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Computing the leading asymptotic of A001003

Starting from the OGF
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We start with
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The singularity that is closest to the origin is in the second square root term and we write
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Extracting the dominant asymptotics as on page 180 of Wilf's *generatingfunctionology* we get
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Collecting the two contributions we find
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The square bracketed constant is asymptotic to
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It follows that the first term of the expansion is
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Recall the central binomial coefficient has (2n) ~ so that this becomes
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The asymptoticof 1/(n + 1)is1/n — 1/712 +---and2 + 5/4 — 3/2 = 7/4 so that we have at last
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This was [math.stackexchange.com problem 4703369](https:/math.stackexchange.com/questions/4703369/).
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