

1930

THE NUMBER OF TOPOLOGIES

Richard H. Warren

ABSTRACT. By means of T_0 -identification spaces a formula is derived for the number of nonhomeomorphic topologies on a finite set. As a result of proving that special families of nonprincipal ultratopologies on an infinite set X have cardinality $2^{2|X|}$, it follows that the number of nonhomeomorphic T_5 -topologies on X is $2^{2|X|}$.

1. Introduction. Motivated by Sharp's question [6, page 1347] to find a formula for the number of nonhomeomorphic topologies on a finite set, an investigation of T₀-identification spaces has led us to a new procedure for counting these topologies. Our procedure is to count in subclasses of T₀-topologies on partitions of the set. An earlier answer [1, Theorem 7(ii)] to Sharp's question sums over a combinatorial arrangement based on connected topologies. In the course of our development, a new proof is given for the known formula for the number of topologies on a finite set.

The family of nonprincipal ultratopologies on an infinite set X is partitioned into |X| classes and it is shown that each class contains $2^{2|X|}$ nonhomeomorphic ultratopologies. Since a nonprincipal ultraspace is known to be a T_5 -space, it then follows that the number of nonhomeomorphic T_5 -topologies on X is $2^{2|X|}$.

2. T_0 -identification spaces. These spaces were originated by Stone [8] and were expounded by Thron [9, pages 91, 92] whose notation we use.

THEOREM 2.1. If X is a set, Y is a partition of X and V is a T_0 -topology on Y, then there is a unique topology T on X such that (Y,V) is the T_0 -identification space of (X,T).

PROOF. Since Y is a collection of disjoint subsets of X which covers X, for each $x \in X$ there is exactly one $D_X \in Y$ such that $x \in D_X$. Let $f: X \to Y$ by $f(x) = D_X$. By Theorem 10.10 in [9] the family $T = \{ f^{-1}(B) : B \in V \}$ is the weakest topology on X

such that f is continuous. We shall show that (Y, V) is the T_0 -identification of (X, T).

Let $x,y \in X$. If $y \in D_X$ and $x \in f^{-1}(B)$ where $B \in V$, then since $f^{-1}(B) = \bigcup \{D_X : D_X \in B\}$, it follows that $y \in f^{-1}(B)$, i.e., each member of D_X is in every open subset of X which contains X. On the other hand, if $y \notin D_X$, then $D_Y \cap D_X = \emptyset$. Since (Y,V) is T_0 , there exists $B \in V$ which contains D_Y or D_X , but not both. Hence $f^{-1}(B)$ contains X or Y, but not both. Therefore the members of Y are exactly the classes which are determined by the equivalence relation on X where $X \approx Y$ iff $X \in Y$.

Let U be the quotient topology on Y determined by f. Since U is the strongest topology on Y such that f is continuous, $V \subset U$. If $G \in U$, then $f^{-1}(G) \in T$ and there is $B \in V$ such that $f^{-1}(B) = f^{-1}(G)$. Since f is onto, B = G.

To see that T is unique, let R be a topology on X such that (Y,V) is the T_0 -identification of (X,R). Since T is the weakest topology on X such that f is continuous, $T \subseteq R$ Suppose $S \in R \setminus T$. Since f is an open map, $f(S) \in V$. So $f^{-1}(f(S)) \in T$ and there is $f \in f^{-1}(f(S)) \setminus S$. Now $f \in D_S$ for some $f \in S$. Thus $f \in S$ is a member of a set in $f \in S$ not containing $f \in S$, which contradicts the equivalence relation $f \in S$.

COROLLARY. For any nonempty set there is a 1-1 correspondence between the family of all topologies on the set and the family of all T₀-topologies on partitions of the set.

THEOREM 2.2. Let T and S be topologies on X. Let Y (respectively, Z) be the T_0 -identification space of (X,T) (respectively (X,S)). Then (X,T) and (X,S) are homeomorphic iff there is a homeomorphism k from Y onto Z such that $|k(D_X)| = |D_X|$ for each $D_X \in Y$.

PROOF. Let f (respectively g) be the T_0 -identification map from (X,T) (respectively (X,S)) onto Y (respectively Z). For $x \in X$, let D_X (respectively [x]) be the member of Y (respectively Z) containing x.

 (\Rightarrow) Let h be a homeomorphism from (X,T) onto (X,S). We shall show that $k=ghf^{-1}$ satisfies the theorem. It is easily verified that $h(D_X)=[h(x)]$ for each $x\in X$.

Since $g(h(f^{-1}(D_X))) = [h(x)]$, the map k is onto. To see that k is 1-1, let $k(D_X) = k(D_Y)$. Then [h(x)] = [h(y)], and therefore $\overline{h(x)} = \overline{h(y)}$. It follows that $\{\overline{x}\} = \{\overline{y}\}$ and thus $D_X = D_Y$. Clearly, k and k^{-1} are continuous. Furthermore, h is a 1-1 map of D_X onto $[h(x)] = k(D_X)$, so that $|k(D_X)| = |D_X|$.

(⇐) Since k is 1-1, onto and $|k(D_X)| = |D_X|$, there is a map h: X → X such that $h|_{D_X}$ is a 1-1 map onto $k(D_X)$ for each $D_X \in Y$. Clearly, h is a 1-1, onto map. If $G \in S$, then $G = \bigcup\{\{x\}: x \in G\}$ and thus $h^{-1}(G) = f^{-1}(k^{-1}(g(G)))$. Therefore h is continuous. Similarly, h^{-1} is continuous.

3. Finite case. By S(n,k) we denote the Sterling numbers of the second kind. From [5, page 99] S(n,k) is the number of partitions of a set of n points into k pieces.

THEOREM 3.1. [2] If τ_n is the number of topologies on a set of n points and if γ_k is the number of T_0 -topologies on a set of k points, then

$$\tau_n = \sum_{k=1}^n S(n,k) \gamma_k$$

PROOF. Noting that a topology on a partition composed of k subsets is a topology on a set of k points, the formula is a consequence of the Corollary to Theorem 2.1.

Motivated by Theorem 2.2, partitions L and P of X are said to be akin if there is a map $f: L \to P$ which is 1-1, onto and |f(A)| = |A| for each $A \in L$. Also, L and P with topologies are called p-homeomorphic if there is a homeomorphism from P onto L such that |f(A)| = |A| for each $A \in L$. Then akin is an equivalence relation on the family of partitions of X, the set of equivalent classes \widetilde{X} corresponds naturally with the set of unordered partitions of |X|, and p-homeomorphic partitions are akin. The following temmas are easily proved by using a map from the definition of akin partitions.

LEMMA 3.1. Akin partitions of a finite set have the same number of nonp-homeomorphic T_0 -topologies.

LEMMA 3.2. Let L and P be akin partitions of a finite set. For each topology on L there is a topology on P such that the spaces are p-homeomorphic.

THEOREM 3.2. Let |X| = n and let α_n be the number of nonhomeomorphic topologies on X. Then

$$\alpha_n = \sum_{i \in X} \widetilde{\lambda}(n,i)$$

where $\lambda(n,i)$ is the number of nonp-homeomorphic T_0 -topologies on any partition in class i.

PROOF. Consider a class i of akin partitions and a representative L from the class. By Lemma 3.1 the number $\lambda(n,i)$ is independent of the choice of representative.

By Theorems 2.1 and 2.2 the nonp-homeomorphic T_0 -topologies on L correspond to unique topologies on X which are not homeomorphic. By Lemma 3.2 and Theorem 2.2 each T_0 -topology on any partition akin to L corresponds to a topology on X which is homeomorphic to a topology on X corresponding to one on L, i.e., no new nonhomeomorphic topologies on X are formed from other members of class i. Since T_0 -topologies on representatives from different akin classes cannot be p-homeomorphic, the topologies on X, to which they correspond, cannot be homeomorphic. Thus there is a 1-1 correspondence between a maximal family of nonhomeomorphic topologies on a finite set and the family of all nonp-homeomorphic T_0 -topologies on a representative from each akin class.

EXAMPLE. We shall illustrate the counting procedure in Theorem 3.2 for n = 4. There are 5 equivalence classes of akin partitions of X. Let $X = \{a,b,c,d\}$.

Representative from class		λ(4,i)
{ X }		1
$\{\{a,b\},\{c,d\}\}$		2
$\{\{a\},\{b,c,d\}\}$		3
$\{ \{a\}, \{b\}, \{c,d\} \}$		11
$\{\{a\},\{b\},\{c\},\{d\}\}\$		16
	Total	$33 = \alpha_4$

4. Infinite case. If X is infinite, then there are $2^{2^{|X|}}$ topologies on X and $2^{2^{|X|}}$ nonprincipal ultratopologies on X [3]. A nonprincipal ultratopology is T_5 (i.e., T_1 and completely normal) and is denoted by $\tau(x,U)$ where $x \in X$ and U is a nonprincipal ultrafilter on X [7]. For each $x \in X$, we designate $\Theta_X = \{\tau(x,U): U \text{ is nonprincipal }\}$.

THEOREM 4.1. If X is infinite, then Θ_X contains $2^{2^{|X|}}$ nonhomeomorphic topologies.

PROOF. If U and V are distinct nonprincipal ultrafilters on X, then there exists $R \in U \setminus V$. Therefore $R \cup \{x\} \in U \setminus V$, so that $R \cup \{x\} \in \tau(x,U) \setminus \tau(x,V)$. Since the number of nonprincipal ultrafilters on X is $2^{2|X|}$, it follows that $|\Theta_x| = 2^{2|X|}$.

If f: $X \to X$ is 1-1 and onto and if U is a nonprincipal ultrafilter on X, then f(U) =

 $\{f(A): A \in U\}$ is a nonprincipal ultrafilter on X. Since there are at most $2^{|X|}$ such functions f, each topology $\tau(x,U)$ is homeomorphic to at most $2^{|X|}$ other topologies in Θ_X . From cardinal arithmetic it follows that there are $2^{2^{|X|}}$ nonhomeomorphic topologies in Θ_X .

COROLLARY. The number of nonhomeomorphic $T_5\text{-topologies}$ on an infinite set X is $2^{2^{\left|X\right|}}.$

Hodel [4] has shown that the number of nonhomeomorphic metrizable topologies on X is $2^{|X|}$ and that the number of nonhomeomorphic connected paracompact Hausdorff topologies on X is $2^{2^{|X|}}$.

REFERENCES

- 1. K. K. Butler and G. Markowsky, *Enumeration of finite topologies*, Proc. of the Fourth Southeastern Conference on Combinatorics, Graph Theory and Computing, Utilitas Math., Winnipeg, 1973, 169-184.
- 2. J. W. Evans, F. Harary and M. S. Lynn, On the computer enumeration of finite topologies, Comm. ACM, 10(1967), 295-298.
- 3. O. Fröhlich, Das Halbordnungssystem der topologischen Räume auf einer Menge, Math. Ann., 156(1964), 79-95.
- 4. R. E. Hodel, The number of metrizable spaces, Fund. Math., to appear.
- 5. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.
- 6. H. Sharp, Jr., Quasi-orderings and topologies on finite sets, Proc. Amer. Math. Soc., 17(1966), 1344-1349.
- 7. A. K. Steiner, On the lattice of topologies, General Topology and its Relations to Modern Analysis and Algebra, III, Academic Press, New York, 1972, 411-415.
- 8. M. H. Stone, Application of Boolean algebras to topology, Mat. Sb., 1(1936), 765-771.
- 9. W. J. Thron, Topological Structures, Holt, Rinehart and Winston, New York, 1966.

University of Nebraska at Omaha Omaha, Nebraska 68182

Received March 15, 1980