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Some contributions of computation to
semigroups and groupoids'

TAKAYUKI TAMURA

REVIEWING the contribution of computers to the theory of semigroups,
we note that G. E. Forsythe computed all semigroups of order 4 [2] in
1954, and T. S. Motzkin and J. L. Selfridge obtained all semigroups of order#
5 [4] in 1955. For the ten years from 1955 through 1965, nobody treated
the computation of all semigroups of order 6. However, R. Plemmons did
all semigroups of order 6 by IBM 7040 in 1965 [S]. On the other hand the Q
author and his students obtained the semigroups of order 3 in 1953 [8],
of order 4 in 1954 [9] and of order 5 in 1955 [10] by hand, independently
of those mentioned above. Beside these, certain special types of semigroups
and groupoids of order 3, which are distributive to given semigroups of
order 3, were computed by hand [12], [13], [14]. In 1965 we obtained
the number of non-isomorphic, non-anti-isomorphic groupoids of order
=<4 which have a given permutation group as the automorphism group
(§8 1.4, 1.5). Although the result was presented at the meeting of the Amer-
ican Mathematical Society at Reno, 1965, it has not been published. After-
L wards R. Plemmons checked the total number by computing machine and
wrote to the author that our number was correct; the author wishes to
thank Dr. Plemmons. Recently R. Dickinson analyzed the behavior of
some operations on the binary relations by machine [17].

In this paper we announce the result concerning the automorphism
groups and the total number of groupoids and additionally we introduce
the significance of a new concept “general product”, which uses a machine
to get a suggestion for an important problem on the extension of semi-
groups, and further we show the result in a special case which easily com-
puted without using a machine. The detailed proof of some theorems will
be omitted because of pressure on space in these Proceedings, and the com-
plete proof will be published elsewhere.

1 This research was supported by NSF GP-5988 and GP-7608.
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230 Takayuki Tamura

PART I. GROUPOIDS AND THEIR AUTOMORPHISM
GROUPS

1.1. Introduction. A groupoid G is a set S with a binary operation 6 in
which the product z of x and y of S is denoted by

z = x0y.

G is often denoted by G = G(S, 6). An automorphism « of G is a per-
mutation of S (i.e. a one-to-one transformation of § onto ) such that

(x0y)x = (xa)0(ye) for all x, y€Ss.
The group of all automorphisms of G is called the automorphism group
of G and denoted by A(G) or A(S, ). It is a subgroup of the symmetric
group &(S) over S. The following problem is raised:

Problem. Let S be a fixed set. Under what condition on | S|, for every
subgroup § of &(S), does there exist G = G(S, ) such that (G) = H?
This problem is a step towards the following problem.

Let $ be a subgroup of &(S). Under what condition on § does there
exist a groupoid G such that A(G) = H?

However, we will consider only the first problem in this paper.

The answer to the problem is:

THEOREM 1.1. For every subgroup © of &(S) there is at least a groupoid
G defined on S such that W(G) = § if and only if | S| < 4.

In the next section we will sketch the outline of the proof. From now
on we shall not distinguish in symbols S from G, that is, G shall denote
a set as well as a groupoid defined on it. The groupoids with operations
0,&," - - are denoted by (G, 0), (G, £)," * *. The automorphism group (G, 6)
will be denoted by A(G) or A(H) if there is no fear of confusion as far as a
set G is fixed. ©(G) is the symmetric group over a set G.

1.2. Outline of the proof of Theorem 1.1. The following theorem was
given in 1963 [16].

THEOREM 1.2 Every permutation of a set G is an automorphism of a
groupoid G if and only if G is either isomorphic or anti-isomorphict onto one of
the following : :

(1.1) A right zero semigroup: xy = y for all x, y.

(1.2) The idempotent quasigroup of order 3.

(1.3) The groupoid {1, 2} of order 2 such that

x'1 =2, x2=1 (x =1,2).
The following theorem partially contains Theorem 1.2.
THEOREM 1.3. Let | G| = 5. The following statements are equivalent.

Y We will use ““dually isomorphic” as synonymous to ‘“anti-isomorphic”.

o
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(1.4) 4 groupoid G is isomorphic onto either a right zero semigroup or a
left zero semigroup.
(1.5) A(G) = &(G).
(1.6) Every even permutation of G is contained in W(G).
(1.7) W(G) is triply transitive (i.e. 3-ply transitive (cf. [3])).
(1.8) A(G) is doubly transitive and there is an element p€U(G) such that
ap = a, bp = b for some a, b€ G, a + b, but xp * x for all x * a,
x %+ b.
Proof. The proof will be done in the following direction:
(-7 — (1-4)
A
; pE

""l: - (1:5)

(1.4) - (1.5) is given by Theorem 1.2; (1.5) — (1.6), (1.5) ~ (1.8) are obvi-
ous; (1.6) - (1.7) is easily proved by the fact that the alternating group
is triply transitive if |G|=5. We need to prove only (1.7) -~ (1.4) and
(1.8) > (1.4). The detailed proof is in [20].

Remark. We do not assume finiteness of G. The definitions of double
and triple transitivity and even permutation are still effective.

Let $ be a proper subgroup of &(G), |(G)|= 5. If  can be an auto-
morphism group of a groupoid (G, 0) for some 0, then $ is neither triply
transitive, nor the alternating group on a set G.

TaroreM 1.4, Every permutation group on a set G, |G| =<4, is the auto-
morphism group of a groupoid (G, 6) for some 6.

The proof of Theorem 1.4 is the main purpose of § 1.4, 1.5 below.
In order to count the number of groupoids for each permutation group,
we will experimentally verify the existence for each case.

§ 1.3 is the introduction of the basic concept for the preparation of §§ 1.4,
L:5.

1.3. Preparation. Let & denote the set of all binary operations Bl =
defined on a set G. Leta, B, * - be elements of &(G), i.e. permutations of G.
To each « a unary operation « on ®, 6 — 6%, corresponds in the following
way:

xffy = {(exH)0(a )}, x,y€G.
The groupoids (G, 0) and (G, %) are isomorphic since (x6%p)a~! =
(xa~1)0(ye~1). Clearly « is an automorphism of (G, 6) if and only if
6% = 6. The product B of « and B is defined in the usual way:
p%F = (658 for all 0c@.
It is easy to see that
68 = 6= for all 0¢@.

CPA 16,
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6% = 07 if and only if af~1€9((6). Let & = {a; «€&(G)}. Then @ is
isomorphic onto &(G) under « — a. Suppose a = B. af~1 is in (G, 6)
for all €. On the other hand, there is 0o€ @ such that A(G, 0,) consists
of the identical mapping ¢ alone (cf. [20]). Hence «f~1 = & and 50 o = B.

Define another unary operation 8 —~ 6’ on @& as follows:
x0'y = ybx.
Then clearly (6")" = 6 and (G, 6) is anti-isomorphic onto (G, 0,6 =0
if and only if (G, 6) is commutative. Also (8")* = (6%’ for all 6¢ .
We denote (6")* by 6¥. Then o« is an anti-automorphism of (G, 0)
if and only if 6% = 6. We can easily prove

(69 = 0
(6%)8 = 65
(6%)8 = 6.

As defined in § 1.1, 9(6) is the automorphism group of (G, 6) while A6)
denotes the set of all anti-automorphisms of (G, ).

We define

B(O) = WO UA'(6).
Then B(0) is a subgroup of &(G, 6) and the index of AB) to B(O) is 2.

Let € @(G). Then

AOF) = 1-AWG)-5,  W(OF) = B~1-A(6)-p.

Let = UG, 0) and let «€ &(G). Then H = UB%) if and only if « is
in the normalizer N(H) of H in S(G). Therefore 6% = 67 and A(GF) =
A7) = AB) =  if and only if &, B € N(D) and & = B (mod $).

Let § be a permutation group over a set G and suppose that § is gen-
erated by a subset & = {«;; 1€ X} of §.

Let

GXG = {(x,); x, y€G}.
A binary operation on G is understood to be a mapping 6 of GXG into G.
9 is contained in the automorphism group U(G) of a groupoid G defined
by 0 if and only if, for x, y€ G,
[(x, )0l = (xa, yu)b for all «€$.

We define an equivalence relation 8 on GXG as follows:

(x, ») B (z, u) if and only if z = xa, u = ya for some «€$. Clearly B
is the transitive closure of a relation B, defined by

(x, y) B1 (z, w) if and only if z = xa, u = y« for some « € K.

If we let ¢ = (a, b)f and if (x, y) B(a, b), then (x, )0 is automatically
determined by
(x, )0 = [(a, b)0]x for some «€$.

Let {(a;, bs); £ € Z} be a representative system from the equivalence classes
modulo B. We may determine only {(a, b:)0; &€ E}). However, there
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is some restriction for choosing (a:, b:)0:

[(@e, be)Blee = (ase, bex)O.
For (a¢, b:) define an equivalence relation ~ on the set union KUK

as follows: ¢
« ~ B if and only if (aex, bex) = (aef, bep).
¢

For (a, bs) we select an element c; of G such that the following condition
is satisfied:
a'~ B implies cqx = cgf.
£

1.4. Groupoids of order < 3. First of all we explain the notation and the
abbreviations appearing below:

D Automorphism group §.
S; The symmetric group of degree i.
¢ The number of conjugates of 9,

ie.c= _lS.l_ .

| Normalizer |
n The index of  to its normalizer,
| Normalizer |
Tl | 1

up to iso Up to isomorphism.
up to dual Up to dual-isomorphism (i.e. anti-isomorphism).
self-dual Anti-isomorphic to itself.
comm Commutative.

First we have the following table for groupoids of order 2. Since the
case is simple, we omit the explanation.

TABLE 1. Groupoids of Order 2

Self-dual,| Non-self-| . ' | Semi-
Comm, on- dual, 9 Total groups
e} 4 n i up to iso A :
up t0 is0 | comm, |up to iso, Soll ’] up to iso | up to iso,
up to iso | up to dual e i up to dual
S, 1 1 0 0 53 2 4 1
{e} 1 2 4 0 1 5 6 3
Total 4 0 3 7 10 4

16*
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For S, .

1
1

For {9 2| 21 |11 |2

In the following table [(1, 2, 3)] is the permutation group generated by
a 3-cycle (1,2, 3). [(1, 2)] is one generated by a 2-cycle or substitution (1, 2).

TABLE 2. Groupoids of Order 3
/_ﬁ_d_—-———--‘ i

-t

Self-dual,| Non-self- Semi-
Comm, non- dual, Tota}l Total groups
up to iso | comm, | up to iso, up to iso, up to iso | up to iso,
up to iso |up to dual up to dual up to dual

Sa

[(1, 2, 3)] 4 12

[, 21 35 43 78

{e} 116 1556 1681 3237 12

Total 129 1596 1734 3330 18

By Theorem 1, if § = S3, we have two isomorphically, dual-isomorphic- .
ally distinct groupoids:

Case H = [(1, 2, 3)]. Let « = (1, 2, 3). B-classes:

1

denotes the multiplication table 5
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. Since there is no restriction to choosing {(1-1)6, (1-2)6, (2-1)6}, we have
"~_,. 27 groupoids G such that
[«] & %G).

However, the set of the 27 groupoids contains the 3 groupoids in which
S3 is the automorphism group; the number of isomorphically distinct
groupoids G for § = [«] is

+(27—3) = 12 where n =2 in Table 2.

If G has dual-automorphisms, f = (1, 2) must be a dual-automorphism.

In this case, since

(3-3)B=133, (1-f=12 (2:1)f=2-1,

we must have (3-3)0 = (1-2)0 = (2°1)0 = 3. Therefore if § S U(G) and
if (1, 2) is a dual-automorphism of G, then G is

N L —
= N W
w - N

while this G is already obtained for § = Ss3,and (1, 2) is an automorphism.
In the present case there is no self-dual, non-commutative groupoid. There
are formally 9 commutative groupoids; but excluding one we have non-
isomorphic commutative groupoids:

39—~ =4
and 12—4 =8 non-seif-dual G’s,
8§+2=4 isomorphically distinct non-self-dual G’s.

Therefore we have 444 = 8 non-isomorphic, non-dual-isomorphic G’s.
Case = [(1, 2)]. Let « = (1, 2). There are 5 B-classes among which
a class consists of only 3-3. Clearly (3-3) 6 = 3. The number of non-iso-
morphic G’s is
81—3 = 178.
If G is commutative then (1-2)a = 1-2, hence (1-2)8 = 3. The number of
non-isomorphic commutative G’s is

91 = 8.

The number of non-self-dual G’s is 78 —8 = 70, and hence the number of
those, up to isomorphism, is

70+2 = 35.
Therefore the number of non-isomorphic, non-dual-isomorphic G’s is
3548 = 43,

We remark that there is no non-commutative self-dual groupoid for
because S3 has no subgroup of order 4.
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Case = {e}. First, we find the number of self-dual, non-commutative
groupoids G for {e}. Let § = (1, 2) be a dual-automorphism of G. Then .
we can easily see that

(I-2=(1-2), @-DB=@21), 33)p=(33)

(1D =22, 1:3)=03-2), G DE=(23),
and hence

(1:2)6 = (2-1)0 = (3:3)0 = 3.
The 27 G’s contain the 9 G’s which appeared in the previous cases. We
have that the number of isomorphically distinct G’s is
1+27-9 =9

since we recall that the normalizer of [(1, 2)] is itself.

The number y = 116 of all non-isomorphic commutative groupoids
whose automorphism group is {e} is the solution of

6y+4X2+8X3+1 = 36,

The number x = 3237 of all non-isomorphic groupoids corresponding
to {e} is the solution of

6x+78X34+12X2+3 = 39,

The number of non-self-dual G’s, up to isomorphism and dual-isomore
phism, is

3(3237—(116+9)) = 1556. .

The total number of G’s up to isomorphism and dual-isomorphism is the
sum

116 +9+4+1556 = 1681.

For [(1, 2, 3)], let = (1, 2, 3):

x y z
zo X yo

yo? za? xa?

where (x, y, z) is
1,2,1),2,2,1), (2, 3,2), (2,1, 3) commutative,
1,1,2),2,1,1), (2,1, 2), (2, 3, 1) non-self-dual.
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For [(1, 2)], let B = (1, 2):

commutative

x 3 z

3 xB zB
z zf8 3

where (x, z) is

(1, 1), (1,3), (2, 1), 2, 2),
£2,3), 1) B, 2, (3,3).

Non-self-dual:

0 i

yB xB 2B
u uf 3

where (x, y, z, u) is

(,1,1,1,01,1,3,1),(1,3,2,3),(2,1,2,2),(2,3,1,2),(3,1,1,3),(3, 1, 3,2),
1,1,1,2),01,1,3,2),(2,1,1,1),(2,1,2,3),(2,3,1,3),(3, 1,2, 1),(3, 1, 3, 3),
a1,1,2,1,(1,1,3,3),(2,1,1,2),(2,1,3,1),(2,3,2,3),(3,1,2,2),(3, 3, 1, 2),
1 2 I L nTaa) 23 1343 (2. 1.3.256, 1, L T 65, T, 2, 3,465, 3, 1,3),
(0 el 8 9, (2, 1. 200,21 3. 30, (3, 1, 1 3D, 63,1, 8, 1,48, 3,2, 3):

For {e}:

£ 3. ¥y
3 xp zB
z yB 3

where (x, 5, 2) is
1,1,2),2,1,2),3,1, 2),
(113342, .1, 3% €3, 4, 3),
1, 2,3),(2,2,3), 3, 2, 3).
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1.5. Groupoids of order 4.

TABLE 3. Subgroups of S,
{e)

L,2n 01,203,411

CL,2),(3,4)1 101,2,3,4))  [01,2)(3,4), (1,3)(2,4)]

N

L2, (1,30 [(1,2,3),01,2.41 {(1,3),1,2,3,411

S

This diagram shows that 4 is lower than B and is connected with B by
a segment if and only if some conjugate of A4 contains some conjugate of B.

If$ = i, Gis isomorphic to either a right zero or a left zero semigroup,
by Theorem 1.1.

HH =11, 2,3),(1, 2, 4] (alternating group).
Let « = (1,2, 3), 8 = (1, 2,4). We have the B-classes:

(3-3)8 = 3-3 implies 3-3 = 3, hence G has to be idempotent. G is a right
zero semigroup if 4:2 = 2; a left zero semigroup if 4-2 = 4. Let G, be a
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groupoid determined by 4-2 = i (i = 1, 2). G11is isomorphic to Gy under a
transposition (1, 2) and also G; is anti-isomorphic to Gs.

G, 1234 6. 4234
L {13432 1[1423
2H2ES o Y=k TS
312431 3/4132
413124 402314

G, is characterized by the groupoid, which is neither a left nor a right zero
semigroup, such that any permutation is either an automorphism or an
anti-automorphism.

2 9% =[(1,3), (1,23, 9]

The normalizer of § is  itself, |H| = 8,n = 1,c = 24/8 = 3.

Let @ = (1, 3), B = (1, 2, 3, 4). We have the B-classes:

$:2 8 24

% \{ 1-2 AN - 23 % Ni
1'I<—a——+3-3 al a\ la la T ——ms 54
\N % ¥2—3 43 —5 14— 21 R /

: 4-4 = 4z

22, 224 = 2o0r4

The calculation 22X 4 = 16, 16—2 = 14 gives the number of non-iso-
morphic G’s. Suppose the groupoids have a dual automorphism. Since no
subgroup is of order 16, every element of  is a dual automorphism. For a
dual automorphism «, (1-3)« = 1-3, hence 1-3 = 2 or 4. For an auto-
morphism g, (1-3)f = 2-4 =2 or 4 because (2-4)a = 2-4. However, this
is a contradiction to 28 = 3,4 = 1. Hence there are no self-dual G’s. The
number of non-isomorphic, non-anti-isomorphic G’s is 14+2 = 7.

3) 9 =[(1,2), (1, 3)].
9| = 6,n =1, c = 24/6 = 4. We have the B-classes:

a/aj_i»Z-B\i /2'2 /2.4 /4.2
v2 13 11 14 A
g\ ’/9 \6\3_3 B\« S B\* 43

11,14, 41 =tord, 44= 4
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The calculation 4X23 = 32, 322 = 30 gives the number of non-iso-
morphic G’s. If a dual automorphism exists, then it is in 9. Accordingly
if G is self-dual, it must be commutative.

We find the commutative G’s:

(1-2)x =2-1=1-2, 1:2=3 or 4.

We have 8 non-isomorphic commutative G’s, and the calculation 30—8 —
22, 22+2 =11 gives the number of non-self-dual G’s, and we have a
total of 8+ 11 = 19 non-isomorphic and non-anti-isomorphic G’s.

(4) 9 =101, 2)3, 9), (1, 3)(2, ).

19| = 4, $ is normal, n = 24/4 = 6, ¢ = 1,

The number of groupoids G with § — %(G) which appeared in the pre-
vious cases is
14X34242 = 46.

Let @ = (1, 2)(3,4), 8 = (1, 3)(2, 4). We have the B-classes:

2:2

NN AN AN

44 1.2 43 13 42 g 44
33 3.4 34 3.2

The calculation 42—46 = 210, 2106 = 35 gives the number of non-
isomorphic G’s. There is no commutative G in the 35 G’s, because
(12 =12
and we have no value 1-2.
Suppose y = (1, 3) is a dual automorphism. We then have the $B-classes:

Y

2.2 2:4 1'2/\ 23
1-1/ V\w 1-3/ X3\4-2 3-4y \\0\2-1 1-4/ \\[iaw
Xs-s/ Rzm/ Rq-s'%}z/

22,2:4=20r4

The class of 22X4 = 16 groupoids contains 2 of those corresponding to
[(1, 2, 3), (1, 2, 49)], and so we calculate 16—2 = 14, 14+2 =17, for the
number of self-dual, non-commutative G’s. Since the normalizer of [(1,3),
(1, 2, 3, 4)] is itself, 8+4 = 2, and we calculate 35—7 = 28, 28+2 =14
non-self-dual G’s, giving 14+7 = 21 for the total up to isomorphism and
dual-isomorphism.
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(39 =1(1,2,3, 4]
|§| = 4. The normalizer of § is [(1,3), (1,2, 3,4)] of order 8, n = 8/4 = 2,
c=24/8 = 3.
The number of the groupoids corresponding to the groups which contain
is
4 14+2 = 16.
Let « = (1,2, 3,4). We have the B-classes:

NN NN
AR S

We calculate 44—16 = 240, 240+2 = 120 for the number of non-iso-
morphic G’s. We have [(1,2,3,4)]1<[(1,3),(1,2,3,4)]. Suppose y = (1,3)isa
dual-automorphism. Then (1-2)a = (1-2)y, but there is no value 1-2 which
satisfies this. Suppose some G is commutative. Then (1:3)a? = 3-1 = 1-3,
but there is no 1-3 fixed by «2. Consequently there is no self-dual G in this
case, and we have only the

120+2 = 60 non-self-dual G’s.
6 9 =1, 2), 3, 4)]
|| = 4. Its normalizer is [(1,2), (1,3,2,4)] of order 8, n = 8/4 = 2,

c = 24/8 = 3.
The number of the groupoids corresponding to the groups O Dis

14+2 = 16.
Let « = (1,2), B = (3,4). We have the B-classes:
8

flad w22 33+r44 23 " 32 :
a N\ 7’
B 5
3 2.4 31 42
2 el B\ % h %
[2e——21 B4=tomal 14 4

t,42=10r2 33 ,34=30r4
We calculate 24 x 42 = 256, 256—16 = 240, 240+2 = 120 for the number

of non-isomorphic G’s. We can prove that there is no self-dual G, so we

have
120 = 2 = 60 non-self-dual G’s.

M o =1001,273)]
|©| = 3. The normalizer is [(1, 2), (1, 3)] of order 6, n = 6/3 =2,
c = 24/6 = 4.
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The number of groupoids corresponding to the groups bigger than § is
30+2+2 = 34,
Leta = (1, 2, 3).

2 21 14 q-4
A NVANA N A RS
\ \ / .
341 23
a

13 32 34<— 24 43e —— 4.2
a a a

g

33

>
-

44 =4

We calculate 45 = 1024, 1024 —34 = 990, 9902 = 495 for the number
of non-isomorphic G’s.

The number of the groupoids which have § = (1, 2) as a dual automor-

phism is
23%x4 = 32
since 1l =1lord4, 2:3=1or4, 3-2=1or4.

Among the 1024 groupoids, there are 64 commutative ones. Eight of the
64 correspond to [(1, 2), (1, 3)], and so 32—8 = 24 is the number of non-
commutative G’s which have (1,2) as a dual-automorphism. Two of these
24 G’s correspond to [(1, 2, 3), (1, 2, 4)], leaving

24-2 = 22,

The number of commutative G’s is (64—8)+2 = 28 (up to isomorphism).
The number of non-commutative self-dual Gs is

22+2 =11 (up to isomorphism).
To count the total number up to isomorphism and dual-isomorphism, we
calculate

495—(28+11) = 456, 4562 = 228, 228+39 = 267 for this number.

(8) § = [(1, 2)3, 4)].

|| = 2, the normalizer is [(1,2),(1, 3,2, 4)] of order 8, n = 8/2 = 4,
c = 24/8 = 3.

The number of G’s with (G)>$ is

2404-240+2104+424-242 = 736.
Under o = (1, 2)(3, 4), we have the B-classes:

piwte22 33+feda 2Ty 3<%z

t4=ezz  grafezz 134204 3= T oo
The calculation 48—736 = 64,800, 64,800 4 = 16,200 gives the number
of non-isomorphic G’s.
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Considering the self-dual G’s, we have
[, 2)3, 9] < [(1, 2), (3, 4)],
[(1,2)(3, 9] < [(1, 3,2, 4)],
[(1,2)(3, 9] < [(1, 2)3, 4), (1, 3)2, 4)].
If B8 = (1, 2) is a dual-automorphism, we have the B-classes:

a a

- frime—= B 33 - 44 o 3
<! B Na B “a
» AN
] 4 39 14
Wy L -
% / a A
a a N A \\ e
1221 34a—e4 3 24 42
B
12,33 =30r4 34 =1tor2 11 =1or2

Here we have 24X 4% = 256 non-isomorphic G’s.

If y = (1, 3)(2, 4), is a dual-automorphism, (1:3)y = 1-3, but no element
is fixed by . This case is impossible, therefore we see that there is no com-
mutative G.

If § = (1, 3, 2, 4) is a dual-automorphism, under 6, we have the B-classes:

FA N WA NAN
NA WA NSNS

We have 44 = 256 non-isomorphic G’s in this case. The two cases contain 16
groupoids in common among which 14 correspond to [(1,2)(3,4), (1, 3)(2, 4)]
and 2to [(1, 2, 3), (1, 2, 4)], and we calculate 256 —16 = 240, 240X 2 = 480,
4804 = 120 self-dual non-commutative G’s, and further calculation
gives 16,200—120 = 16,080, 16,080 + 2 = 8040, 8040+120 = 8160 for
the number up to isomorphism and dual-isomorphism.

©) 9 = [(1, 2)].

19| = 2, the normalizer is [(1, 2), (3, 4)] of order 4, n = 4/2 = 2,
¢ = 24/4 = 6.
The number of G’s with A(G)DH is

60+240+14+2 = 316.

Under « = (1, 2) we have the B-classes:

a a

t1=2—22 -3

23 4 24 33, 44, 34, 43
\_.___.\/—/

t22w21 342

32 g1a—Pbomsp 3o
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We calculate 48X 24 = 65,536, 65,536—316 = 65,220, 65,220+ 2 = 32,610,
for the number of non-isomorphic G’s.

[(1, 2)]< (1, 2), (3, 4)].

Suppose 8 = (3, 4) is a dual-automorphism. Then

B 4 = (3-4p = 3-4.
This is impossible since no element is fixed by both & and 8. Therefore there
is no self-dual non-commutative G. To find all commutative G’s, we have
the B-classes:

1222 f2=3 ey 13223 1a=wpg 34-43

12, 33, 34, 44= Zor4,

and we find 43X2% = 1024 non-isomorphic G’s.
The 32 commutative groupoids correspond to [(1, 2), (1, 3)]. Of these, 16
are contained in the 1024 groupoids, and we calculate:
1024— 16 = 1008,
1008 + 2 = 504 (commutative, up to isomorphism),
32,610—504 = 32,106,
32,106+ 2 = 16,053 (non-commutative, up to isomorphism),
504+16,053 = 16,557 (total, up to isomorphism and dual iso-
morphism).
(10) H = {e}.
n=24 c¢=1.
We consider G’s. with dual-automorphisms. We may assume that 1,2
is the only dual-automorphism.
The R-classes are:

=22 [ 4=—eq2 33; 44, 12,21=30ra
- 3w—e32 4l a—m2.4
23 34<—e4q.3

We find 4%x 24 = 65,536 non-isomorphic self-dual G’s.

Among them there are 43X24 = 1024 commutative G’s, leaving
65,536 —1024 = 64,512 non-commutative self-dual G’s.

The number of self-dual, non-commutative G’s with dual-automorphism
(1, 2) already counted is:

for [(1, 2, 3), (1, 2, 4)] IX2= 2
for [(1, 2)(3, 4), (1, 3)(2, 4)] X2 = 14
for [(1, 2, 3)] 11X4 = 44
for [(1, 2)(3, 4)] 120X2 = 240
totalling 300
leaving 64,512—300 = 64,212.

The self-dual non-commutative G’s number 64,212 +4 = 16,053.
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Next we count the number of commutative G’s, comprising the already
counted commutative G’s:

8X 4= 32

28X 8 = 224

50412 = 6048

totalling 6304.

Solving 24x+ 6304 = 410 = 1,048,576, we obtain
x = 43,428,

To count the total number y of non-isomorphic G’s, we may subtract the
following sum from 418:

2X14+1X24+14X3+30X44+35X6+120X6
+120X6+495X8+16,200X 124 32,610X12;

then we have y = 178,932,325.
To count the number z of non-self-dual G’s, we have:

22+ 43,4284+ 16,053 = 178,932,325,
z = 89,436,422.
The number w of non-isomorphic, non-anti-isomorphic G’s is

w = 43,428+ 16,053+ 89,436,422 = 89,495,903.

Table 4 shows the summary.

Addendum. We would like to mention the following propositions.

TuEOREM 1.5. Let G be a finite set. For every permutation group © on G
(i.e. D S &(G)), there is at least a groupoid G with § < W(G).

Let N(9) denote the number of all groupoids G with § & A(G) and
M($) the number of all groupoids G with § = (G). N(D) and M(D) are
the numbers which count seemingly distinct G(containing isomorphic or
anti-isomorphic G’s).

The following theorem is obvious.

THEOREM 1.6. Let § be a proper subgroup of &(G). There exists a groupoid
G with § = U(G) if and only if

N®) >b;@M(@).

Problem. Let |G| = 5. Under what condition on the properties (for
example transitivity) on 9, do there exist groupoids G, |G| = 5, such that

$ = AG)?
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PART II. SYSTEM OF OPERATIONS AND
EXTENSION THEORY

2.1. Introduction. Let T be a right zero semigroup, i.e. «f = g for all
a, B€T,and {D,; « € T} be a system of semigroups with same cardinality
|D,| = m. The problem at the present time is to construct a semigroup D
such that D is a set union of D, « € T, and J

DDy S Dg forall «,f¢cT.

D does not necessarily exist for an arbitrary system of semigroups. For
example, let

D;: right zero semigroup of order 2. ,
b

D,: a group of order 2. E§ g o
d|d c

Here D; N D, = {J. Then there is no semigroup D satisfying
D = DIUDZ, DlDz g Dz, D2D1 g Dl.
So our question is this:

Under what condition on {D,; « € T} does there exist such a semi-
group D?

How can we determine all D for given T and {D,;x€T}?

The problem in some special cases was studied by R. Yoshida [18], [19]
in which he did not assume the same cardinality of D,. In this paper we look
at the problem from the more general point of view; we will introduce the
concept of a general product of a set by a semigroup using the system of

groupoids. Finally we will show the computing results on a certain special
case. The detailed proof will be published elsewhere.

2.2. The system of operations.” Let E be a set and B be the set of all
binary operations (not necessarily associative) defined on E. Let x, y € E,
6 € B and let xfy denote the product of x and y by 6. A groupoid with 0

defined on E is denoted by E(6). The equality of elements of B is defined
in the natural sense:

o A " |8

a o oo

6 = 7 if and only if x8y = xny for all x, y€E.

Let a € E befixed. For a we define two binary operations ,% and * 5as fol-
lows:

x(0 a% ny = (x0a)ny, (2.1)
x(0 %4 My = xb(any). (22)
t The system of semigroup operation was studied in [7].
CPA 17
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Immediately we have:
ProrosrTION 2.1. By is a semigroup withrespect to ,% and % , foralla € E. ‘J
Thesemigroups By with , % and  ,are denoted by B (,% ) and Bg (k)
respectively.
E(6) is associative if and only if 0 ,% 6 = 6 %, OforallacE.
Let ¢ be a permutation of E. For 6 € B, O¢ is defined by
x(0p)y = [(x¢)6(r¢™H]e. (23)
Thus @ induces a permutation of Bg. For 6 € Bg another operation 8’ is
defined by
x0'y = ybx.
LEMMA. (0 o My = (09) o % (19),
(0 *a Me = (09) * a5 (D),
O axnm) =7 %a 0,
(0 *%am) =n"a% 0.
PROPOSITION 2.2. By, %) is isomorphic with Bs(y*) and is anti-iso-
morphic with Be( %) for all a, b € E.

2.3. General product. Let S be a set and 7 be a semigroup. Suppose
that a mapping @ of TX T into By, (x, f)O = 0, 4, satisfies

Oup ak Oupy = Oupy %4 b5, forall a, 8,y € TandallaeS. (2.4)
Consider the product set '
SXT = {(x,x); x€S,xacT}
in which (x, @) = (¥, f)ifand only if x = y,« = B.
Given S, T, ©, a binary operation is defined on SX T as follows:
(x, @) (7, B) = (x0a, 5y, off). (2.5)

PROPOSITION 2.3. SX T is a semigroup with respect to the operation (2.5),
and it is homomorphic onto T under the projection (x, o) —~c.

Definition. The semigroup, SXT with (2.5), is called a general product of
a set S by a semigroup T with respect to @, and is denoted by

SXeT.
If it is not necessary to specify @ it is denoted by
SXT.

PROPOSITION 2.4. Suppose that T is isomorphic with T' under a mapping
yand |S| = |S’|; let ¢ be a bijection S—S'. Then

SXol = S XeT’
where O = {0, 4; (@, ) € TXT), O = {0, pp; (a9, ) € T' X T")
and x0w,ppy = [(x¢™1)0,, sy Dlp, x,» € S
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In this case we say that @ in S is equivalent to @’ in S”.
W  We understand that X T is determined by 7, |S| and the equivalence
of O in the above sense.

Definition. If a semigroup D is isomorphic onto some SX o7, then D is
called general product decomposable (gp-decomposable). If |S|>1 and
|T|>1, then D is called properly gp-decomposable.

Definition. Let g be a homomorphism of a semigroup D onto a semi-
group T: D = | JD,, D.g = «.If |D,| = |D,| for all«, B €T, then g is called
«€T

a homogeneous homomorphism (h-homomorphism) of D, or D is said to be
h-homomorphic onto T. If |D,| >1 and |T|>1, then g is called a proper
h-homomorphism.

THEOREM 2.1. A semigroup D is gp-decomposable if and only if D has an
h-homomorphism.

In other words, D= SX T, |S|>1, |T|>1, for some @ if and only if D is
properly h-homomorphic onto T.

Proof. Suppose that D is ~-homomorphic onto 7 under g.
D= D, Dg=a.
auT ag

Let S be a set with |S| = |D,| for all « € T, and let f, be a bijection of D, to
S. Fixing {f,; « € T}, for each («, f) € TX T we define a binary operation 0, ,
on S as follows. Let x, y €.

X0u,py = [(SCS D o

Letabeany element of D, hencea € D, for some« ¢ T. We define a mapping

y of D onto SXT as follows:
v
s a = (afsy ).
Then v is an isomorphism of D onto SX 7. The proof of the converse is
easy.

Even if D, S, T are given, @ depends on the choice of {f,; « € T}. How-
ever, O is unique in some sense. To explain this situation we shall define a
terminology.

Definition. Let gand g’ be homomorphisms of semigroups 4 and B ontoa
semigroup C respectively. An isomorphism # of 4 into (onto) B is called a
restricted isomorphism of A into (onto) B with respect to g and g’ or we say
A is restrictedly isomorphic into (onto) B with respect to g and g’ if there is
an automorphism k of C such that h-g’ = g-k:

4%¢
Bk
B=C

Rt

17*
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Definition. Let G(6) and G'(6") be groupoids with binary operations 6, 6’
respectively. If there are three bijections 4, g, r of G(0) to G'(6") such that

(x0p)r = (xh)0'(yq) forall x,y €G (),

then we say that G(0) is isotopic to G'(6"). If it is necessary to specify A, g,
r, we say G(0) is (h, g, r)-isotopic to G'(8"). We denote it by
GO ~ G'(0) or GO~ G'(6).
(hgr)

THEOREM 2.2. Let S and T be a fixed set and a semigroup respectively. Let
(@,B)O =0, 4 (B0 =0, 5,a, BET. SX,T is restrictedly isomorphic onto
S o T with respectto the projections of SX oT and SX ' TtoT if and only if
there is an automorphisma—~a’ of T and a system {f,; « € T} of permutations
of S such that a groupoid S(0,,5) is (f., fo, Jup)-isotopic to S0, ) for all

a, feT.
Let o and o be relations on a semigroup D. As usual the product ¢-o

of o and o is defined by
00 ={(x,); (x,2) €0, (z,y)€0 forsome z¢ D}.

Let o = DxD, ¢ = {(x, x); x € D}.

THEOREM 2.3. A semigroup D is gp-decomposable if and only if there is a
congruence o on D and an equivalence o on D such that

00 =, (2.6)
oNo =1t 2.7

in which (2.6) can be replaced by
g0 = . (2.6")

Then D= (D/o)X(D/0) where Do is the factor semigroup of D modulo ¢ and
D|o is the factor set of D modulo o.

We know many examples of general products: Direct product, semi-
direct product [3], [6], group extension [3], Rees’ regular representation of
completely simple semigroups [1], the representation of commutative
archimedean cancellative semigroups without idempotent [11], $-semi-
groups [15], and so on.

2.4. Left general product. As a special case of a general product, we
make the

Definition. A general product S oT is called a left general product of
S by T if and only if

(0, )0 = (0, )0 forall a,B,ycT. 2.8)
SX,Tis called a right general product of S by T'if and only if
(2, B)O = (y, )0 forall «,8,y€T. (2.8)
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In case (2.8), 0,, 5 depends on only «, so 6, ,is denoted by 6,.. Then (2.4) is
rewritten:

Oc o% Oupr=6,. %, 05. forall o, f€T,allacs. (2.9)

In case (2.8"), 0,,4 is independent of «, and 6, 4is denoted by 6.5 and (2.4)
is
0o a¥ 6p=10., %, 05 forall a,8 €T,allacs. 2.9)

A left congruence is a left compatible equivalence, namely an equivalence
o satisfying
xoy=zxozy forall z.

THEOREM 2.4. Let D be a semigroup. D is isomorphic onto a left general
product of a set S by a semigroup T if and only if there is a congruence o on D
and a left congruence ¢ on D such that

Dfe=T, |Djo|=|S|
and
0-0d = w (equivalently -9 = w),
oNo =i,
ExaMPLE. Let T be a semigroup, F a set, and let x denote a mapping of

Finto T:
Ax = a; where ACF, a;€T.

The set of all mappings x of Finto Tis denoted by S. For € Tand x¢ S we
define an element 8- x as follows:
Ax = a3 = AMB+x) = P
Then
(By) x = B-(y+x).
A binary operation is defined on G = SX T as follows:
(x, ), B) = (@ y, af). (2.10)

Then G is a semigroup with respect to (2.10) and it is a left general product
of S by T. Further the semigroup G with (2.10) is completely determined by
a semigroup T and a cardinal number m = |F|, and G is denoted by

G = @@m(n'
We can describe the structure of Bg(,% ) in terms of the semigroup of this
kind.
THEOREM 2.5. Let m = |E|—1 and g be the full transformation semigroup
over E (cf. [1]). Be(, %) is isomorphic onto ©D,(Tg).
2.5. Sub-general product. In § 2.3 we found that the two concepts, A-homo-

morphismand general product, are equivalent. What relationship does there
exist between general products and homomorphisms ?
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Let U be a subset of S T, and define
Py (U)={e€T; (x,2) € U}

Definition. If U is a subsemigroup of SX T and if p,;,(U) = T, then Uis
called a sub-general product of SX oT.

In the following theorem, the latter statement makes the theorem have
sense.

THEOREM 2.6. If a semigroup D is homomorphic onto a semigroup T under
a mapping g, then D is restrictedly isomorphic into SX T with respect to g
and the projection of SX T to T for some S. Furthermore there exists an Sq
among the above S such that |So| is either the minimum of | S| or possibly the
minimum plus one.

Proof. Let D = U D,, D,g = a, Clearly | D,| =< |D| for all « € T. The set

a€T
{|D,|; « € T} has a least upper bound. (For this the well-ordered principle is
used.) Let
m=1+lub. {|D,|; «€cT}

and take a system of sets S, of symbols such that
|S,|=m forall «€T

and a set So with | So| = m. Further we assume that D, & S, and S, contains

a special symbol 0,,
0.¢D,,

and Sy contains a special symbol 0. Now let £, be a bijection of S to S, such

that
of, = 0,.
We define a binary operation on G = SXT as follows:

(x, ), B) = {((xfa'yfﬂ)fo;.‘ll: «ff) xf;EDa., €Dy
(0, 2B) otherwise.

Then we can prove that G = SX o7 where
—1
0 4y = {g(xﬁ)(yfp))fap, X Dy, 13 € Dy

otherwise.
Let D’ = {(x, @); %f, € Dy, a € T}. Then P, (D) = T and D' = D under
x, &) > xf,, « € T.
2.6. Construction of some general products. As a simplest interesting

example of general product, we will construct all general left products of
a set S by a right zero semigroup T.

« B
Let T= {0, 8}, a|oa B
ple B




C
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The equations (2.9) are
O.. ak Op. = 0. %4 0p.
Op. ok Ou. = 05 %4 O
Oc. o% Oun = Oa. ¥4 Oa.
Op. a¥ Op. = 0p. %4 0p.

@.11)

i

0,. and 0,. are semigroup operations. In order to construct all left general

products G = S'X ¢T we may find all ordered pairs of semigroup operations
onS:

. (b.., 65.)
which corresponds to

G = G,(0.)UGx0p), |Ga|l=|Gsl.
For fixed T and S, G is denoted by G(0,., 05.). Clearly
G(0,., 05.) = G(bp., 6,.).

Instead of ordered pairs it is sufficient to find pairs (6,., 6,.) regardless of
order.

Let G5 denote the set of all semigroup operations defined on S. (&g con-
tains isomorphic ones.) We define a relation ~ on &g as follows:

0 ~ nif and only if 6 ;%0 =0%,m and k%0 =7 %,0 forall ac S.

The relation ~ is reflexive symmetric.
Let 92, v? be transformations of S defined by

298 = z0x, zyl = x0z
respectively. Then
6 ,%n = 0%,n forall a € S, if and only if
vig) = gjys forall x, y € S.

As special cases we will determine the relation ~ on ©g in the case
| S|=3.

1. Left general product of S, |S| = 2, by right zero semigroup T.

a b
Let § = {a, &) |*

Y|, x,y,z,u=a or b, isthetablea | x y
Aty blz u

Explanation of the notations which will be used later: For example

ab

4 denotes the semigroup i

5 i.e. 4o = 4,

!
4, denotes SZ which is the isomorphic image of 4 under 1 (z b) .
a
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TABLE 5. Semigroups of Order 2

ab ab

0(s) 1(5a)

ab
ab

0

aa

bb
aa bb

; ab
ab bb

ab ba
ba ab

11 is exactly the same as 1, i.e. 1o = 1;.

1’ denotes Z la) , omitted from Table 5.

Table 6 shows all % such that 8, ~ 5. We may pick 6, from all non-iso-
morphic semigroups, but must select 1 from all semigroups. Generally the
following holds:

0 ~ 7 implies Op ~ ne for all permutations ¢ of S (see §2.2), (2.12)
6 ~ 7 implies " ~ 6. (2.13)

TABLE 6 .

6o ~ 7

o n

From the table we also have
60 =
bo
bo
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Table 7 shows all non-isomorphic left general products D of S,|S| =2,
W bya right zero semigroup of order 2.

TABLE 7
6. 0.
1 1
i 1
2 2
2 3
3 3
4 4

As an application of the above results, we have

THEOREM2.7. Let S be aset, | S| = 2, and T be aright zero semigroup of order
n. A left general product D of S by T is isomorphic onto either the direct
product of a semigroup S of order 2 and a right zero semigroup T of order n

D = SXT, |S|=2, |T|=n
or the union of the two direct products
D = (S1XT1)U(S2XTs),

where Ty and T are right zero semigroups, |T1|+ |T2| = nand Sy is a null
semigroup of order 2 and S is a semilattice of order 2.

I1. Left general product of S, | S| = 3, by right zero semigroup.

« B
- LetT = {a, ), a|a B .
Bla B

The method is the same as in case I, and we use the same notation. Let
@3 denote the set of all semigroups defined on S, | S| = 3. Table 8 shows
@s except the dual forms. Those were copied from [8], [10]. Table 9 shows
all 5 for given 6y such that 6y ~ 7.

This table shows, for example, that 2 = 2p = 23, 23 = 23, 24 = 2s.

In the following family ¥ of ten subsets of ©;, each set satisfies the
property: Any two elements of each set are ~ -equivalent, and each set is
a maximal set with this property.

z {1}9 {25 3; 15}7 {4; 521 16}’ 6, 62; 64}, {7, 72’ 11},
{7,12:), {2, 8, 14, 143}, {2, 9, 18}, {2, 10, 103}, {2, 13, 13, 17}.

Let §’ denote the family obtained from & by replacing {6, 62, 64,} by {6}
and {2, 10, 10y} by {2, 10} and leaving the remaining sets unchanged.
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TABLE 8. All Semigroups of Order 3 up to Isomorphism and Dual-isomorphism

abce abc abc abce abe abc
O(abc) 1(acb) 2(bac) 3(bca) 4(cab) S(Cba)

abe
abc
abce
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TABLE 8 (continued)

abc abc abc abc abc abce
O(abc) l(acb) 2(bac) 3(bca) 4(cab) 5(cba)

aba aac abe
11 abb abce 0 bbe 1 3
Fabc ace che
abb acc aba abc aac abe
12 abb abe aba che abce bbe
abe acc abe che aac bbe
aaa aaa bbb abb ccc ace
13 aaa aba bbb bbb che cce
i aac aaa bbe bbb ccec ccce
| M-
aaa aaa bba abb cac acc
14 aab aba bbb bbb cbe bece
aac aca bbce cbb cce ccc}
aaa aaa bba abec cac abce
15 aab abe bbb bbb abe bece
abe aca abce cbb cce cece
T e i
| aba aac baa abc caa abe
16 bab abe abb bbc abc beb
abece cca abce ceb acc cbe
‘ aaa abb acc
17 ; aba 0 bbb 2 cbhe 4
aac bbe EBE
aaa aaa aba abe aac abce
18 ' abb abe bbb bbb abc bbe
| abe acc abe cbhbe ccce CEeE

We have the following theorem, in which we do not assume T is finite:

THEOREM 2.8. A left general product D of S, |S| = 3, by a right zero
semigroup T is determined by a mapping m of the set T into one of the sets
belonging to ' in such a way that 6, = n(x), « € T. Every left general
product D of S, |S| = 3, by T is isomorphic or anti-isomorphic onto one of
those thus obtained. Accordingly D is the disjoint union of at most four
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distinct (but not necessarily isomorphically distinct) direct products, i.e.

m

D = U (SO)XTy), m=4,

i=1

where T = U T, T, s are right zero semigroups and either 0; = n(T))

=1
G=1,....,morb;=aT)E=1, ..., m).
I1. Right general product of S by right zero semigroup.

x B
First let T = {«, 8}, «]o B -
Blap

The equations (2.9") are

0., o 0.5 =05 %4 0.5
9.,9 a¥ 0..=0, %, 0..
0.0 ak 0. =10 %4 0.0
O.p a% 0.5 = 05 %, 0.8

A relation = is defined on ©g as follows:

0 ~ nif and only if

B a%xn=n %a7
forallae S.
na*eze *ae

Recall that

z¢8 = z0x, zy8 = x0z.

Using these notations,
6 % n=mnx%x,nforallac Sif and only if 3, = vy} forall x, y ¢ S.

Therefore x -7 is an anti-homomorphism of a semigroup S(6) into the
left regular representation of a semigroup S(%).

We have obtained all non-isomorphic right general products of S,
|S| = 3, by a right zero semigroup of order 2. The results will be published
elsewhere.

IV. General product of S by a right zero semigroup T of order 2.
@ P
Let T={«, 8}, ol|af.
Blap
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TasLE 9t
00 B

8o Y

1 1

2 123,3,8,8,9,9, 10, 10,, 13, 13,, 14, 14, 14/, 147, 15, 15,, 17, 18, 18,

RERRL
4 |4,5,16
5 | 4y, 5,16,
6 | 6,6, 6,

¥l 7T, 0 11,

8 |28, 14,14,

912,918

10 | 2,10, 10,

11 | 7,7, 11

12 | 74 12

13 |2,13,13,17

B, M, 14,

i REH |2 P ]

16 | 4,5, 16

7oz 6020 e R

18 |2,9,18

t These were computed by P. Dubois, J. Youngs, T. Okamoto, R. Kaneiwa, and
A. Ohta under the author’s direction.

To find (0,, ., 0,, 8, 05, s> O, 5) We may solve the following equations:
Oce ok 06 = Oup %o Oope 058 ak 0. = 050 %4 0p,0
Oup ak Opc = 0ua ¥a0p0 Gpa a%k Oup = 0pp %a Ousp
0., p .a_* Os.p=0u0,p %o Opp 0pa ak Oe,c = 05,0 ¥4 00
Oua a¥ Ooa= Ou,a %4 Ooas g5 ak 05,56 = Opp *a Opp. .

(2.15)
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These are equivalent to:

vy oyl = gy Py, yilelt = ehiyhe

vefehe = ghoye,  ylegyf = oy Pyl? (2.16)
vEler P = gyt et = el

0., and 6, 4 are semigroups.

The author and R. Dickinson have computed all non-isomorphic general
products of S, |S|=3, by a right zero semigroup of order 2 using a CDC
6600. The results will be published elsewhere.
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