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An additive composition of an integer n is a sequence x1, x2, ..., xk of integers
(for some k ≥ 1) such that

n = x1 + x2 + · · ·+ xk, xj ≥ 1 for all 1 ≤ j ≤ k.

A multiplicative composition of n is the same except

n = x1x2 · · ·xk, xj ≥ 2 for all 1 ≤ j ≤ k.

The number a(n) of additive compositions of n is trivially 2n−1. The number m(n)
of multiplicative compositions does not possess a closed-form expression, but asymp-
totically satisfies

N∑
n=1

m(n) ∼ −1
ρζ ′(ρ)

Nρ = (0.3181736521...) ·Nρ,

where ρ = 1.7286472389... is the unique solution of ζ(x) = 2 with x > 1 and ζ(x)
is Riemann’s zeta function [1.6]. This result was first deduced by Kalmár [1, 2] and
refined in [3, 4, 5, 6, 7, 8].

An additive partition of an integer n is a sequence x1, x2, ..., xk of integers (for
some k ≥ 1) such that

n = x1 + x2 + · · ·+ xk, 1 ≤ x1 ≤ x2 ≤ · · · ≤ xk.

Partitions naturally represent equivalence classes of compositions under sorting. The
number A(n) of additive partitions of n is mentioned in [1.4.2], while the number
M(n) of multiplicative partitions asymptotically satisfies [9, 10]

N∑
n=1

M(n) ∼ 1

2
√
π
N exp

(
2
√
ln(N)

)
ln(N )−

3

4 .

Thus far we have dealt with unrestricted compositions and partitions. Of many
possible variations, let us focus on the case in which each xj is restricted to be a prime
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number. For example, the number Mp(n) of prime multiplicative partitions is
trivially 1 for n ≥ 2. The number ap(n) of prime additive compositions is [11]

ap(n) ∼
1

ξf ′(ξ)

(
1

ξ

)
n

= (0.3036552633...) · (1.4762287836...)n,

where ξ = 0.6774017761... is the unique solution of the equation

f (x) =
∑
p

xp = 1, x > 0,

and the sum is over all primes p. The number mp(n) of prime multiplicative

compositions satisfies [12]

N∑
n=1

mp(n) ∼
−1

ηg′(η)
N−η = (0.4127732370...) ·N−η,

where η = −1.3994333287... is the unique solution of the equation

g(y) =
∑
p

py = 1, y < 0.

Not much is known about the number Ap(n) of prime additive partitions [13, 14,
15, 16] except that Ap(n+ 1) > Ap(n) for n ≥ 8.

Here is a related, somewhat artificial topic. Let pn be the nth prime, with p1 = 2,
and define formal series

P (z) = 1 +
∞∑
n=1

pnz
n, Q(z) =

1

P (z)
=

∞∑
n=0

qnz
n.

Some people may be surprised to learn that the coefficients qn obey the following
asymptotics [17]:

qn ∼
1

θP ′(θ)

(
1

θ

)n
= (−0.6223065745...) · (−1.4560749485...)n.

where θ = −0.6867778344... is the unique zero of P (z) inside the disk |z| < 3/4. By
way of contrast, pn ∼ n ln(n) by the Prime Number Theorem. In a similar spirit,
consider the coefficients ck of the (n− 1)st degree polynomial fit

c0 + c1(x− 1) + c2(x− 1)(x− 2) + · · ·+ cn−1(x− 1)(x− 2)(x− 3) · · · (x− n+ 1)

to the dataset [18]

(1, 2), (2,3), (3, 5), (4, 7), (5, 11), (6, 13), . . . , (n, pn).
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In the limit as n→∞, the sum
∑n−1

k=0 ck converges to 3.4070691656....
Let us return to the counting of compositions and partitions, and merely mention

variations in which each xj is restricted to be square-free [12] or where the xs must
be distinct [8]. Also, compositions/partitions x1, x2, ..., xk and y1, y2, ..., yl of
n are said to be independent if proper subsequence sums/products of xs and ys
never coincide. How many such pairs are there (as a function of n)? See [19] for an
asymptotic answer.

Cameron & Erdös [20] pointed out that the number of sequences 1 ≤ z1 < z2 <
· · · < zk = n for which zi|zj whenever i < j is 2m(n). The factor 2 arises because
we can choose whether or not to include 1 in the sequence. What can be said about
the number c(n) of sequences 1 ≤ w1 < w2 < · · · < wk ≤ n for which wi � |wj

whenever i �= j? It is conjectured that limn→∞ c(n)1/n exists, and it is known that
1.55967n ≤ c(n) ≤ 1.59n for sufficiently large n. For more about such sequences,
known as primitive sequences, see [2.27].

Finally, define h(n) to be the number of ways to express 1 as a sum of n+1 elements
of the set {2−i : i ≥ 0}, where repetitions are allowed and order is immaterial. Flajolet
& Prodinger [21] demonstrated that

h(n) ∼ (0.2545055235...)κn,

where κ = 1.7941471875... is the reciprocal of the smallest positive root x of the
equation

∞∑
j=1

(−1)j+1
x2

j+1
−2−j

(1 − x)(1 − x3)(1− x7) · · · (1 − x2j−1)
− 1 = 0.

This is connected to enumerating level number sequences associated with binary trees
[5.6].
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(1931) 1-15.
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