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INTRODUCTION

The theory of Lucas - type sequences has been useful in the
extension of divisibility proéerties of integers for several
decades from Lehmer [7] ?o Morrison [9]. In this note,.we
use sequences defined by the recurrence relation

. = + > > 2, i
(1.1) FN,n FN,n-l NFN,n—2 (N 0, n integers)

F = 1. Gridgeman [3] has tabulated numerical

with FN,l = N,2

values of these numbers, and from Lucas [8] we have

n n
(1.2) Fu.n - (a” - b)/(a-b) ,

where a,b are zeros of x2 - x - N = 0.

We propose to extend the Fermat coefficients of Piza [10] to
develop some divisibility criteria, including a primality test
in Section 2, and to generate a number of the sequences of Sloane '

[12] in Section 3.

DIVISIBILITY CRITERIA

Vorob'ev [13] defines v as a proper divisor of an element FN of
’

{F, }if v |F but v *F where m < n. Table 1 lists the first
N,n n' N,n n® N,m

few values of these proper divisors. In this,we have extended the
definition of proper divisors as follows:

For any sequence {un], n 21, where u_ ¢ Z or un(x) € Z(x), the
proper divisor vy is the quantity implicitly defined for n 2 1,

v, =u;, and v = max {a : d]un, g.c.d.(d,v ) =1, for any m < n}.
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Thus, the proper divisors themselves form a sequence generated by the
original sedquence. As particular cases of Equation (2.1) and Theorem 1

respectively of [6], we have that

(ﬁ\ (2.1) FN,n = I V3

and

Fu(n/d)

(2.2) v = N,d

dln

where y is the Mobius function.

[y

n FN,n Vn
3 N+1 N+1
P . 2N+1
5 N2+3N+1 ' N2+3N+1
6 3N2+4N+1 3N+1
~ 7 N346N24+5N+1 N3+6NZ4+5N+1
C
8 an3+10NZ+6N+1 2N2+4N+1
9 N*+10N3+15N2+7N+1 N3+9NZ+6N+1

Table 1. Proper Divisors
From equation (2.1) we have that for an odd integer p

(2.3) v, =

2p FN.2p/

F
N,p
if, and only if, p is prime. By the general formula (1.2) and

relations involving a and b, it can be readily established that

2.4 F =F2 4+ 2NF._ F

(2.4)  Fy on = Fn,p N,p N,p-1

and

{2.5) v, =F + 2NF (prime p).

2p N,p N:P‘l




Applying Equation (2.8) of Barakat [1l] we can write

g n+j n-3
> (2.6) F = N
(w\ N2+l LCh (g
n-1 n+ j . .
-3-1
(2.7) ) . N
! j=0 n -3 -1 *
We then let
A | i+3)
(2.8) (l'J) = 2j+1 [i"'j] ’

and use the known binomial coefficient result

2.9) on + 1 . n+ j _ n+ j ' s n+ j
: 29 + 1 o . .
n - jj n-j n--3j-1

to obtain the following test for primality:

v, -1 i-1 §os
(2.10) P = ¥V @ipn™?
p 550

is an integer if, and only if, p = 2i + 1 is prime.

Proof of (2.10):

We exclude the case for p = 2 from consideration, even though it

satisfies the first part.

(if,and only if,p is prime
or non-square free)

v

a-b a-b a-b |

_ [az_bz] v (p) (ap_pru (2) [,azp_b2p]u (1)
2p

ap + bp

(a + b)p (mod p) (if p is prime, and not if p is non-square free)

1 (mod p).
Thus (vzp—l)/p is an integer for p an odd prime. From equations (2.5),

(2.6) and 2.9) we get



v = F + 2 NF

2p © N,2i+l N,2i
i [[i+ 3 i+ 5 .
= ) + 2 N1

j=0{{i - 3 i+3j-1

from which the result follows.

.

piza [10] had obtained the right-hand side of equation (2.10) as a
test for primality, but the result here goes further by relating the
test to the proper divisors. Further propefties of the coefficients

(i;9) will be illustrated in Section 3.

We define

v = I v and v = I v
1
™ aafn ¢ 2:m adln
dln
so that
F

N,n = vl,n V2,n
and

=F =
1l,n N,n/%N,n/Z 2,n FN,n/2.

We can now construct Table 2 which yields a set of Simson - type
identities (see Equations (11) and (11') of Horadam [5] for

2K = p-1, p primej.




K odd K even
v - NK = v v v v
o) - 1,p-1 "2,p+l 1,p+1 2,p-1
v + NK = v v v v
6ﬁ\ P = 1,p+1 2,p-1 1,p-1 '2,p+l
| K . K
- = " - 4N + 1
Vop "N V1,p-1 V1,pt1 | V2,p-1 Y2,p41 ¢ )
K : -
v + N = . v v (4N + 1) ;
2p 2,p-1 2,p+l 7 V1,p-1 V1,pe1
Table 2. Simson-Type Identities
For example,when p = 19 and K = 9:
v.. - N = 4588 + 330N7 + 924N6 + 1287N5 + 1001N* + 455N3 + 12082 + 17N + 1

19

(5N2 + 5N + 1) (N2 + 3N + 1) (383 + 9N2 + 6N + 1) (3N + 1)

(VIO V5) (V18 V6)

V2,20 V1,18

In passing, oné might note another division property of these numbers,

namely
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2.11 F
( ) N,k(n+l) _ 5 "

F
N,k 0<r+s<n |s s

When kX = 1 and r = s, the theorem reduces to Barakat's result [1].

Proof of (2.11):

Following Carlitz [2] we let

n-r, n -r n - r r +r_+...+r +kn
Sék)(N) - 5 k 1 . k-1 N 1 2 k
rl, ..,rk r1 r2 rk
+ < oo < < n.
r1 r2 n, ’ rk-l + rk n, rk + rl n

Carlitz in effect has shown that

(k)

sy = Ft n-r
n

N,k+1 N, k+2



Then

(in which we

z (k)
n=0 =

from which we

(N)zn

n
n r r _n-r n-r
() E By wan® Tygeim T
r=0
1’1 r : n-r n
= +
T (Fk + N Fk_l) (Fk+1 -N_Fk) X
r=0 E
write Fk for FN’k.for brevity)
_ 5 r B =< Fr—s Fn+s—r—t t n-s-t n
- k-1 'k k+1
r,s,t \s t .
+
= 4 @ * " i r-s _2s _t r r+s+t
— b X Fk—l Fk Fk+1 z
r=0 s=0 t=0 (s s
(t = n-r-s)
@ S &1 r-s _2s . ¥ r+s
= 1 - F F N
Pz _ K+l Z k-1 "k z
r=0 s=0 |s
r + s -s=-1
© © r 2s r+s r+2s
= 1 -F F
bz k+1 2 Fr-1 Fx z
s=0 r=0 s
-s-1 -s-1
@ 2s . s 2s
1 - - F N
z N Fk—lz 1 K41 z Fk z
s=0
2 2. -1
((1L - N FL_q z) (l—Fk+1 z) - N Fk z")
2 2.-1
= + - - F
(1 (N Fi_1 Fk+l)z N(Fk B q k+l)z )

(1 - (ak + bk)z + (—l)k Nk z2)—l (from Horadam's equation

(4.3) [51)

L = & T = By

Ha a1 - Bhn s e - B
nk+k nk+k]

; a - b 5

n=0 ak - bk J

get the result on equating coefficients of z"



SEQUENCE GENERATORS

The coefficients (i;]j) introduced in (2.8) satisfyvthe partiél
recurrence relation

(3.1} (asg=0) (igg=1) = ~ (23+1) ((139) - (i—l;ﬁ))

which can be used to prove some of the results noted bélow. The
(i;3) are relaéed to the fermat coefficien£5 (i:3j) of Piza [10] by
(B2 W) = (d:i-9),

and because of this, Table 3 has entries similar to those of Piza.
It is included for convenience of referral in the subsequent
development. Underlined numbers indicate non-integer values, the

number tabulated being [(i;j)], the integer part of (i;j).

7 11 |9 |25 |30 {18 |6 |1

8 1 12 42 66 55 36 7 1

9 1 15 66 132 | 143 | 91 35 8 1

10 1 18 29 245 1 334 | 273 | 140 | 45 o 1

1 1 22 143 | 429 | 715 | 728 | 476 | 204 | 57 10 T

12 1 26 200 | 715 | 1430} 1768| 1428|775 | 285| 70 11 1

Table 3. Values for (i;3j)
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Furthermore, in compiling this table it was observed that if p

is a prime of the form 6a * 1, then ((Ng:i)—l)/p3 is an integer.

pProfessor Ralph Stanton,of the Department of Computer Science at
the University of Manitoba,has observed that this conjecture is

stated, without proof, in Dickson's History of the Theory of Numbers

(Vol. I ,p. 275). In the same correspondence Professor Stanton has
confirmed the conjecture in an elegant proof.

Another phenomenon of interest is the number of different sequences
cited by Sloane [12] which are generated by (i;j). Table 4

lists a number which appear along the diagonals of Table 3, and
Table 5 illustrates some sequences which are formed in other ways

from the values of (i}j) in Table 3.

The Sequence {[{(i+3;3)]1} {i =1, 2, 3, ...
§=0,1, 2, ...

i Sequence Sloane No.
i e Bp 1, Ay ses
2 1, 2,3, 4, ... ’
3 1, 3, 7, 12, 18, 26, 35, 45, 57, 70, ... 1002 S
4 1, 5, 14, 30, 55, 91, ... 1574 \./'
5 1, 7, 25, 66, 143, 273, 476, 775, ... 1846
6 1, 9, 42, 132, 334, 728, 1428, ... 1878 g
7 1, 12, 66, 245, 715, 1768, ... 2072 o
8 1, 15, 99, 429, 1430, ... 2137 o

Table 4: Sequences generated along Diagonals of Table 3



General term Sequence Sloane No.
»

{E(E:1)11) 12, 2, 3,5, 7,9, 12, ... 233 W~
[1+1]

2 1, 2, 35 5; 9 18, 28, «. 262 ="

L =391

3=0 . '

i-1 ' ' C
{ Z {(173)]} 1, 2, 4, gr. 18, 40, ?irr'--- - 437/
3=0 ' '
{123; )1 - 1, 3, 12, 55, 273, 1428, ... 1174
{1(3i-1;1)1} 1, 5, 12, 22, 35, 51, 70, ... 1562 ¢~
{[(35:29)1} 1, 5, 35, 285, 2530, ... 1646 =~ |
{[(2i+1;2)]1} 1: Ty 255 B6; 183 4:s 1846
{I(43;:39)1} 1, 7, 70, 819, 10472, ... 1878

Table 5: Some other sequences generated by (i;])

By way of conclusion, we note that (i;j) is defined when the fractional
parts of i and j are both %. 1In fact, it can be proved by setting r=1
in Equation (3.2) of Shannon [11] that when i = %n-2, j=%n-m, after

algebraic manipulation,

n-4 n—ZmJ

(3.3) [ ; . (2n—3m-l . m-3

2 2 2
Readers might like to test the conjecture that {jk+2j;jk} generates

integer sequences for integer k. For k=1,2,3,4,5,6, we get sequences
577, 1174, 1454, 1646, 1780 and 1878 respectively. For example, when

k=1, we get the Catalan numbers (577) {1,2,5,14,42,132,429,1430, ...}

for =%, 1, %, 2,5, ... .
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