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DISCOVERING PRIMES WITH EUCLID

Richard Guy and Richard Nowakowski

I1f we "discover' primes by Euclid's process,.

1+1=2, | =%

Ay

a4

a, = 2.3+ 1

2+ 1=3,

t

~J
N
ot
D

a, = 2.3.7 + 1 = 43,
a, = 2.3.7.43 + 1 = 1807 = 13.139,
a. = 2.3.7.13.43.139 + 1 = 3263443 (prime),
a, = 2.3.7.13.43.139.3263443 + 1 = 10650056950807 = 547.607.1033.31051,

.7.13.43.139.547.607.1033.31051.3263443 + 1 = 113423713055421844361000443
= 29881.67003.9119521.6212157481

where each term is one more than the product of the primes we have so

far discovered, starting from the empty product 1, and continuing

n-1

a = a. + 1,
: 1
1=0

(1) a

-1) +
n+l an(an 1) 1,

then we may wonder if, for example, we will ever discover the prime 5.
The answer is "No", as may be seen by looking at the residues of a ,
modulo 5: 2,3,2,3,2,3,... ; in fact, from a, on, the final three
decimal digits of a are ...807 or ...443, according as n is even

or odd.



More generally, if a prime p > 3 divides g , then (1) tells

nt1
us that
2
a -a +1 =0, mod p,
n n
(Zan—l)2 = -3, mod p.

Now -3 is a quadratic residue only for primes 6k+1, [3, Theorem 96] so no
primes of the form 6k-1 will occur. Note that we now have a proof that there
are infinitely many primes of the form 12k-5, since each a, (n>1) 1is
of this form and no an can contain only factors of the form
12k+1. So there are infinitely many primes of the form 6k+1. This
complements the result concerning primes 6k-1 [3, Theorem 12], just
as the results concerning primes 4k+l [§, Theorems 11 and 14] com-
plement each other.

Will all the primes 6k+l occur? The answer is still "No", but
it seems difficult to characterize the ones which do. The candidates

are
7,13,19,31,37,43,61,67,73,79,97,103,109,127,139,151,157,...

of which we have already seen 7,13,43,139,547,607,...
We calculated the residues of a, n=0,1,2,...), mod p, for each
prime p = 1, mod 6, p < 1120. The least values of n and k for which

a mod p are called the preperiod and the period. Table 1
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lists the preperiod and period for each of these primes. It seems

unlikely that there is any simple relationship between the entries.

A prime will appear as a factor of one of the a just if the period

is 1, for if p’ak for some k, then Byy = ak(ak—l) + 1 =1, mod p,

and, by induction, a

Conversely, if the period is 1, a

U2
Yry = 1 for r > 1.
siﬁce a, = 2).

only primes to appear, apart from 2

prime
preperiod
period

prime
preperiod
period

prime
preperiod
period

prime
preperiod
period

pPrime
preperiod
period

0

131

7
3
1

= uvWw
~ O W0

211 223 229
3 2 2
18 24 17

433 439 457
2 12 3
47 18 18

673 691
37 6
12 38

709
23
27

919 937 967
1 27 24
16 2 33

In correspondence, Prof. D.H. Lehmer has

in order that

Then ak(ak—l) + 1 =

k+r

Now suppose ak

=1, mod p, for all r >

k+r

2
= ak+1(ak+1—l) + 1 = ak+1, mod p; (ak+1—1)

and 3, are

7,13,43,73,139,181,547,607,1033,...

which occur in an for n

1 and the period is 1.
= a for some k and all » > 1;

=0 and a =1, i.e.

£ 1, mod p (there is such a k,

1, ak(ak—l) = 0 and p'ak. So the

181 193 1
i0 1
1 11

397 409 4
11 0
6 18

631 643 6
41 4
10 13

871 883 9
64 8
2 44

1093 1117
25 20
2 46

= 2,4,3,11,4,9,6,6,6,... respectively.

7 43 61 67 73 79 97 103 109 127 139 151 157 163
3 4 9 212 3 5 2 .20 7 5 5 2 2
2 1 8 3 114 3 11 5 8 1 5 14 8
241 271 277 283 307 313 331 337 349 367 373 379
8 6 9 12 10 25 1 3 6 3 41 17

9 23 27 7 8 2 21 19 5 10 4 18
463 487 499 523 541 547 571 577 601 607 613 619
7 22 2 28 14 7 34 9 16 7 28 20
22 6 12 32 21 1 8 27 8 1 2 3
727 733 739 751 757 769 787 811 823.829 853 859
9 17 7 2 6 24 56 13 28 14 4 19
10 39 4 16 4 6 10 23 23 14 12 3
991 997 1009 1021 1033 1039 1051 1063 1069 1087
39 55 0 5 7 18 12 3 42 1
10 10 17 56 i 18 10 4 25 35

Table 1

a
n+2

2 2 2
= - '{" . = +
(an an) (cn an) 1

pointed out to us that

99
2
20

21
3
37

61
0
33

07
8
18
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2
should be divisible by p, we must have x + & + 1 = 0, mod p, where

2 2 _ 2 2
r=a -a. Soa -a = wor w where w, w are the cube roots
n n n n
2
of unity other than 1. That is, 1+4w or l+4w must be a quadratic
residue of p. More generally, the condition for p to appear as a

factor of a member of the sequence is that the continued radical

-1+ 2Z1i2 /—14:2 V-1%...+2/-3

(where there are #n radicals) should be a quadratic residue of p

for some choice of signs. That is, if each of these expressions
becomes a non-residue of p for all choices of sign, p will never

be discovered after n steps. We have a binary tree with root -3.
Each residue produces a dicotyledon (outvalence 2); each non-residue
is sterile (outvalence 0) and zero is a monocotyledon (outvalence 1).
If the height of the tree for the prime p is 4, then p occurs in
ao,al,az,...,ah or does not occur at all.

Some trees are shown in Figures 1 and 2; we thank D.H. Lehmer
for the tree for 1033. The number of non-residues exceeds the num-
ber of residues by 1; zero, when it occurs, is not counted as a resi-
due. At first it seems that if ? occurs, then zero appears in its
tree, but this is not true for p = 139, 547, 607 or 1033. Zero can
occur in the trees of primes which do not occur, e.g. p = 31 and 103.

Some data concerning the trees is given in Tables 2 and 3.
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Table 2., Primes which occur

-

prime rank of height height of ' number of period preperioc
apparition of tree zero in tree residues
(2) 0 (0) - 1 1
(3) 1 1 0 1 1 2
7 2 3 2 2 1 3
13 4 4 1 3 1 5
43 3 7 5 9 1 4
73 11 12 7 22 1 12
139 4 16 - 50 1 5
181 9 18 10 61 1 10
547 6 14 - 29 1 7
607 6 9 - 21 1 7
1033 6 16 - 27 1 7

Table 3. Primes which do not occur

prime height height of number of period preperiod
of tree zero in tree residues
19 2 - 2 4 0
31 3 2 2 9 0
37 3 - 3 2 3
61 1 - 1 8 9
67 4 - 5 3 2
79 1 - 1 14 3
97 7 - 7 3 5
103 9 8 19 11 2
109 5 5 5 20
127 1 - 1 8 7
151 9 - 17 5 5
157 3 - 4 14 2
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Investigation of the residues and non-residues which do not
appear in the tree leads to a structure consisting of a tree with an
additional edge, i.e. a circuit with a tree attached to each vertex.
The root, -3, of the trees we have already seen springs from the ver-
tex 1 which has a loop attached to it. The "augmented trees'" for 2,
3 and 7 are shown in Figure 3. They each contain a complete set of
residues. The augmented tree. for 5, or for any prime of the form 6k-1,
consists only of the vertex 1 with a loop and the vertex -3, which is
terminal, being a non-residue. The complement is the graph whose ver-
tices do not appear in the augmented tree. The complement.for p = 5 con-
sists of the circuit 0 and -1 with -2 attached to -1. The complements
for p = 3 and 7 are empty; those for p = 13, 19, 31 and 37 are shown
in Figure 4. The complement may break into more than one component, &s

is shown by p = 43 in Figure 5.

Mullin [5] has posed problems concerning similar sequences in

which only the least, or only the greatest, of the primes discovered

b
at each stage is included in the next product. Define po = ao =2
and pﬁ as the least prime factor in
n-1 b
ab = 1 + P

n ;=0 ©

then the sequence {pn} is
y
2,3,7,43,13,53,5,6221671,38709183810571,,... éfﬁ S
A \ .. LY <)

0\ ¢ S G =

and appears as number 329 in Sloane's Handbook [6].

A multiprecise routine for prime testing on the Olivetti 101,

written by Michael Morrison, enabled us to complete the factorization

of af. This sequence and the others mentioned in this paper were
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pursued by J.L. Selfridge and M.C. Wunderlich. For the two known
sequences dg is composite with no factor less than 107; no larger
terms were calculated. The remaining sequences were calculated as

far as possible, completely factoring all numbers of less than 35

digits and searching to 107 on larger numbers (alu, aﬁ, bfo, bfl).
af = 139,25621.420743244646304724409
afo = 2801.2897.489241.119812279.437881957
afl = 11.1009.241139351.217973650939627698919
af; = 17.1949.193681376161759185018665262907
af3 = 5471.19940260577270817092450816057441

b

so that the next five members of the sequence {pﬁ} are 139, 2801, 11,
17 and 5471. It is not known if all primes occur in this sequence;
but a probability argument suggests that they do.

The sequence {pz} where pﬁ is thé greatest prime factor in

2

n-1
d -1+ TT 5l
n o i=1

is Sloane's number 330, but this is taken from an erroneous cal-

culation [4] and should read

2,3,7,43,139,50207,340999,2365347734339,4680225641471129 .. ..

The error was also copied by Cox and van der Poorten [}], who show
that no prime less than 53 occurs in the sequence, except for those
which comprise the first four terms. The sequence is monotonic so

far, but it seems very unlikely that this property will persist.
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The sequence {an} is denoted by {bél)} in a paper of Golomb
2], but he is concerned with aspects other than primality.

One can pose analogous problems in which (1) is replaced by

bn+1 = bn(bn+l) -1 (n>1),

where each term is one less than the product of all previous ones.

If we start with b1 = bf = bf = 3, we obtain b2 = 2, b3 =5, bL+ = 29,

b, = 869 = 11.79, by = 756029 = 19.39791, 4: éf(:
b. = 571580604869 = 151.3785302019
by = 326704387862983487112029 = 162897238039.2005585802411
by = 106735757048926752040856495274871386126283608869

3889.27445553368199216261469913930283205483744821

where the last factor is a pseudoprime which has not been tested for
primality. The primes, other than 3, 2 and 5, which occur must have
" 5 as a quadratic residue, i.e. they are of the form 10k+1l. VNot all
of these occur; for example bn =1, mod 31, for n > 4.

I1f, instead of all the primes which appear at each stage we

select only the least, or the greatest, we obtain the sequences

b

{qn} 3,2,5,29,11,7,13,37,32222189,131,136013303998782209, < 7 £
31,197,19,157,17,8609,1831129,35977,... ;
{qﬁ} 3,2,5,29,79,68729,3739,6221191,157170297801581, -~ e

70724343608203457341903,... ;

neither of which is monotonic. It is an open question whether all
primes occur in the former sequence, but the same probability argument
suggests that they do. Selfridge observes that considerations modulo
3739 and 68729 show that 7, 11, 13, 17, 19 and 23 do not occur in the

latter.
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. Since we wrote this, we have_received ' a letter dated 75:1i427.in which
H.J.Juic te Riele- reports thap»he has pursued the preperiods and:periods, for
primes p_= 1, mod 65 for p < 10000. This bas:enabled.us to correct some errors

in Table l.cnIt also.extends the sequence_ofrdiscovered primes, which now reads

7,13,43,73,139,181,547,607,1033,1171,1459,1861,1987,2029,2287,2437,

4219,4519,6469,7603,8221,9829,. ..

It is tempting to compare the density of this sequence with that of
the primes p which give Mersenne primes 2P-1. te Riele also observes

that only primes = *1, mod 10, can have preperiod O.
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