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DAVENPORT-SCHINZEL SEQUENCES

R.G. Stanton and P.H. Dirksen

1. TIntroduction.

There are two interesting dual problems in sequence construction.
Problem A is to construct as short a sequence as possible which contains
subsequences of a certain type. Problem B is to construct as long a
sequence as possible which excludes subsequences of a certain type.
Davenport-Schinzel (or, more briefly, DS) sequences are a case of
Problem B, one of the few combinatorial problems to arise from a problem
in differential equations. This paper is intended as an up-to-date
expository survey of current knowledge of DS sequences.

Davenport and Schinzel [3] explain that, if F(D)f(x) = 0 is a
homogeneous, linear, differential equation of degree d, and if
f1(x),f2(x),...,fn(x), are n distinct (but not necessarily independent)

tions of F(D)f(x) = 0, then a dissection of the real line into
intervals
(—m,xl),(xl,xz),...,(XN_l,w)
is determined so that, in any one of these intervals, exactly one of the
functions fi(x) dominates all others. The problem is then, given d and
n, to maximize N.

This problem need not be introduced from differential equations,
and reference [3] describes a completely combinatorial form of the
problem as follows. One has the integers 1,2,3,...,n, and a
preassigned integer d. A DS sequence is defined to be a sequence built

up from 1,2,...,n, subject to the constraints that (a) no two adjacent
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elements are equal, and (b) no subsequence of elements of the form
...ababa... has length greater than d(the elements in the subsequence
are ordered, but not necessarily adjacent). Thus, for d = 4, n = 5,

the sequence

12 1 3 4 1 5 2

is a DS sequence, but

1 2 1 3 4 1 5 2 1
is not.

We denote the maximal length of a DS sequence by N(d,n).

2. Normal Sequences and N(3,n).
It is convenient to adopt a convention that all sequences
considered be normal, that is, the symbols are renamed so as to appear
in natural order. Thus 1251431 is not normal for d = 4, n = 5; we
would make this sequence normal by writing it as 1231451. y
With this convention, one can easily determine small values of o~
N(d,n) by an actual tree search. For example, in Figure 1, we show thal:o

N(3,4) = 7, and there are five maximal normal sequences.

The values of N(d,n), for either n or d equal to 1 or 2, follow
easily from the definition. Figure 1 leads us to the general result
that N(3,n) =2 2n - 1, since
12 3...n-I1nn-1...3 2 1
is a DS sequence. The converse is most readily deduced from an ingenious

Lemma due to V. Turan.
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Figure 1 - Sequences for d = 3, n = 4,
L*MMA. In a maximal DS sequence, there exists an element i whose
frequency f(i) =
Proof. If possible, suppose f(i) > 2 for all i. Let us consider an
element aj. Between 2 occurrences of al, we must have some element a,.

If the second occurrence of a, precedes the first ajrs then we have a

subsequence azalazal, if it follows the second a;s then we have a

subsequence alazala2 Hence the order must be

..al...az...az...al...
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The same argument puts two elements ay between the az's; continue,
and one reaches a contradiction (since there are only finite by many
distinct symbols).

Application of the Turan Lemma to a normal sequence produces the

COROLLARY.  In a normal maximal (3,n) sequence, f(n) = 1.

Now suppose one has a maximal (3,n) sequence. Delete n, and possibly
one other element (if the elements to left and right of n are the same,
one of them must be eliminated). The result is a sequence on n-1
symbols, and so its length is at most N(3,n-1). Thus

N(3,n) < N(3,n-1) + 2.
An easy induction shows Fhat N(3,n) < 2n-1, and this determines one of
the main results of [3], namely, that N(3,n) = 2n-1.

The other results of [3] are much more analytical than combinatorialj;
we briefly note that

N(4,n) = 5n-C;
N(d,n) = n(d2—4d+3) - C(d) for odd d > 3; N(d,n) = n(d2—5d+8) - €(d) for
even d > 4., Also, [3] gives upper bounds
N(4,n) < 2n(l+log n),
N(d,n) < An exp (B/log n),

for d > 4, A and B dependent on d.

3. DS Sequences for d > n.
We begin this section with Table II giving current knowledge of

N(d,n). But see Section 7 for bounds on missing values.
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n d 14 2 3| 4 5 7 8 9 10
1 1|1 1] 1 ] il 1 1 L
2 1] 2 31 4 5 8 9 10
3 113 5{ 8} 10| 14| 16| 20| 22} 26
4 1| 4 7112 | 16| 23| 28| 35| 40| 47
5 115 91 17 | 22| 34| 41| 53661 | 73
6 1 ]6 |11| 22| 29
7 1 |7 |13)27
8 1 {8 |15] 32
9 119 |17 37

10 1 ho (19 42

Table II - Values of N(d,n).

The values above the diagonal are due to Stanton and Roselle, who
considered the case d > n. They proved [8] that N(d,3) = 3d-4 (d even)
and N(d,3) = 3d-5 (d odd). They extended this in [9] to establish
N(d,4) = 6d-13 (d even) or 6d-14 (d odd). 1In this same paper, they

show that
N(d,n) 2(;)d - De(n), d even;
n
‘ N(d,n) Z(Z)d - De(n), d odd.
These lower bounds are usually very close, since De(n) =
= [(2n3 + 9n2 - 32n + 12)/12], and are attained for n = 3 or 4. They

are also shown to hold for n = 5 [10], giving N(d,5) = 10d-27 or
10d-29 (but, cf. [5]).

4. The case d = 4.
Roselle and Stanton used the inequality

n
5n-8 < N(4,n) < —l N(4,n-1) + 2

to obtain small values of N(4,n). However, the attractive conjecture
that N(4,n) = 5n-8 breaks down for n = 12, and Davenport (with Conway)
showed [2] that, for q and r positive,

N(4,qr+l) = 6qr-q-5r+2.
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This result immediately applies to give N(4,13) = 57. However,

Davenport actually showed that

Tim M > 8
n>« n

and a reasonable conjecture today is that this limit is infinite.

The number 4 exerts an irresistible fascination over W.H. Mills,
and so it 1s not surprising to find that he has made the most extensive
determination of N(4,n) in [4] (note our careful reservation of [4] for
the reference to Mills!). The Mills table continues on from Table II

to give the following.

I’n 11 12 13 14 15 16 17 18 19 20 2

1
N(4,n) 47 53 58 64 69 75 81 86 92 98 104

5.  Numbers of DS Sequences.

There has really only been a detailed study of the number of DS
sequences for d = 3. Table 1 shows the number for (3,4), and the
general result is given in [7], where Stanton and Mullin érove that thfj

maximal numbers of (3,n) sequences are 1,1,2,5,14,..., that is, the

1 2n-2
n n-1/]°

The result for all (3,n) sequences is more complicated, namely,

Catalan numbers

a
_1 n~2 2
fn = J_a(t+3) 8-t~dt,

n-3-2k,k n-2y 2kl

120 3 2k’ KU (k) !

where a = 2V2.
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The result for maximal (3,n) sequences is obtained more easily by
Roselle in reference [6].

6. Remarks on Recent Work.

The value N(5,5) was originally determined by computer in [9].
Peterkin [5] used a very efficient computer search to bbtain N(5,6) = 29,
and to show that there are 35 (5,6) sequences. He corrected the Stanton
Roselle value N(6,5) to 34 (they had failed to distinguish between x > 0
and x 2 0, and so had the incorrect value 33).

Peterkin's work also suggested better bounding sequences, and he was
able to prove that N(5,n) > 7n-13, N(6,n) = 13n-32. These bounds are
probably quite good for small n, if we use the analogy with N(4,n).

Very recently, Burkowski and Ecklund [1] have considered the
numbers N(d,n,r). Here r is a regularity number which imposes the
additional restriction that any symbol in the sequence can appear at
most r times.

7. Final Remarks.

The first six sections of this paper are a slightly revised version
of a survey given to the Australian Mathematical Society Annual Meeting
in Newcastle in the winter of 1974. Two recent papers by Australian
authors have added considerably to our knowledge of DS sequences. A.J.
Dobson and S.0. Macdonald, in Lower Bounds for the Lengths of Davenport-
Schinzel Sequences, Utilitas Mathematica 6 (1974), 251-257, have
considerably strengthened the known lower bounds. B.C. Rennie and
A.J. Dobson, in Upper Bounds for the Lengths of Davenport-Schinzel

Sequences, Utilitas Mathematica 8 (1975), 181-185, have derived new
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upper bounds which are usually better than those given by Stanton and

Roselle;

they also give a very useful table, for n and d ranging

from 5 to 12, which embodies the latest information known. The

Rennie~Dobson upper bounds result from a recursion relation

(1]

2]

(3]

[4]

[6]

F.J.

1 2n—d+2
(n—2+ E ) Nd(n) <n Nd(n—l) + ?
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