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THE NUMBER OF TOPOLOGIES
Richard H. Warren

ABSTRACT. By means of Tyidentification spaces a formula is
derived for the number of nonhomeomorphic topologies on a
finite set. As a result of proving that special families of
nonprincipal ultratopologies on an infinite set X have cardinality
22|X|, it follows that the number of nonhomeomorphic
Ts-topologies on X is 22IXI,

1. Introduction. Motivated by Sharp’s question [6, page 1347] to find a
formula for the number of nonhomeomorphic topologies on a finite set, an
investigation of Tgridentification spaces has led us to a new procedure for counting
these topologies. Our procedure is to count in subclasses of Tg-topologies on
partitions of the set. An earlier answer [1, Theorem 7(ii)] to Sharp’s question sums
over a combinatorial arrangement based on connected topologies. In the course of our
development, a new proof is given for the known formula for the number of
topologies on a finite set.

The family of nonprincipal ultratopologies on an infinite set X is partitioned into
|X| classes and it is shown that each class contains 22IX| nonhomeomorphic
ultratopologies. Since a nonprincipal ultraspace is known to be a Tg-space, it then
follows that the number of nonhomeomorphic Ts-topologies on X is 22|X|.

2. Tyyidentification spaces. These spaces were originated by Stone [8] and were
expounded by Thron [9, pages 91, 92] whose notation we use.

THEOREM 2.1. If X is a set, Y is a partition of X and Vis a Tq-topology on Y,
then there is a unique topology T on X such that (Y,V) is the TO—identification space
of (X,T).

PROOF. Since Y is a collection of disjoint subsets of X which covers X, for each
x € X there is exactly one D, €Y such that x €D,. Let f: X =Y by f(x) = D,. By
Theorem 10.10 in [9] the family T = {f'l(B): B € V'} is the weakest topology on X
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such that f is continuous. We shall show that (Y,V) is the To-identificatjon of (X,T).

Let x,y EX. If yEDy and x € f'l(B) where B € V, then since f'](B) = U{D,:
b, € B}, it follows that y € f'l(B), i.e., each member of D, is in every open subset of
X which contains x. On the other hand, if y €& Dy, then Dy ND, = 0. Since (Y,V) is
TO, there exists B € ¥ which contains Dy or Dy, but not both. Hence f'l(B) contains
x or y, but not both. Therefore the members of Y are exactly the classes which are
determined by the equivalence relation on X where x ~ y iff {x}=1{y}

Let U be the quotient topology on Y determined by f. Since U is the strongest
topology on Y such that f is continuous, ¥ C U. If G € U, then f'I(G) € T and there is
B € ¥ such that £"1(B) = f"}(G). Since f is onto, B =G.

To see that T is unique, let R be a topology on X such that (Y,¥V) is the
Teridentification of (X,R). Since T is the weakest topology on X such that f is
continuous, T C R Suppose S ER\T. Since f is an open map, f(S) € V. So f'l(f(S)) eT
and there is t € f'l(f(S))\S. Now t € D¢ for some s € S. Thus s is a member of a set in
Rnot containing t, which contradicts the equivalence relation =.

COROLLARY. Forany nonempty set there is a 1-1 correspondence between the
Sfamily of all topologies on the set and the family of all TO-topologies on partitions of
the set. .

THEOREM 2.2. Let T and S be topologies on X. Let Y (respectively, Z) be the
Tridentification space of (X,T) (respectively (X,S)). Then (X,T) and (X,S) are
homeomorphic iff there is a homeomorphism k from Y onto Z such that
[k(Dy)I = IDy| for each D, €Y.

PROOF. Let f (respectively g) be the Ty-identification map from (X,T)
(respectively (X,S)) onto Y (respectively Z). For x € X, let Dy (respectively [x]) be
the member of Y (respectively Z) containing x.

(=) Let h be a homeomorphism from (X,T) onto (X,S). We shall show that
k= ghf'1 satisfies the theorem. It is easily verified that h(Dx) = [h(x)] for each x € X.

Since g(h(f'l(DX))) =[h(x)], the map k is onto. To see that k is 1-1, let
k(Dy) =k(Dy). Then [h(x)] = [h(y)], and therefore h(x)=h(y). 1t follows that
{x}= {;] and thus Dy = Dy. Clearly, k and k'-1 are continuous. Furthermore, h is a
1-1 map of DX onto [h(x)] = k(Dx), so that Ik(Dx)I = IDxl.
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b" (<) Since k is 1-1, onto and [k(Dy)I = |D,|, there is a map h: X - X such that
hIDx is a 1-1 map onto k(DX) for each Dx €Y. Clearly, hisa 1-1, onto map. If G €S,
then G = U{[x]: x € G} and thus b (G) = f'l(k'1 (g(G))). Therefore h is continuous.
Similarly, h! s continuous.

3. Finite case. By S(n,k) we denote the Sterling numbers of the second kind.
From [S, page 99] S(n,k) is the number of partitions of a set of n points into k pieces.

THEOREM 3.1. [2] If 7, is the number of topologies on a set of n points and if
Yk i the number of Tqrtopologies on a set of k points, then

W= zﬂzl S(n,k)yy-

PROOF. Noting that a topology on a partition composed of k subsets is a
topology on a set of k points, the formula is a consequence of the Corollary to
Theorem 2.1.

Motivated by Theorem 2.2, partitions L and P of X are said to be akin if there is
a map f: L > P which is 1-1, onto and |f(A)| = |A| for each A € L. Also, L and P with
topologies are called p-homeomorphic if there isa homeomorphism from P onto L such
that |f(A)| = |A| for each A € L. Then akin is an equivalence relation on the family of
partitions of X, the set of equivalent classes X corresponds naturally with the set of

4 mnordered partitions of |X|, and p-homeomorphic partitions are akin. The following

Hemmas are easily proved by using a map from the definition of akin partitions.

LEMMA 3.1. Akin partitions of a finite set have the same number of
nonp-homeomorphic Tytopologies.

LEMMA 3.2. Let L and P be akin partitions of a finite set. For each topology on
L there is a topology on P such that the spaces are p-homeomorphic.

THEOREM 3.2. Let |X|=n and let ay, be the number of nonhomeomorphic
topologies on X. Then

ap = ZiexMn,i)
where N(n,i) is the number of nonp-homeomorphic Ty-topologies on any partition in
class i.
PROOF. Consider a class i of akin partitions and a representative L from the

class. By Lemma 3.1 the number A(n,i) is independent of the choice of representative.
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By Theorems 2.1 and 2.2 the nonp-homeomorphic Tg-topologies on L correspond t.

unique topologies on X which are not homeomorphic. By Lemma 3.2 and Theorem
2.2 each Tg-topology on any partition akin to L corresponds to a topology on X
which is homeomorphic to a topology on X corresponding to one on L, i.e., no new
nonhomeomorphic topologies on X are formed from other members of class i. Since
Tp-topologies on representatives from different akin classes cannot be
p-homeomorphic, the topologies on X, to which they correspond, cannot be
homeomorphic. Thus there is a 1-1 correspondence between a maximal family of
nonhomeomorphic topologies on a finite set and the family of all
nonp-homeomorphic T-topologies on a representative from each akin class.
EXAMPLE. We shall illustrate the counting procedure in Theorem 3.2 for n =4,

There are 5 equivalence classes of akin partitions of X. Let X ={a,b,c,d }.

Representative from class A(4,1)

X3 1
{{a,bh{c,d}} 2
{ {a},{b,c,d}} 3
{{a},{b},{c,d}} 11

({a}.{b}, {c}Ld D 16 .

Total 33= oy

e IX X
4. Infinite case. If X is infinite, then there are 22| ! topologies on X and 22| !

nonprincipal ultratopologies on X [3]. A nonprincipal ultratopology is Ts (e, Tg
and completely normal) and is denoted by 7(x,U) where x € X and U is a nonprincipal
ultrafilter on X [7]. For each x € X, we designate O, = {7(x,U): U is nonprincipal }.

THEOREM 4.1. If X is infinite, then G)x contains 22|X| nonhomeomorphic
topologies.

PROOF. If U and V are distinct nonprincipal ultrafilters on X, then there exists
R e U\V. Therefore RU {x} € U\V, so that RU {x} € 7(x,U)\r(x,¥). Since the
number of nonprincipal ultrafilters on X is 22|X|, it follows that Oy1= 22IX|.

If f: X = X is 1-1 and onto and if U is a nonprincipal ultrafilter on X, then f(U) =
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{f(A): A€ U} is a nonprincipal ultrafilter on X. Since there are at most 21X1 such
functions f, each topology 7(x,U) is homeomorphic to at most 2iXI other topologies in
©,. From cardinal arithmetic it follows that there are 22|XI nonhomeomorphic
topologies in ©, .

COROLLARY. The number of nonhomeomorphic T5-top010gies on an infinite

X
set X 1is 22| l.

Hodel [4] has shown that the number of nonhomeomorphic metrizable

71X

topologies on X is and that the number of nonhomeomorphic connected

X
paracompact Hausdorff topologies on X is 22| .
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