Let T{xl'—{m . U{;ing Tay]_oz"a fom-ula we get

l
Tin=w) = P{n) - :ﬁ- T (n) -wr-%-!— TR} F cssy OF

" 3 “? 1 -
(g),(“;‘f)g'r(n)—m'n—r)t-t'l"in)(l - %T%'ﬁ%‘f o %T"!""'S_T“ 2; +

= T'(n).B, say. Now ones can prove for ths bracket




8)
B)«l.trﬁ for n sufiiciently large . For nan .)(m) the correction
s e |

term O(nm"z) dies not destroy the estimation. So we have

(6) (5)=P, ;;‘Jc"l"{n).%-ﬁ tor npn_(m).

Using %his fact,; we have bty (3)

R * m- i
(T) Z < TlLf o z 2n ] } . Since T° (n}f"'uI{nm_i_.E
®.n ' 25’1" (B) osg

and ny»i, we have T'(n) ¢t larger order “han gero, so ihat

the bracket in (7) is f;% for nyn,(m). Now we aplit “he

It &m i
remainder: < < = 5 _
Z Z'K;E'L - .- Zt;:n l E‘g,n ;
=7 A=2 R =4ms 1

e)The finitely meny members of the first sum have by (3) and

. (5) the form (:;‘J

22
7 & ey, (2n) . Since %>2,
2n — F o™ (140 (1) )
2 35 ;{;‘W /

nm-—‘l

L ‘ n=2,
is of larger order than ( "7) ToyT in

2 4 o™
2 Tm=1)7°

%
the correction term of our theorem. The terms (2n) ars by

far of smailer order than those we have juat discussed.

b)The wecend sum is estimated for large m by the infinite

geometrical series: According to (7) we have
n

n
1 .(m) 2n 4§
) Zgntgree il o
€ =4m+ 1 2T )+

. 8) Ct. [-{-'_lg Lemme %o theorem 3.




m-1
Now T'(n)ﬂf%E:TTT has just the order of the (gzgl in the

]
correction term, and the additional r--"n--éﬁ'-“l-nm]::eea the remain-

der of effectively smaller order than the correction term.
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On Structure Numbers For Finite Relational Systems
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A problem of Carnap (1950) is to determine the number S(n,%)

of non-isomorphic relaticnal systems ® of type t”["i"’ .a,gm]
over a finite set N !{;,.e.,n} » where M. is the number of i-plac
relations in ® . Let T(z):= ‘,mmzmh otz The type group 'ff;
operates over T(n) tuples and has a cycle index Z(ﬂri), which

is a sort of Hadamard product of the eycle indices of the s0
called i-tuple-groups icfgt?]). Using Polya's combinaturial
theory, we get ) ,

Theorem 1: 5 P P epm e e (p{e ap (T

Stn, ™) = 1o 2 "
ni T%L

Here P(i) is the number of cycles of length j for that permu-
tation | of the i-tuple-group, which is induced by ¥ .

The following asymptotic result shows, that nearly ali relatio
systems only have the trivial automorphism group (cf.[]]):

Theovem 3: ,T{n) _ - Lren-2)-Tn)) __
For mx2, Sin,t) = = (14 cz)oz (1 + 0(1))).

The first term in Theorem 2 corresponds to the identical permu-
tation of the’T; in Theorem 4, the second term corresponds o
the (g) transpositions. o(i) contains all other permutations.
The proof of this estimation proceeds by estimating explicitly
those permutations with a large number of fix-points and esti-
mating uniformly the rest.

These two theorems solve completely Carnap's problem. The case
m=i was solved by Carnap himself.
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