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A PROBLEM OF ZARANKIEWICZ®
Richard K. Guy

1, Introduction.

B I I N B R

K. Zarankiewicz [22] and others generalizing the problem, asked for

the least positive integer ka b(m,n) such that every subset of k points
)
of an m by n rectangle of the unit lattice should contain ab points

situated simultaneously in q rows and b columns. If a=Dborm=n, we

omit one suffix or argument; both suffixes are omitted if their values

are implied by the context,

Sierpinski [18] solved the original problem, showing that k3(4) = 14

>
k3(5) = 21 and Kk3(6) = 27, Then k3(n) was unknown for » 2 7, but later
[19] J. Brzezinski is credited with ky(7) = 34, and Eﬁlik-[g] showed
k3(8) = 43. Additional values are calculated and listed in tables 2
(@=b=2),3 (@, b=2,3) and 4 (@ =b = 3),

Hartmann, Mycielski and Ryll-Nardzewski [12] showed that

[N

4 ¥,
(1) c;n/3 < ka(n) <« en’?

b

|
wvhere ¢y = ¥, - 273 €y, ¢p = 2 + €; Kbvari, SBs and Turan [14, see 21

for graph-theoretic connexions] showed

/g 2-1/q
n

(2) ka(n) <an + [(a-1) | g

where, here and elsewhere, square brackets denote 'integer part'
’ q g P ’

=¥
(3) lim n 2 ko(n) = 1,
>
(4) ko (p%4p, p?) = p?(p+1) + 1, p prime,

* Submitted to Proc. 1966 Symp. Graph Theory, Tihany, Acad. Sei. Hung., 1967.
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and Hylten-Cavallius [13] observed that the same method yields
o 1-1/a
(5) ka b(m,n) < (@=1)n + (b=~1) "n. m,
?
and for g = 2 improved this to
i Y
(6) k, pmymn) < ‘pn + {(b-1)nmm-1) + n?/4}"2 .

He also obtained

-3
(7) 1im n’2k2,3(n) = 21/2 -
71>
-3 i
(8) T Y )
e 2,2h
N o
-, '
(9) limn?k, o (mm) =ta, O0gtgl/sgl,
2,8%+1
1>
min-+t

1

Culdk [3] showed that if 1 s @ smand n 2z (b~1)(7}, then

K]
ms
(10) ky psm) = (@=1m + (b= ] + 1.
The methods given below demonstrate the 'neighboring' theorem *
(11) ko (mm) = [{@2=-1)n + B-1)(")}/a) + 1,
; a,b \q/!

provided (b—l){Z) +13zmn 3 l(m,a,b), where the lower terminal for » has
the approximate value >-1)("™/(a+1). 1Its value is made precise for

P \q’
small a.

Reiman [16] showed that

(12) ko (m,n) € Yolm + vm?2 + tim(n-1)} + 1,

with equality in infinitely many cases, thus improving (2) when q = 2,
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and noted the connexion between this and (4) with finite projective and

affine planes. Zném [23] improved (5) in the case @ = b, m = n, to
(13) k, (n) < [Yn@-1) + (a- a2y

noted that this was not as good as (12) in case a = 2, and later [24]

made the further improvements

) =)
/an o /a

(14) k, () < [¥n(a-1) + (a-1) - %@ T,

(15) k() < [n(a-1)/e + (a-1)May2" 14,

i 4. - / %
where ¢ = gZ(n/(a—l))Uh - 1}/{(n/(a—1)f * 1}, in which (15) appeared
better tham (14), though this is txue only for a = 2 and 3, and for

sufficiently small »n for a > 4, since the improvement of (14) over (13) 5

=

(16) (a—l)"u et 5 1 Ll o-3(a—-1)/8n+

[ (A S i’

vae-vaazl 3 L oazd 32D | L (am @) |, 33@=)?
]
. o el 4 82n? o ad 83n3

Il

(a=1)

+ o
2 1/an1 1/a

3(a-1) (1 43D |, atl 3%a-1)2  (a+l)(a+2)  33(a-1)° :
- 8a T I T 41 bt 3
£ - 82a2n2 83a3n3
while the improvement of (15) over (13) is
(n/ (a~ 1))’/ /e, (e
(17) n(a-1){Y% - } _ -1y n {1 = SAetie]
2(n/ (a-1) ) 2n
141
o g _l)1+1/a -la y (a—lﬂ LS 1)2/a + 821, La-l) /a |
i y a n 2nl/a 2 w a0 Zan 2a+1 ’.+l/a 4 v e 13
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which is greater than (16) for @ = 2 or 3, since then Y%, > 3(3;1).

However, for a > 4, (17) is greater than (i6) only if

Ra=ty®y 3y

/Lf.l P } ’
P 8a
that is, only for »n in the range
a a+i
(18) a sn g g-ég:lljz".
27 (a~3)

N

2.

To visualize the problem it is convenient to define the complete
a-graph, KZ = K;(V,E) on m vertices, consisting of a set, V, of m objects,
usually labelled 1,2, ..., m, and the set ¥ of all a-edges, where an
a-edge 1s a subset of V of cardinal a. A graph in the usual sense is
a 2-graph; for brevity we use ‘graph' more generally. The problem is
then equivalent to finding maximal packings into such a complete graph
of complete graphs on p vertices, a ¢ p ¢ m. Refinements are obtained
from mixed packings of complete graphs on p, p~l, ..., @ vertices.

The theorem of éul{k, (10), corresponds to the case p = a. We shall
be concerned with the cases p =a + 1, a + 2. 1In the case b = 2, the
packings are all edge-disjoint in the sense of a-edge as defined, two
graphs on p vertices having no a-edge in common, though edges of lower
cardinal may occur repeatedly. In the general problem, a maximum of
b:l repetitions of the a-edges is allowed.

A neighboring problem [l,7,8] is that of determining the coareencss
of the complete graph, in which an optimal mixed packing of Kg~-graphs
and complete bipartite graphs, K3, ,3, is sought. Others, including the

present one, are discussed by Erdds [4,5].
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It is also useful to consider the problem in terms of an m by »n
matrix, whose elements are O's or 1's. Define the total of a matrix
as the sum of its elements, and call an a by b submatrix of total ab
an a,b-grid (a-grid if a = b, or grid if the context is clear). Then
k = ka,b(m,n) is such ‘that every m by n matrix of total k contains
an a,b-grid, while there is a matrix of total k-1 which contains no
such grid. A matrix of total k-1, containing no a,b-grid is said [16]
to be saturated. A 1 by n submatrix of total r is called an r-row, and
an m by 1 of total ¢, a e-col (umn). When @ = 2, 2-cols, 3-cols, 4-cols
and 5-cols will also be called pairs, triangles, (complete) quadrangles,
and pentangles respectively. When a = 3, 3-cols and 4-cols are referred
to as faces and tetrahedra. Since the interchange of any two rows or

columns does not affect the definitions or arguments, we will normally

|

assume that the rows are arranged with totals r; 2 rp 2 ... 2 ros
- reading from top to bottom, and the columns with totals ¢; 2 ¢ 2 ... 2 ¢,
= from left to right. By interchanging rows and columns,
L

(19) ka’b(m,n) = kb’a(n,m),
-

but no other symmetry is to be expected; for example k; 3(5,3) = 12 while
- k3,2(5,3) =131,

In the particular calculations of sections 5, 6 and 7, the method

o is always to establish a lower bound for ka.bOn,n) as one more than the
F total of an exhibited saturated matrix, and an (equal) upper bound, by
Vi assuming that it is possible to have an m by n matrix of total k without
;. a grid, and arriving at a contradiction by various arguments. To avoid
g x" repetition, some of these are stated here and labelled with a capital;
- a prime denotes the transposed argument, e.g., ! refers to rows in place

of columns.
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A. There are (c;] a-edges in column %, and a total of Z[Z}). 1

this exceeds (b—l)(:), then, by the pigeon-hole principle, there are b

coitneident (i.e, occupying the same q@ rows) edges, forming a grid.

(°%) (R ~
B IR Z\a ] = (b-l)ka], the matrix is said to be colmax, i.e. every

a-edge of KZ is occupied exactly b~1 times. Since L aj implies

e 41 e +1

9y 5+ (),

2.k ¢
(20) s

with equality only if it s cj + 1, it follows that for a given total,

of _
Le;, we minimize Z(C;} by taking the most level partition of the total,

i.e.
(21) le; = np + q, 0gg<n,
with ¢ = ... = cq =p+ 1, cq+1 = s W D Note that a colmax

matrix is not necessarily saturated (e.g. a =Db =3, ¢} =¢, =m,
g3 B @, " 2 is colmax, but saturated only if n = 3), but is so if
its columns form the most level partition. Formula (10) follows from

this argument.

C. If, for some ¢, k < n(c+l) and ka bOn, n-1) ¢ k - o, then
 J
ka bOn,n) ¢ k, since, by the pigeon-hole principle, some column totals
3

¢ ¢, and the remaining columns contain a grid.

¥oomay -
D. If an r-row meets columns ¢y, ..., ¢_ and Z ( ifv} > (b—l)[m ]
1 fay. @l a-1

then the pigeon-hole principle ensures at least b (a-1)-tuples coincide

and form a grid with the r-row.

E. If the meet of » rows and ¢ columns totals at least ka b(r,c),
>

there is a grid.
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F. A matrix which does not contain a grid can be augmented by any

number of (a-1)-cols or (b-1)-rows, without producing a grid, so
7 ’ ! ! 4 ! -
(22) ka’b(m-ﬁ-m , ') 2 ka’b(m,n) + m'(a-1) + n'(b-1).

(my (c’l: . A
Note also that if (b_l)\a’ - z\ a) is positive, then that number of

a-cols can also be added.

G. Every a by b submatrix of a saturated m by » matrix contains

a zero. There are (m](g) such, and each zero belongs to (

m=1yrn-1
‘g )( ) of

a-1/\p=-1/

them, so the matrix contains at least mn/ab zeros, so

(23) k - 1 < mm(ab-1) /ab.,

More generally, every r by ¢ submatrix contains at least re¢ - (k-1) zeros,

where k = ka’b(r,c), and

(24) ka,b(m,n) -1« mnika,b(r,c) - 1}/re.

P T R R i = rvip Vv Vi viriv-rir ) ~ el vl

To obtain results in case a = 2, we require maximal packings of
triangles (and complete graphs of higher orders) in @;c These can be
obtained inductively, but the process is complicated, so instead we
make suitable modifications of the work of Fort and Hedlund [6], who
solved the corresponding covering problem. Define an m-pipt (packing,
in pairs, of triangles) as a set S of triples chosen from {1,2, ..., m}
so that no pair occurs in more than one triple, and call it maximal
if |S| 2 |8’| for all m-pipts S'. Form = 1 or 3, mod 6, m-pipts are

exact and are well known [11,15,17,20] as Steiner triple systems.
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Since a triangle has two edges at a vertex, the number of triangles
at a vertex of Kﬁ is at most [Bﬁ(m—l)], and a maximal packing therefore
contains at most [Yam[Y% (m-1)]11 triangles. Denote this by ?m’ unless

m = 5, mod 6, when tm is diminished by one. Whenm = 63 + 5,

m
(2) = 1852 + 278 + 10 is not a multiple of 3, so not all edges occur
in an m-pipt. However, if one is omitted at a vertex, at least 2 must

be, since K6s+5 has even valence 68 + 4, so the least number of omitted
edges is four, forming the sides of a quadrilateral, and

t, = /3(186% + 275 + 10 - 4) = 652 + 95 + 2.

triangles.

We have seen that the number is at most tm. The proof that tm can
be achieved follows that of Fort and Hedlund, and is not given in detail.
The value of tm form = 6s + r, 0 < » < 5 18 shown in table 1. When
r =5, and the unused pairs are AC, CB, BD, DA, say, the appropriate
analog of an admissible n-copt [6] is an admissible m-pipt, i.e. a maxi-
mal m-pipt which contains triangles ABB’, B'CD. 1In the remaining odd
cases the m-pipts are Steiner systems, but for r = 3, Fort and Hedlund
define as admissible those which contain 28 + 1 triples which together
occupy all the 6s + 3 vertices. When r is even, the valence of Kﬁ is
odd, and an edge is Qnused at each vertex. In fact there are just b&m
unused edges, which are vertex-disjoint (form a l-factor), except when
r = 4, and {Zj = y§m = 1882 + 183 + 4 is again not a multiple gf three,
and there are 3s + 3 unused edges, 3s of which are vertex-disjoint, the
remaining 3 forming a trefoil (3-claw)., If this is AB', AC, AD, the
concept of admissibility requires B'CD to be a triangle of the system,

although there are maximal m-pipts for which this is not true. 1In the



present application, however, the former type gives an economical mixed
packing of a complete quadrangle ARCD and 6s(e+l) triangles. For r =5,
the corresponding result i1s a mixed packing of a pentangle, ABB'CD, and

35(2s + 3) triangles.

€39 [9k0  (§ 4 142 1843
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3 i 2 3 0 0 0 0
4 1 4 5 i 2 i
5 2 6 10 1 2 i 5
6 G 10 14 c % # 3 9
7 7 14 21 2 7 7 1%
8 8 18 26 2 8 14 28
12 24 36 3 97 18
-0 & 30 43 5 15 30 60
11 . 36 55 6 15?7 34
I 12 20 44 64 9 51 108
i3 26 52 78 13 26 65
l 14 28 60 88 i4 91 182
15 35 70 105 15 105
I 16 37 80 117 20 40 140 280
6s  6s°-28  12s°-2s 1887-48 - ;;S(()s ~3g-1)7 9¢2 (28-1)?
6o+l 65%+s 128%+2s 185%+38 r8(38-1) (68+1)
I 6s+2 682428 1282+68 185%+8s Y5 (38+1) (be+1) 8(3s+1) (6s+1)
6543 682458+1 128%+10s+2 188%+158+3 %8 (3s+1) (28+1)
I 6at+t 68268+l 12s2+14sts 1882420845 1:»'23 (28+1) (3s+1) (38+2) (28+1) (35+1) (38+2)
65+5 682+9s+2 1282+188+6 1882427s+10 Y, (3e+1) (6824+985+2) 7
I .
l (“j " l | LIT_ABLE_ 1 Z\’
|

' ac(a&,,( gq Woum
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If m = 68 + 1 is prime, a direct construction is the following.
Use least non-negative residues, mod m, and let x be a primitive root
of m, so that x,xz, o 103 x38 are distinct and x3s = =du,

(xs + l)(xzs g xs % 13850, xzs it xs %1380, x23+z ] xa+¢ & xz =0

. . e+t : +7 ; ) 3 s
w0l e 8=1) and x? + g - gl - i xt + d (% w1y beagili=ly

’
J =0,1, ..., 68) form edge disjoint triangles, s(6s + 1) = tm in
number .

Another construction forms an exact pq-pipt from exact p- and g-pipts.
In K? replace each vertex by Kq, and each triangle by q2 triangles., If
A has been replaced by 4;, ..., Aq’ etc., and ABC was a triangle originally,
the g new triangles are AqBici (d =1, «e;, gV, aid Ad C AdB C , where
1 plays j on the dth day of a round robin tournament. The construction
extends to the cases g = 0 or 2, mod 6, since there is just a l-factor
of unused edges. It can also be used in case p =2, q odd, provided the
q-pipt 1s admissible since if ¢ = 1 or 3, mod 6, the duplication process
merely produces a l-factor of unused edges, while if q =5, mod 6, in
addition to the quadrilateral ACBD, there are triangles ABB', B'CD. These
form a Ks graph which on duplication becomes a Kjyg, which has an admissible

10~pipt.

Theorem 2. If LZ} - Ztm -1 <ng 2} + 1, then ky(myn) =1 + 2n + [9@[2]-—¥@n],

R ™

with equality at the lower terminal for n, unless m = 1 or 3, mod 6.

Proof. For n = (2) or {g} + 1 this is a special case of (10). Consider

a matrix with £(g n) 3-cols and n-t 2-cols. They contain 3t + n - ¢ pairs.
Choose ¢ so that these pairs are distinct, in order to avoid a grid,
2t +7n g {Z}, and as large as possible, t = min(n, | 9&( ) - Y%nl). By

theorem 1, this choice is possible if and only if 0 < ¢t ¢ t s 80
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lg) 21 2 () = 2tm - 1, provided Btm < (4]

9/ which is true unless the

m-pipt is exact. If m = 1l or 3, mod 6, the second inequality for =

must be strict. The matrix has total 3t + 2(n-t), so if it is saturated,
k-1=2n+ [7&{2f - 7/n]. Note that a total of 1 + 2n + t implies,

by (20) and argument A, that there is a grid, since

£

. g 3\)
2} ®

2

|Im‘

v
L\ \21'

2
(t+1) () + (=t=1) (7]

To obtain the corresponding results for larger b, we need the
maximal packing of tb-r p triangles in @n, where each edge may be used
.

up to b-1 times. Form = 1 or 3, mod 6, this is ¢ = (b-l)tm, since

b-1,m
the m-pipt is exact. For m = 5, mod 6, a maximal m-pipt has a quadri-
lateral of unused edges ACBD. If the edges may be used twice, reproduce
the m-pipt with BCD permuted cyclically. The edges ACBD, ADCB form 2
additional triangles, ABD, ACD, leaving BC unused (twice). A third use

allows an exact packing by another permutation of BCD, giving ABDC,

which with BC twice forms triangles ABC, BCD. For m = 5, mod 6,

b=1,m+

tb-l,m = [ 3 =2f]’ except it is 1 less if b = 2, mod 3.

If m is even, the unused edges in a maximal m-pipt form a l-factor,
except this is modified to include a trefoil whenm = 4, mod 6. If the
edges may be used twice, we occupy those in the l-factor in sets of 3:
select a triangle ABC of the m-pipt; this defines unused edges AY, BZ,

CX. In duplicating the m-pipt, interchange A4,B,C with X,Y,7Z respectively,
giving a triangle XYZ and unused edges BX, CY, AZ. Replace XYZ and the

unused edges by triangles AYZ, BZX, CXY. If m = 0, mod 6, and b is odd,

o b=lim
-1,m L

b=2m\

in this case, and 3 \p)

the packing is exact, so tb + tm’

with an unused l=-factor, i1f b is even. If m = 4, mod 6, there is a trefoil

AB', AC, AD, and, if the m-pipt is admissible, a triangle B'CD. These
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form a complete quadrangle which, on duplication, yields 4 triangles
B'CD, ACD, AB'D, AB'C, so for b odd we again have an exact packing., If

m = 2, mod 6, an edge remains unused (twice) when b - 1 = 2, 80

tz’m = [%ﬁ\g;]c For b - 1 = 3, we must waste a l-factor, and another
edge (twice), so t, . [%@\2)] : - th For b - 1 = 4, one edge, and
hence 4, must be wasted and tu ™ 2[2312)]. For b = 1 = 5 we need

)

waste only a l-factor with trefoil, and for b - 1 = 6 the packing can

be exact. Thereafter the pattern is repeated, mod 6. The results are

summarized as

Theorem 3. A maximal packing of triangles in a complete graph on m

vertices, where each edge may be used up to b-1 times, contains t

; b-1,m
triangles, where tb-! g Q%Z{gj * tm if m and b are both even, and the
g
integer part is to be taken if m = 2, mod 6, and where t = Zakony

b-1,m § s

otherwise, and the packing is exact, except that the integer part has
to be taken if m = 5, mod 6 and b = O, mod 3, or if m = 2, and b = 3,
mod 6, and the result is one less if m = 5, mod 6 and b = 2, mod 3, or

ifm=z 2 and b = 5, mod 6.
Theorem 2 now generalizes to

Theorem 4. If (b-1)(y) - 2t

k, b(m,n) =1+ 2n+ Léélizj - /o), with equality in the lower terminal

by~ Lo @-1)5) + 1, then

for n unless the corresponding packing of triangles is exact.

If b = 3, this simplifies to

Theorem 5. If %@{Z} £n g 2{2} + 1, then ky 3(m,n) - 1 = (2) + [%?—]°
In order to obtain theorems for »n < ;lig}, optimal packings of

complete quadrangles in @w are needed. The largest number of quadrangles,
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u , 1s given for small m in table 1, as are some values of Wy vhere
m '’
3

edges may be used twice. In order to give an exact result, mixed packings

of quadrangles and triangles must be sought. We give a few further

results in the neighbourhood of theorem 2.

Theorem 6. (a) K;(6s, 6s2 + 8 - 3 +¢e) = 1852 - 5 + 2¢, e =0o0rl,
(b) ky(6s +1, 682 +8 ~ 2 +€) = 1882 4+ 38 - 4 + 2¢ ¢ = 0, 2i,
(c) ky(6s + 2, 682 + 58 - 2 + €) = 1882 + 128 ~ 3 + 2¢, € = 0, #1,
(d) ky(6s + 3, 682 + 58 ~ 1 +¢) = 1882 + 158 = 1 + 2e, € = 0, *1,
(e) kp(6s + &, 682 + 55 + 1) = 1832 + 178 + 5,
(£) ko(6s + 4, 682 + 98 + ¢) = 1832 + 24s + 3 + 2¢, & = 0, 4L
(g) kp(6s + &, 682 + 95 + 2) = 1852 + 248 + 6,
(h) ky(6s +5, 682 +9s +3 + &) = 1882 + 278 + 9 + 2¢, € = 0, %1,
Proof. a) m = 6s, tm = 682 - 28, so 3682-28+1233~4+8 are not possible,

28-1,38-3

£g2-
while 4¢3°° is colmax, though the quadrangle and 3s-3 pairs

occupy at most 6s-2 vertices, leaving at least one edge unoccupied. On
e - A
L08%=28, ig-3+¢
the other hand, 3° i i are possible columns.

- Lyg—id
(b) m = 68 + 1, tm = 682 + g, 42 F3087TETET2E 44 colmax, while

the presence of quadrangles requires some edges are unoccupied. However
652+g-1 2 . 68%+8=5

3 and 473 (2) are possible column arrangements. To see the

latter, add a (3s-1l)-row to t6s = 68% ~ 28, and the accompanying 38

unoccupied edges, to form 2 4-cols with 2 of the triangles, 3g~-3 triangles

from 3s-3 of the unoccupied edges, leaving 3 unoccupied edges. There is

a total of 682 = 28 - 2 + (38-3) = 682 + s - 5 triangles.

(¢) and (d) are proved as in (a) and (b).
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(e) since ¢, = 682 + 58 + 1, and an adnissible (6s+3)-pipt

8+3
contains 2s+l vertex-disjoint triangles, we may add a (2g8+l)~row to
243
682 + 58 + 1 3~cols, to form 428+1368 g which is saturated and colmax.
2 I
(£) m=6s+4, t =682 +6s+1, so3° BT =

68%2+68-1,38-1+¢

2 ’
L A L P 2 fails

impossible, and so is 43
by argument A, On the other hand, in an admissible (6s+4)-pipt, the

tips of the trefoil form a triangle of the system and they may be replaced
2
by a 4~col, so that 4-368 +66238 is possible.

682+68+2 38

2
EESRER is possible, but 3 2

3g+i1

(g) m=6s+ 4. 3 2

is not, since it is colmax and the number of triangles exceeds tm'

(h) m=t6s+5, ¢t = 682 + 95 + 2 and an admissible m-pipt

2
+9s+2,14€ )
contains a quadrilateral so that ;i e possible, while

2 Ly g
L5 e = is impossible, since the quadrangle implies that at least

682+9g~-1 682+98+3

2 edges are unoccupied. So is 423 2, which is colmax, 3 (2)

2 ‘
and 4+3%° +9s‘hZ are also impossible,

45, Jaxioal packing of tetzahedra.
We use the work of Hanani [9,10] who has shown that for m = 2 or 4,
mod 6, there is an exact packing of K& in &;g In these cases the
maximum number of tetrahedra is @w = yh(g). If m = 1 or 3, mod 6, the
number of faces at an edge is odd, so at least one does not belong to

any tetrahedron and there are at least Y, (m=1) such at a vertex. So

the maximum number of faces at a vertex which belong to tetrahedra is

{m;l] - Yy (m-1) = Y% (n-1) (n-3); there are at most Y;(m-1)(m-3) tetrahedra
at a vertex, so I& < Youm(@m=1)(m=3). On the other hand, delete a vertex

from the cases m + 1 = 2 or 4, mod 6, and 9L[m;1} - 9%(2) = Youm(m=1) (m=3)

tetrahedra remain.
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If m = 6s, the projection from any vertex on to the remainder of the
graph, of a packing of tetrahedra, induces a packing of triangles in

2

K6s—1’ and since this contains at least a quadrilateral of unoccupied

edges,.there are at least 4 unused faces at each vertex, and at most
(mzl) - 4 = 183% - 9¢ ~ 3 faces there belong to tetrahedra. At most
682 - 38 - 1 tetrahedra occur at a vertex and there are at most
¥8(68%2 - 38 - 1) altogether. It is hoped to show elsewhere that
this number can be achieved, so that QW = ¥%s8(6s2 ~ 38 - 1) in this
case. The unused faces may be visualized as the (8 external) faces
of each of 8 vertex-disjoint octahedra. There is a duplication
construction, analogous to that for 2g-pipts given in section 3, which
derives an optimal packing for m = 128 if there is one of this form for
m = 6s.

If we delete a vertex from the previous case, there remain
9@(33 - 2)(68% - 38 - 1) tetrahedra, so that for m = 68 + 5, at least
1o (38 + 1) (682 + 98 + 2) tetrahedra may be px-lxcked° It is hoped to show
that this is also an optimal packing. Packings using faces more than
once have yet to be investigated in detail, though close bounds can be
obtained by present methods. The following theorems are proved in the

same way as theorem 2.

\,g)' + 1, then kg,z(m,n) =14+ 3n + [1/3(7;7]-1/372],

where the range for n may be extended dowmwards by 2 unlesse m = 2 or 4, mod 6.

Theorem 7. If {'g} - 3Tm £ 7 g

e e N s

N

Theorem 8. If 2(7) - 37, <n

: () - a7, 2(3) + 1, then kamyn) = 1 + 3n + [%4(7) - ¥aml,

where the lower terminal for n may be reduced by 2 if the corresponding

packing of tetrahedra is not exact.
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In this section, k{m,:) means ﬁzﬁz{w,n) and grid means 2,2-grid,

Capital letters refer to the arguments at the end of

the method of proof is outlined,

For small m,n, the

are shown in table 2; those above the indicated line

or by theorem 2,

section 2, where

values of k(m,n)

are given by (10)

fa

ko (m,n)
m<| 23 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
2| 45 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
3 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
4 10 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
5 13 15 16 18 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
6 17 19 20 22 23 25 26 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44
7 22 23 25 26 28 29 31 32 34 35 37 38 40 41 43 44 45 46 47 48 49 50
8 [25727 29|31 33 34 36 37 39 40 42 43 45 46 48 49 51 52 54 55 57
9 30 32 34|37 38 40 41 43 44 46 47 49 50 52 53 55 56 58 59 61
10 35 37 40 41 43 45 47 48|50 52 53 55 56 58 59 61 62 64 65
11 40 43 45 46 48 51 52 54 56|58 60 61 63 64 66 67 69 70
12 46 49 50 52 54 56 58 61 62 64 66 67 69|71 73 74 76
13 53 54 56 58 60 62 65 67 68 70 72 Th 76|79 80 82
14 57 59 61 64 66 69 71 73 74 76 78 80 82 84 S6
15 61 64 67 70 73 76 78
16 81
TABLE 2
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10 vertices, so an unoccupied edge would occur. From figure 5,
k(10,14) = 43 since 4+31'3 is colmax while unoccupied edges occur, From
the same figure, kX(10,15) = 45 and k(10,16) = 47 by C' with ¢ = 4, F
with @ = 2 and C' with ¢ = 4 show k(10,17) = 48, See also theorem 6,
(£) and (g).

To show k(l1) = 40, add a row 00000100101 to figure 3 and note that
473" and 5+453% are impossible by E, since k(11,7) = 28 and k(11,6) = 25,

and the latter would be colmax.

10010011000 0|0 1000011000001 141
1000100011000 0100000111001 0|0
10000100001 1|0 001000010011 01|0
01010000101 0|0 0001100100000 0;1
0100101000010 1110000000000 O0j0
01000101010 0|[0 1001000010100 0|0
00110000010 1{0 1000100001010 0(0
00101001001 0f0 0101001000010 0]0
00100110100 0f0 01001100001000|0
1110000000001 0011010001000 0|0
00011100000 0|1 0010101010000 0{0
FIGURE 6 FIGURE 7

Figure 6 and A show that k(l11,12)

43 and k(11,13) = 45. Figure 7
shows k(11,14) = 46 since 4“3!0 contains at least 4 vertices where just

one quadrangle occurs, implying 2 or more unoccupied edges, while

Al et sy s 15

Ls) ts) =5} = 2, and 5-423'! is colmax but contains unoccupied

edges, while 4°382 is also colmax, so the 5 quadrangles occur exactly
2 at each of 10 vertices, and all triangles contain the eleventh vertex,
so they cannot number more tham 5, by D. Similarly k(11,15) = 48, since

if 43312, three quadrangles leave at least 3 edges unoccupied while

by 13y, il
3. * 12\2} .

edges, and 4“3102 contains a grid by E, since k(11,14) = 46,

- 3; 5+4+313 is colmax while there are unoccupied
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similar argument, k(12,15) = 52, since v; + vy = 12, 3v; + v, = 28,

V] + b4vy = 24 so v =8, vy = 4 and we cannot have 8 triangles, 4 at
each of 4 vertices. k(12,16) = 54 since 46310 is colmax, giving

V] = vy = 6, six vertices with only one triangle at each, so at least

3 edges from each of the 6 quadrangles join these vertices, while

k(6) < 18. By C' with ¢ = 4, k(12,17) = 56 and k(12,18) = 58, Figure 11
and C' with ¢ = 5 gives k(12,19) = 61. If we replace each of columns 1
and 2 by a 3-col and 3 2-cols, we have k(12,20) = 62, k(12,21) = 64,
k(12,22) = 66 and k(12,23) = 67, k(12,24) = 69, k(12,25) = 71, since
42318 {g colmax, but at least 4 vertices are not occupied by quadrangles,
so at least 2 edges are not occupied; 4320 is colmax also; 66 by C'

with ¢ = 5; 32122 pyt t12 < 21 and 431923 is colmax but contains

unoccupied edges; 69 by C' with ¢ = 5 and 71 by theorem 2.

1001010000001 10000000000001111]|0
0010100000011 00010101010001000|0
0101000000110 00001010101001000]0
1010000001100 00100100100100100}0
0100000011001 0101000000101 0100|0
1000000110010 0100001001010001 0|0
0000001100101 0010100100001 001 0|0
0000011001010 11000001100000000]|1
0000110010100 00110010000000001)1
0001100101000 10100000011000000|0
0011001010000 10011000000100000]0
0110010100000 1000011000001 0000|0
1100101000000 01001100000000001]0
FIGURE 12 FIGURE 13

For m = 13, figure 12, which is saturated and colmax, shows that
k(13) = 53. If we replace a 4-col by a 3-col and 3 2-cols, it follows
by C' with ¢ = 4, that k(13,14) = 54, k(13,15) = 56 and k(13,16) = 58,

Figure 14, and C' with ¢ = 4, show k(13,17) = 60, k(13,18) = 62,
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Figures 14 and 15 are
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FIGURE 14
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colmax so k(13, 19) = 65 and k(13,20) = 67 by A.

00000 0000001111110000
060000 1100001000001100
11000 1010000100000011
00111 1001000010000000
00100 1000100001000000
10001 0101000000100010
00010 0100100000010001
01000 0100010100000000.
10010 0011000000011000
01100 0010100000100100
00001 0010011000000000
00000 0001010001000101
00000 0000110010001010
FIGURE 15

By F with a = 1, k(13,21) = 68, since 45316 is colmax; if there were

4-row, it could be deleted, and k(12,21) = 64 while D shows there is

7-row, so the rows are 63510, The 6-rows occupy at least 3 x6 - [3]

columns, so the other 10 rows and 6 columns contain 68 - (15 x3) = 23 = k(10,6),

so there is a grid.

2

OO0 HOOrrOOO
OO OFHRFR OO0 OO0
CO—~0O00OrHr~ODOO
COoOCOHFROO~OOO O

a

no

= 15

70 = 443!8 ig colmax, and as in the previous argument, the rows are 6558,

The 5 6-rows occupy at least 5x6 - (g) = 20 columns, and as a 6-row

intersects only 3-cols, there is no room for 4 4-cols, and k(13,22) = 70.

By C' with e = 5, k(13,23) = 72,

k(13,24) = 74 and k(13,25) = 76.

Figure 16 and C' with ¢ = 5 show that

For m = 14, figure 17 shows k(l4) = 57 since 57 contains a 5-col,

and the other 9 rows and 13 columns then contain at least 57 - (5+13) > k(9,13).

Similarly k(l4,15) = 59, a 5-col being excluded as before, while 4!%3

is not possible, since u;, = 14 and 14 quadrangles can be accommodated d

only with 7 disjoint unused edges, not with a triangle. To see that

k(l4,16) = 61, note that a 5-col 1s again excluded, while a 2-col would

In figure 15, replace column 1 by a 3-col and 3 2-cols,
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FIGURE 17

FIGURE 16

A 3-row implies a grid,

imply a grid, since k(14,15) = 59; so 61 = 41333,

since k(13,16) = 58, and a 6-row would intersect at least 3 4-cols, forming

at least 15 pairs, only 13 of which can be distinct, so the rows are 5549,

If a 5-row intersects 4 4-cols, it forms 12 + 2 > 13 pairs, so each 5-row

intersects at least 2 3-cols, and there are » 5x2/3 3~-cols, which is false.

v

COmmMOOOO~O~Q00C0
COROC 1000 OCOO0O~NMOO
COA 10000 ~00C0O0C0C
O~ 00000~ O0O0O0OO0OmmOO0O
O~ 00O~ 0~0 QOO0
CAO—HOO0OO0COODO~000
~ OO OO O OO~ O~000Q
OO0~ OOO~OOOC
S O 0O0O~MO~000000C0C
OCOCOCOO0O—~TQO=OOQO =0~
COOC O~ OO0 0000~
COOC OO mMOO-OOO ™
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OO0 ~MOOO~-0O0O0COCO
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FIGURE 19

FIGURE 18

Figure 18 and C' with ¢ = 4 show that k(14,17) = 64 and k(14,18) = 66,

Figure 20 and A show

and similarly figure 19 shows that k(14,19) = 69,
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FIGURE 20

It is probable that k(l4,n) = 2n + 30

that k(14,20) = 71 and k(14,21) = 73.

(22 ¢ n ¢ 30), but proofs become diffuse and drift into the realm of strong
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FIGURE 22

Figure 22 shows that the last five values are at least so

conjecture,

That k(l4,n) = 2n + 29

large, and proofs are reliable in the last 3 cases.,

(31 < n ¢ 35) follows from theorems 6(c) and 2.

On deleting a row

For k(16,20) = 81 and k(21) = 106, see [16].

Probably

from the 16 by 20 matrix it remains colmax and k(15,20) = 76.
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In this section k(m,n) means %p 3(m,n) and grid means

The values of k(m,n) outside the indicated line in table 3

by (10) and by theorems 5 and 7, using (19) if necessary.

19), the last value being correct since

Figure 21 is colmax, so k(15,21) = 78,

2,3-grid.

are given

ko, 3(m,n)

;FQ\ 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24
21 6 7 8 91011 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27
3| 81011 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
4 | 10 13 14 16 17 19 20 22 23 25 26 27 28 29 30 31 32 33 34 35 36 37
5 | 12 15 17(19]21 23 24 26 27 29 30 32 33 35 36 38 39 41 42 43 44 45
6 | 14 17 20|22 25 26 28|31 32 34 35 37 38 40 41 43 44 46 47 49 50 52
7 | 16 19 23|25 29 30 32 35 37 38 40|43 44 46 47 49 50 52 53 55 56 58
8 | 18 21 25|28 32 34 36 39 41 43 45 47 49 51 53 55|57 59 60 62 63 65
9 | 20 23 28 31|35 37 40 43 46 47 50 52 55 57 58 60 62 65 67 69 70|73

10 | 22 25 31 34[38 41 43 47 51 52 55 57 61 62 64 67 68 71 73 79

11 | 24 27 33 37|41 45 47 51 56 57

12 | 26 29 35 39 44]49 51 54

13 | 28 31 37 42 47|53 55 57

14 | 30 33 39 45 50 57|59

15 | 32 35 41 47 52 59|62

16 | 34 37 43 50 55 6265

17 | 36 39 45 53 58 65|69

18 | 38 41 47 55 60 67|73

19 | 40 43 49 58 63 70|76

20 | 42 45 51 61 66 73|79

21 | 44 47 53 63 68 75|82

TABLE 3
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n = 6. Figure 23 and C' with ¢ = 3 show k(5,6) = 19. Similarly
k(6,6) = 22, k(7,6) = 25 and k(8,6) = 28.

n = 7. TFigure 24 and C' with ¢ = 4 show k(6,7) 25 and k(7) = 29,

Two 5-rows form a grid, as do a 5-row and more tnan 2 4-rows, and since
Zh = 7, with 7 unused faces (triads), k(m,7) = 3m + 8 (7 s m g 14).

n =8, k(6,8) =26 by F with a = 2, since 4235 is colmax while
there are 2 rows which contain at least 10. A 5-row intersects only
3-cols, and there can be no longer rows. There are insufficient 3-cols
to intersect 2v5-rows, so we arrive at a contradictiom. k(7,8) = 30 by

C' with ¢ = 4, and F with a = 2 applied to figure 24. Add a 2-col to

this figure with ones in rows 7/ and 8, and k(8) = 34 by C' with ¢ = 4.

aE E B N .

Figure 25 shows k(m,8) 2 4m + 1 (9 <m < 14), Equality follows induc-

)

tively by C' with ¢ = 4 if we first show k(9,8) = 37. We may assume

there is no.3-row by E. -If there were a 6-row, other rows could contain

™ re
¢

at most 2 in these 6 columns, leaving at least 37 -6 = (2 x8) in the other
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2 columns, so that the most level partitiom of columns is 8-7-4“32, while
[g] + [;] + 4[3) + 3(3] > 2(3], so the rows are 5+48, As in the last
sentence, the rows other than the 5-row contain at least 37-5-(2 x8) = 16
in the 3 columns not occupied by the 5-row. In only one row can all 3
columns be occupied, so there are at least 3 coincident pairs, i.e. 2 of
the 3 columns which are both occupied in at least 3 rows. These 3 contain
6 ones'in the: other 5 columns, so 2 lie in the same column and form a grid.

n=9. km9) =4m+4 (m < 9) by (10), theorem 7, figure 26 and
¢' with ¢ = 4. Similarly, since we may add a 2-col to figure 25,
k(m,9) = 4m + 3 (10 ¢ m ¢ 14) if we first prove k(10,9) = 43. By E we
may assume there is no 3-row, and we may dispose of the possibility of
a 7-row as in the last paragraph. Two 6-rows would form a grid, and if
the rows were 6+5+48, then the 6-row and 5-row, elther overlap in 2-cols,
so that the other 7 columns contain a grid, or any row which has 1 in a
column in which the 6-row and 5-row overlap forms a grid with one of them.
So the rows are 5347 and each pair of 5-rows overlaps in just 2 columns,
so they are essentially as shown in figure 27. The only 4-rows now
available are those lying in columns 1489, 2189, 1579, 2479, k789, 1578,
or 1678, where 7 = 3,4; 7 = 5,6 and k=1,2,3,4,5 or 6. At most one can
be selected from each of these 7 sets, yet k789 (1 < k < 4) excludes one
of the first 2 sets and 5789, 6789 exclude one of the last two.

We next show k(15,9) = 62. It is at least this by figure 28, while
62 does not contain a 3-row by E. If there is a 6-row, then as before,
the other 3 coliumns contain at least 62 -6~ (2 x14) = 28, and 2 of them
at least 19, so they overlap in at jeast 5 rows., These 5 rows contain
more than 6 other ones, so two occur in the game ‘column and form a grid.

Hence the rows are 52413, The 2 5-rows overlap in 2 columns as before,
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say they occupy columns 12
occupied in anv other row.
there are at least 4 rows
together with a 1 in each

implies grids, so columns

=y AT

345 and 12678. Columns 1 and 2 are mnot both
1f column 1 is a 6-colummn or longer, then

in which columns 1 and 8 are both occupied,

of the sets of columns 3,4,5 and 6,7,8. This

1 and 2 are at most 5-cols. There are at least

7 rows and 7 columns not occupied by these, and since 77 = 7, there are

just 7 such rows. The 7 tetrahedra occupy all but 7 faces of Kg and no

2 of these are disjoint.
the 5-rows in columns 345

tion.

Figure 28 also shows

But the faces corresponding to the parts of

and 678 are disjoint, and we have a contradic-

k(16,9) = 65, since again there are no 3-rows

or 6-rows, so the rows are 5.415, The 4 columns not occupied by the

5-row contain at least 15

(horizontal) pairs, only 6 of which are distinct,

so there are at least 2 sets of 3 rows with pairs in the same 2 columns,

and since one of these contains 6 in the columns of the 5-row, there are

2 in some column, forming

a grid. It now follows by C' with ¢ = 4 that

k(17,9) = 69 and k(18,9) = 73 since Tg = 18. Similarly, with ¢ = 3,

3n + 19 (18 s m

k(m,9)

10. Delete from

n
4-rows. Then C' with ¢ =
since it is true for m =

may contain more than 30;

< 30).

A

figure 42 a column and 11-m of the 5 resulting
4 shows that k(m,10) = &m + 7 (6 ¢m < 11),
6 by theorem 5. Since k(6,10) = 31, no 6 rows

so k(12,10) = 54, since the rows are 5646 and

the 5-rows are essentially as in figure 29 which 1is colmax, The only

L-rows which can now be added are those in columns 148X, 1579, 237X,

2469 and 3568; which are

and a 3-row can be added.

not 6 in number. On the other hand, these 5

A further 3-row can be added to show k(13,18) = 37,

since by E, 57 does not contain a 3-row, and if the rows are 5548, the
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m = 8. From figures 31 to 34, to each of which 2 2-cols may be

added, it follows by A that k(8,n) = 2n + 19 (10 ¢ n & 20),

/a)

m =19, From figure 42 with 2 rows deleted, k(9,11) = 46, by A.
We next show k(9,12) = 47. By E we may assume no 4-row, and a 7-row
implies the other 5 columns contain at least 47 -7 -(2%x8) = 24, and
the most level column partition would be 54433%, which fails by A. The
rows are thus 6257, If the 6-rows did not overlap, the 5-rows would
form grids with one of them. If they overlap iu only one column, no
other row intersects it, but a 2-col implies a grid elsewhere by E.
Suppose the 6-rows occupy columns 123456 and 12789X. Columns 1 and 2
contain at most l more in each, else a grid is formed with columns 11
and 12 or with a 6-row. So 5 rows contain 1 in column 11 or 12, say at
least 3 in column 12. These 3 rows contain 12 other points in columns
3 to 10, Two of these points lie in each of at least 4 colummns, so 2

pairs coincide and form a grid with column 12. Figure 35, and C' with

1111110000000 1111000001001600
1100001111000 100011100100010
0011001100110 010010011100001
0000110011110 001011010010100
1010000010101 o10109B11Q0r0G1 90
1000100100011 100161 00%010 801
LI 0a01L 1900101 o081 0L0 0@ 00
6¢1a¥yol19el100. 1l 61100100100y E2 1O
000101011000 1}1 1010001100081 001
FIGURE 35 FIGURE 36

e = 5, show that k(9,13) = 50 and k(9,14) = 52. Figures 36 and 37 and
C' with ¢ = 6, show that k(9,15) = 55 and k(9,16) = 57. It may be shown
by arguments too diffuse to give here that k(9,17) = 58, k(9,18) = 60

and k(9,19) = 62 (see figure 38). By A and figures 39, 40 and 41, we
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FIGURE 37

Also, k(9,23) = 70,

67 and k(9,22) = 69.

have k(9,20) = 65, k(9,21)

since 4+322 is colmax and the single quadrangle requires edges which are

not occupied by triangles.
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FIGURE 39
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FIGURE 41

A, and deletion of a row of figure 42, show that k(l0,11) = 51.

10,

Similarly, using figure 43,

5 shows k(10,12) = 52,

Then C' with e
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k(10,13) = 55 and k(10,14) = 57. Replace the (first)

43 by 3 4-cols in rows 5678, 589X, 679X, and k(10,15)

6-col in figure

= 61 by C' with

0111111000000 111111000000006000
0110000111100 l1ro0o611lIz00e008040
0001100110011 00110011001100000
0000011001111 000811 00111L100000
1101000001010 10108060101 0:101100
11001000001601 1001000001 0G110811
1010010010010 0166100106108 7%.0:FL1
1010001100001 01000110000111000|1
100101010010 0|1 00101010010000110]1
1000101011000]1 00010101100000101]|1
FIGURE 43 FIGURE 44

ec = 6, Next k(10,16) = 62, since 41432 ig colmax, and 62 contains a

7-row or longer, which intersects at least 3 3-cols, while there are

i1 N .

1

only 2. Figure 44 and C' with ¢ = 6 shows k(10,17) = 64, k(10,18) = 67.
Similarly k(10,19) = 68. On permuting 0135 and 014 cyclically, mod 10,
columns 419310 are possible and colmax, so k(10,20) = 7l. Columns 7, 10
and 12 of figure 44 (2389, 2469, 3468) may be replaced by 239, 246, 289,
348, 368 and 469 so 49312 ig possible and colmax, so k(10,21) = 73. We
may deal similarly with columns 8, 9 and 11, and k(10,24) = 79. Since
5,10 = 30, k(10,30) = 91, and k(10,29) = 88, because 4+328 ig colmax,
while the quadrangle implies unused edges. However, 42326 are possible
columns, since we may use the trefoil and associated triangle as a
quadrangle, twice, so k(10,28) = 87.

m = 11. TFigure 42 is colmax, so k(11) = 56. Also, by C' with

e =5, k(11,12) = 57.
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In this section, k(m,n) means k3(m,m) and grid means 3-grid. The

values of k(m,n) above the line in table 4 are given by (10) and theorem 8.

kg (m,n)

S*| 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24
3 | 911 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
4 14 17 19 22 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57
5 21 23 26 29 31 34 37 39 42 45 47 50 53 55 58 61 63 65 67 69
6 57 30 33 37 40|43 46 49 51 54 57 59 62 65 67 70 73 75 78
7 34 38 41 45 48 51 54 57 61 64 67 70 73 76 79 82|85 88
8 43 46 51 54 58 61 65
9 50 55 60 65
10 61

\\\\ TABLE 4

\1®

Sierpifiski [18] showed that k(6) = 27. See also figure 45, which
shows k(6,7) = 30, since 5245 ig colmax, while the number of faces at a
vertex of Kg is 10, and these cannot all be used twice each to form only
Kg and Kz, since these have respectively 6 and 3 faces at a vertex.
Figure 45 also shows k(6,8) = 33, since there is no 3-col by E, and no
6~col since 33 -6 > k3,2(6,7); hence the columns are 5+47, Thus there
is no 7-row by D, and no 4-row by E, so the rows are 6353, The 6-rows
are essentially 123456, 123478, 125678. If a 5-row intersects column 1
or 2 it forms a grid, and if not, columns 1 and 2 are 3~cols, a contra-
diction. TFigure 46 shows k(6,n) = 3n + 10 (9 ¢ n < 13) on using

Pocg ¢ 10 for 0 = 10 and A otherwise,
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Brzezinski [}?] showed k(7) = 34. A proof follows from C' and
figure 47, which also show k(7,8) = 38. That k(7,9) = 41 also follows
from figure 47: by E there is no 3-col; and no 7-col, since
41 -7 > k3,,(7,8), so the columns are 554" or 6-5345, If there were
5 5-cols, 2 would overlap in 4 rows and either a third forms a grid
with them, or the other 3 themselves form a grid. If there are columns
653 they do not hdave a common row since k2,3(6,4)‘= 21 -4, so they are
essentially in rows 123456, 12347, 12567, 34567. The only 4-cols which
do not form a grid are then 7gk7 (¢ = 1,23 J = 3,45 k = 5,6), and 5 of

these must contain 2 which form a grid with a 5-col.

1110111100(0{0j0(0 111111111100000(0000
110111001 1/0(0)|0|0 111110000011111j0000
1011011010|1{0|L]|0 100101110011100(1101
1011100101{1|0(0]1 001010111001110/0110
0111101010(0]1|0(1 0101000111001 11f(1011
0111010101|0(1(1(0 101001001110011f0101
110000111 1|1|1f1]|1 010011100111001|1010
FIGURE 48 FIGURE 49

Figure 48 and B show k(7,10) = 45, since 5 5-cols form a grid as
in the previous paragraph. Similarly k(7,11) = 48, since columns 5447
have 6 or 3 faces each at a vertex of K; out of 2[2) = 30 possible.

So if some faces are unoccupied, they are at least 3 in number, while

-0 =O0O0O0
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4[?) + 7{3) = 2(;] - 2. Similarly k(7,12) = 51 since 6:5:4'0 is colmax,

while at a vertex of K. (the 6-col) there remain 2(2) - (5] = 20 faces,

2

o w

only a multiple of 3 of which are used in the other columns, so the
columns are 5349. As before, unoccupied faces occur at least 3 at a
vertex, so 4 form a tetrahedron, and it suffices to show 53410, which

is colmax, to be impossible. If 2 of the 5-cols coincide, the third
forms a grid with them. If they overlap in 4 rows, the third intersects
just 2 of these, say they occupy rows 12345, 12346, 12567, and now the
face 127 cannot occur in any tetrahedron. Finally 1if each pair of 5-cols
overlap in just 3 rows, say they occupy rows 12345, 12367, 14567. 1In
order to use faces 124, 125, 126, 127 a second time, we may without loss
take 2 4-cols to be 1246, 1257. We must then choose 1347 and 1356, and
then 2347, 23jk where %, j, k are 5,6,7 in some order. In each case an
odd number of triangles involving 24 are left, which cannot all be used
in tetrahedra. Similar arguments show that k(7,13) = 54. A similar but
much longer argument shows k(7,14) = 57. Figure 49 and C with ¢ = 4 show
that k(7,15) = 61. It also follows that Ty,7 = 15, if we show the
impossibility of 416, Since 16(3) = 2(;] - 6, there are 6 unoccupied
faces, which occur in multiples of 3 at a vertex and of 2 at a 2-edge.
They cannot occur at only 3 vertices, since there are only 2 faces there.
They cannot occur at just 4 or 5 vertices, since all 6 then occur at one
of them, and one or other of the congruence conditions is violated. 1If
they occur at 6 vertices, there are just 3 at each, and they occupy just
3 2-edges at each; again impossible. This, with figure 49 (in which the

last 5 columns may be repeated) shows that k(7,m) = 3n + 16 (15 s n ¢ 25),

by C with ¢ = 3 for n > 16.
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Figure 50 and C' with ¢ = 5 show that k(8) = 43 [v. also 2] and
k(8,9) = 46. Figure 51 and C' with ¢ = 6 show that k(8,10) = 51 and

k(8,11) = 54.
e =17, we see

k(8,13) = 61.

If we delete a 7-row from figure 52, and use C' with
that k(8,12) = 58; similarly we can add a 3-col and

From figure 53 and C' with ¢ = 7, k(8,14) = 65,

1111010010
1001011110011060 1110100101
11001011110060°1 1101101010
11100101011010 1011110100
111100100011601 0111101001
01111001100110 0110011110
1011110011000 1100011101
B1 11110011010 1000111011
00101111001101 0001110111

0011001111

FIGURE 53
FIGURE 54

Figure 50 shows k(9) > 50. We demonstrate equality. If a 9 by 9

matrix has to
50-9 > ky,3(
Suppose there
less than 12,

2 columns con

tal 50 and contains a 9-row, it forms a grid, since

= _-_0 000

8,9). An 8-row also forms a grid since 50-8 -8 = ky,3(8).

is a 7-row. If the 2 columns it does not meet contain
it forms a grid, since k;,3(8,7) = 50-7-11. 1If these

tain 11 + 2 (z = 1,2,3), they overlap in at least 3 +x

rows,land these then contain at most 2 in each of the 7 columns occupied

by the 7-row.

So these 7 columns and the other 5 - x rows contain at



‘e\-—‘

- EE .

-

. |

1 N

- N

least 50~7 -14 = (11 +2) = 18 - x 3 ky,3(5-x, 75, so a grid is again
formed, If there is a 4-row, k(8,9) = 50 -4 implies a grid elsewhere;
so the rows (and columns) are 6°5%. The 5 6-cols do not meet a common
row, since k;,3(8,5) = 30 -5; in fact they occupy, essentially, rows
123456, 123789, 124578, 134679, 235689, The only 5-cols which do not
form a grid with these are 15689, 24679, 34578 and any in the last 6
rows; but at most 3 of these can be chosen without forming a grid.
Figure 52 and C with ¢ = 5 show that k(9,10) = 55, k(9,11) = 60 and
k(9,12) = 65. We may add a 3-col (e.g. 159) and then C' with ¢ = 7

shows that k(9,13) = 68,

T. Jenkyns has recently shown k(10) = 61, by figure 54 and C with
¢ = 6. The configuration of figure 54 has the symmetry of the Petersen
graph,
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