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ABSTRACT

We find an explicit formula for the number of graded partially ordered sets of rank

h that can be defined on a set containing » elements. Also, we find the number of graded

partially ordered sets of length A, and having a greatest and least element that can

be defined on a set containing n elements. The first result provides a lower bound for

G*(n), the number of posets that can be defined on an r-set; the second result provides

-an upper bound for the number of lattices satisfying the Jordan-Dedekind chain
condition that can be defined on an n-set.

INTRODUCTION

The terminology we will use in connection with partially ordered sets
is defined in detail in the first few pages of Birkhoff [1]; however, we need
a few concepts not defined there. A rank function g maps the elements
of a poset P into the chain of integers such that (i) x > y implies [ o a,u(
: g(x) > g(y), and (i) g(x) = g(»y) + 1 if x covers y. A poset P is graded ¢
" if at least one rank function can be defined on it; Birkhoff calls the pair :
(P, g) a graded poset, where g is a particular rank function defined ona * -, . /[,
poset P, so our definition differs from his. A path in a poset P is a sequence
(xq ..., X,,) such that x, covers or is covered by x,,{, fori = 1,..,n — 1; sradod
P is connected if every pair of elements in P occur in some path in P.
A component of P is a maximal subposet of P which is connected; thus,
every poset P decomposes into unique non-empty components. Suppose
P =P U--UP,is a graded poset with components P, ,..., P,, and
suppose g and 4 are rank functions defined on P with g; and 4, the
restriction of g and & to P;, respectively, for i = 1,..., ¢. Now it is easy

* This paper was written while the author was a post-doctoral fellow at McMaster
University, Hamilton, Ontario, Canada, 1967-68.
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13 THE NUMBER OF GRADED PARTIALLY ORDERED SETS

to show that there exist integers j; such that j; + g,(x) = h(x), for all
x€eP,,i=1,.,c. Thus,

R(P) = max{g(x) — g(»):x,yeP;, i=1l..c¢}

is independent of the rank function g defined on P. The invarient R(P)
is the rank of a graded poset P. '

An unsolved problem in combinatorial analysis asks for G*(n), the
number of partial order relations that can be defined on an n-set; this
problem is trivial unless it is understood that ‘“‘enumeration” means we
must describe how to calculate G*(1) x + G*(2) x* + -+ in terms of
specified power series and operations defined in the ring of formal power
series or some equivalent system. So far no reasonable bounds have been
given for the magnitude of G*(n).! In the next section we determine the
number of graded posets on a given n-set and thereby obtain a lower
bound for G*(n). In the last section we find the number of graded posets
on an n-set with a greatest and a least element such that exactly p elements
cover the least element. This result gives an upper bound for the number
of lattices that satisfy the Jordan-Dedekind chain condition that can be
defined on an n-set, and it could be used to find an upper bound for the
number of geometries having exactly p points.

In an earlier paper [2] we studied sums having the form

Zf(nl , 1) f(ng , ng) - iy , 1) g(ny), 1)

where { f(m, n)} and {g(n)} are given sets of numbers, and the sum extends
over all compositions (n ,..., n;) of n into an unrestricted number of
positive parts. Sums having the form of (1) also appear here, but the
generating functions of the appropriately defined sets { f(m, n)} and {g(n)}
do not converge, so the theory developed involving an integral equation
does not apply. However, the recurrence relations we gave in [2] can be
used effectively to shorten the labor of computation involved in evaluating
(1). With a simple change in notation the recurrence relations can be
given as follows: Let

{u@i, j): i,j=0, 1,..} and {v(): i=0, 1,..}

be given sets of numbers and define

iwp.m) =3

Ny ey nh) u(ny  ng) w(ng , ng) == u(ip—y , M) v(m),  (2)

! D. Kleitman at Massachusetts Institute of Technology has evidently solved this
problem, but so far his results are available only in the form of lecture notes.
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where the sum extends over all compositions (#, ,..., #,) of n into exactly
h non-negative parts with n; = p. From this definition it follows that
t(p,ny = v(n) if p = n, ty(p,n) = 0 if p 7~ n, and

n—p

wpm) = (1) X wlp ) sl n = p), =23 @)

k=0

GRADED POSETS

We are going to define a set C(h, X) by constructing its elements and
at the same time prove that the number of elements in the set is

n

et =3 (. ) granateesmm, @

L seees Hp
where the sum extends over all compositions (s ,..., 1,) of n into exactly
h non-negative parts. Note that this sum has the form of (2) if we sum the
latter over p. Exhaustive disjoint subsets of C(%, X) correspond to each
of the compositions (n, ,..., n;) of n into exactly 4 non-negative parts;
the elements of these subsets of C(h, X) are constructed as follows:
Consider each of the (, " , ) h-tuples (Xi,..., X) consisting of subsets
of an m-set X such that | X, | = n;, and X; N X; = ¢ whenever i 7 J.
There are

2n1'n2+---+n;,_1nh
subsets R of the set
{(X:Y)5XEX1'>)’€X¢+1> l:1y>h_l}

and each R together with the A-tuple (X7 ,..., X}) constitutes an element
of C(h, X); that is,

Clh, X) = {(Xy ..., X : R)}.

It is evident from this construction that the number of elements in C(4, X)
is given by (4).

Let B(h, X) be the set of all graded posets on an n-set X with rank less
than A, for A = 1, 2,...; also, le be the number of elements in
B(h, X) for h = 1, 2,.... (Thus, b(h, 0) = 1, and b(h, n) = b(K’', n) when
h,h" > n > 0). Now an element (Xi,.., X,:R) of C(h, X) can be
uniquely interpreted as an A-tuple (S ,...,S;) of posets S;e B(, Y.),
| Y;| =s;, where S;NX;7%¢ or S;=¢,5,CX;U--UX, for
i =1,.,h, and (s;,..., ;) is a composition of » into exactly .~ non-
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negative parts. Furthermore, each A-tuple (S; ,..., S») of posets S; € B(i, ¥,)

corresponds to some element of C(h, X) in this way. In Figure 1, a 4-tuple
of elements from B(4, X,), B(3, X3), B(2, X,), and B(l, X;), respectively, J

FIGURE 1

is shown with | X, | = 7,| X5 =0, | X5| = 4, | Xy | = 3; this 4-tuple
arises from an element of C(4, X), X = X; U X, U XU X,, which
corresponds to the composition (3, 2, 4, 5) of 14. The labeling of the nodes
has not been indicated in the diagram. Using the construction just
described we find that

elhm) =% (") b0 b2, ) blh ), )

where the sum extends over all compositions (s ,..., §,) of # into exactly \
h non-negative parts. A proof of (5) in terms of diagrams can be given as J
follows:

First, we describe how to construct diagrams representing elements
of C(h, X). Let (i, 1), (7, 2),... be the i-th row of the plane, and suppose
X ={1,...,n}. Given an h-tuple (Xi,..., X;) consisting of exhaustive, :
disjoint subsets of X, we label the points (i, 1), (i, 2),... with the elements J
Xi1 5 Xis ,-s Fespectively, where X; = {x;; < x; << ==}, for i = 1,..., A.
Now the elements of C(h, X) corresponding to the A-tuple (Xi,..., X3)
may be represented as graphs obtained by connecting some of the labeled
elements in the i-th row to some of the labeled elements in the (i + 1)-st
row, for i = 1,..., h — 1. Now suppose D is a diagram corresponding
to an element of C(A, X). The elements of D connected to elements in the
first row have labels belonging to a subset Y} of X, and D, , the restriction
of D to Y3, is the Hasse diagram of an element of B(h, Y3,). Let D — D, be
the restriction of D to X — Y, . The elements of D — D, connected to
elements in the second row have labels belonging to a subset Y, ; of
X — Y,, and D,_,, the restriction of D to Y,_;, is the Hasse diagram
of an element of B(h — 1, Y;_;). We can continue in this way to find that
each element C of C(h, X) corresponds in a unique way to an A-tuple
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(Sy ..., Sp) with S, € B(i, Y;), where (Y7 ,..., Y3) is an A-tuple of exhaustive,
disjoint subsets of X which depends on C. It is also clear that the Hasse
diagrams of an A-tuple (S ,..., S;), with S; € B(, ;) and (Y;,..., ¥3) an
h-tuple of exhaustive, disjoint subsets of X, can be drawn in a prescribed
way so that a unique element of C(h, X) is obtained. This indicates a
one-one correspondence between the elements of C(%, X) and the set of all
h-tuples (Sy ,..., S) with S; € B(i, ¥;) where (Y;,..., ¥,) ranges over all
h-tuples of exhaustive, disjoint subsets of X.

Now we invert the relation in (5) to find b(4, n) in terms of the numbers
c(i, j). Let

B =Y X gw=y Bl g
1 & dhn
Cix) = n! *

then (5) implies
Ci(x) = By(x) By(x) -+ Bu(x). (7)

Thus, By(x) = Cy(x), and for & > 1,
By(x) = Cu(x)/Cra(x). (®)

In the ring of formal power series it is possible to find 1/4(x) in terms
of A(x) = a(0) + a(l) x + -+ provided a(0) # 0; in fact, if a(0) = 1,

1

A ! +7~ Y (—D* a(m) a(ny) -+ a(n)| x*, ©)

where the inner sum extends over all compositions (#, ,..., #;) of n into
an unrestricted number of positive parts. Using this result we have,
forh > 1,

n

d,m) = 3 (=1 (" Yol m) el mg) < chm), - (10)

where the index of summation is the same as that defined for the inner
sum in (9). Now (8) implies
2o
b(h,n) = Y (k) ch, k) d(h — 1,n — k), (11)

k=0

so that (4), (10), and (11) provide a formula for calculating the numbers
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b(i, j). By definition, b(n, n) is the total number of graded posets that
_c_:_e_x_n_gg_gi_efined on an n-set since the rank of a partially ordered set of order
n ‘cannot exceed n — 1. Also, a(h, n) = b(h,n) — b(h — 1,n) is the
number of graded partially ordered sets of order » and rank -4 — 1.

Figure 2 indicates the elements of B(4, X), | X' | = 4.

¢l

hin
1 0 0 0
~1 1 1 1
1 2 6 26
1 3 13 81
1 4 22 166
1 5 33 287
1 6 46 450
1 7 61 661
hin
1 1 1 1
1 1 3 13
N 1 1 3 19
1 1 3 19
1 1 3 19
1 1 3 19
.
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c(h, n)
0
1
162
721
1726
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5650
8953

b(h, n)
1
87
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9
219
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GRADED POSETS WITH A GREATEST AND LEAST ELEMENT
Let Gu(a, X) be the set of all graded posets on an (n 4 2)-set X with

rank  + 1, a greatest and a least element, and exactly p elements covering
the least element. We put | Gi(p, X)| = gx(p, n), and sometimes write

2
g3(ma m + n) = (”ll’_‘;nnn_*»l )f(m, n)
We will prove that
. — < _1 m—I m 2L . 1 n’ 12
flmm = 3 (o )@k 1) (12)

and for & = 2,

gn(p,n)=m+2)m+1) Z <n1 ,".1', nh’f(’h > My) f(ny, my) - f(myy , 1),
13)

where the sum extends over all compositions (#, ,..., #,) of n into exactly 4
positive parts with n; = p. Note that the sum in (13) has the form of (2)
with u(i,j) = f(i,)) if i,j 7 0, and u(i,j) = O otherwise, and v(i) = 1;
thus, the recurrence relation (3) applies.

Suppose X and Y are sets containing m and n elements, respectively,
and let F(m, n) be the set of all bipartite graphs (X, Y) such that every
element of X is joined to some element of Y and every element of Y is
joined to some element of X. Suppose each element of Gy4(m, Z) is defined
on an (m + n + 2)-set Z. Every element S of G4(m, Z) corresponds to a
4-tuple ({x}, X, Y, {y}) consisting of exhaustive disjoint subsets of Z with
| X| = m, | Y| = n, where x and y are the least and greatest elements in
S, respectively, and X and Y are the elements in S with rank 1 and 2,
respectively. The partial order relation for S restricted to X U Y has its
Hasse diagram in F(m, n). Conversely, every bipartite graph in F(m, n)
corresponds to an element of Gy(m, Z). Thus, if f(m,n) = | F(m, n)|,
we have

im0 = (7152

Now we are going to find the number of elements in F(m, n). Suppose
X and Y are sets with m and n elements, respectively, and let F*(m, n) be
the set of bipartite graphs (X, Y) such that every element of Y isjoined
to some element of X, but not necessarily vice versa. If f*(m, n) =
| F*(m, n)|, we obviously have f*(m,n) = (2 — 1)*, but the elements
of F*(m, n) can be enumerated in a second way. The number of elements
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in F*(m, n) having exactly k isolated nodes in X is (%) f(m — k, n); thus,

m

@ — 1) = f¥m,n) = Y (’Z) fk, n). (14)

k=0

Using the fact that if

then
a = T (=1 () B,

we invert (14) to obtain (12). (Incidentally, by definition of F(m, n),
f(m, n) = f(n, m), so that (12) implies an identity involving two sums.)

Suppose the elements of G(p, Z) are defined on an (n + 2)-set Z, then
Gy(p, Z) can be split into exhaustive, disjoint subsets corresponding to the
compositions (1, ny ,..., 1y, 1) of n 4 2 into exactly 4 + 2 positive parts
with n, = p. Each of these subsets corresponds to an (k& + 2)-tuple
(zi}, Z1 5oy Zy 5 {zo1) With | Z; | = n;, and a sequence of bipartite graphs
(Z;,Z;;)eF(n; ,n;yy), for i=1,.,h— 1. So the composition
(1, ny ..., 1y, 1) of n 4 2 corresponds to a subset of Gx(p, Z) having

( n-+ 2

1, iy ,..., Ny , 1

) £y, ) f, 1) -+ F oy, ) (15)

elements; summing over the appropriate compositions of n + 2 gives (13).
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