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g A COMBINATORIAL PROBLEM ASSOCIATED WITH (‘/’Z 7%

A FAMILY OF COMBINATION LOCKS
G. SIMMONS, Sandia Corporation

This paper discusses an interesting combinatorial problem which arises in
the analysis of a family of electrical combination locks. These devices, unlike
mechanical combination locks, have the sequential codes (positions of the tum-
blers) introduced by switch closures. Obviously a great many restrictions could
be imposed on the choice of codes, their sequence of insertion etc., which would

. lead to functionally different types of locks. However, all of these electronic
combination locks have some features in common. The operator is presented
with 7 switches (the dial and tumbler), each of which may be set to an “on” or

- “off” position. The arrangement of settings of these switches constitutes a code
for insertion into the lock, corresponding to the rotation of the tumbler to one
of the code positions in the mechanical analog. The direction of rotation of the
tumbler is reversed when the code position is reached to “enter” the code into
the mechanical lock. By direct analogy, once the desired code is set into the »
switches by the operator, he presses an entry button to cause the code to be
entered in the lock.

The family of locks which are the origin of the problems considered in this
paper have some special restrictions imposed on the code sequences allowed to
the operator. The n switches are independent, i.e., they may be closed indi-
vidually or in any combination whatsoever. If a switch is on when an entry is
made, it is removed from further consideration. It may be useful to think of this
switch being deactivated by a latching mechanism which was actuated by the

&'"nitial closure of the switch and the entry button. At any rate it is not available
to the operator for further code construction. There is no meaning to an order-
ing of the switches which are closed to form a code at the time of entry. Thus
AB means the same thing as BA if the product symbol pairing is used to repre-
sent an entry code of switch 4 and switch B closed. The sequencing of discrete
entries constitutes the “combination” of the lock. For an example A—BC would
symbolize the entry of switch 4 in the on position followed by the entry of
switches B and C in the on position. This would be a specific combination, and
would be recognized as different from AB—C, etc. The locks considered here
differ from their mechanical analogs in only one particular: the concept of
limited try. After the operator has entered some combination, sequence of codes,

Lf he presses a “test” button. If the correct combination has been entered the lock

is operated, or opens. If the combination is an incorrect one, however, the lock
is disabled, temporarily or permanently, so that further combinations may not
be tried.

The obvious question, in view of the foregoing description of the operation

of the lock, is the security which a particular lock affords, i.e., a lock with n

switches. Since the system is designed to allow only a single combination trial,
the security is the probability of an unauthorized person’s finding the correct
code sequence by accident on the first attempt. This is 1/P,, where P, is the
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total number of combinations for an # switch lock. P, and several of its intero
esting relations are developed in the following sections.

It is possible to determine P, directly by enumeration of the possible group-
ings for small 7; however, this quickly proves to be an impractical technique
for locks which are still of feasible size; #=10 for an example. The first few
values of P, are:

P1=1 P2="—5 P3=25

The actual enumeration of the combinations for n=1, 2, and 3 are as follows,
with the null combination, corresponding to no switches being closed, being in-
cluded for logical consistency. This arrangement is of no practical interest,
since it corresponds to the lock being ready to open all the time and is not con-
sidered to be an acceptable combination code for a lock. The entries in the
table are grouped into columns according to the number of distinct entries in-
volved. Thus the simultaneous entry of any number of switches is interpreted
as a single distinct code entry for the purposes of this classification.

0 \ 1 | 2 | 3
P, — —a— —a—b—
—b— —b—a—
—ab—
Py — —a— —a—b— —a—b—c—
—b— —b—a— —b—c—a—
—Cc— —b—c— —c—a—b—
—ab— —c—b— —a—c—b
—bc— —a—c— —c—b—a—
—ac— —c—a— —b—a—c— ( '
—abc— —a—bc—
—bc—a—
—ab—c—
—c—ab—
—ac—b—
—b—ac—

The above display contains the key to the solution of the problem. To form
any combinatory element for the columns of P, it suffices to note that only one
new symbol is being introduced, x,, x=a, b, ¢, - - - . If the column elements be-
ing investigated have j distinct code entries, then it is obvious that only the
columns devoted to j and j—1 code entries in the preceding classification of
P, can affect these elements. For an example, the new symbol, —x,—, may
be introduced in place of any occurrence of — in the j—1 entry elements for
Py to produce combinations of j distinct entries. If G(#, 7) is defined to be the
number of elements for j distinct closures under P,, then the foregoing rule may
be written symbolically as jG(n—1, j—1). If one now considers the elements for
P,_1 which involved j distinct entries, it is obvious that the introduction of the
new symbol must be made in such a manner that no new entries are introduced.
This can be accomplished either by including the new symbol with any product
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symbol grouping, code, in these combinatory elements, i.e., enter the associated
switch in combination with one of the other distinct code entries, or else by not
using it at all. The number of such options is expressed by (j+1)G(n—1, j).
These are the only ways in which combinations of j distinct entries can be gener-
ated using # symbols, given the combinations for (z—1) symbols classified ac-
cording to the number of entries. This result is expressed by the partial differ-
ence equation

1 G(n,j) = jGn — 1,7 — 1) + (G + 1)G(n — 1, ).

This equation is descriptive of the system being studied, and its solution and an
investigation of the properties of these solutions is the object of this paper. The
number P, which is desired as a solution for the combination lock problem is
given by

(2) P, = i G(n, j).

A tabular display of the numbers generated by (1) is helpful in visualizing
some of the relations to be developed in the following analysis:

n/j 0 1 2 3 4 5
0 1
1 1 1
2 1 3 2
3 1 7 12 6
4 1 15 50 60 24
5 1 31 180 390 360 120

c . Equation (1) can be reduced to a simpler form by the change of variable:

3) G(n,j) = 7'G'(n, 7).

The substitution of (3) into (1) yields the following linear partial difference
equation:

4 G'(nj) =GCm—1,j—1)+ G+ DGCH—-1,7).

To allow symbolic manipulation this is best expressed in terms of the partial
displacement operators, E, and E;, defined by the relation E.G(n,j)=G(n+1,7),
[1]. Equation (4) may then be written as:

© (2 2-1-G+2E)emn =0
nJ J
This type of linear partial difference equation, i.e., one in which one of the
variables does not appear explicitly, may be treated by Boole’s method. Con-
sider the operator E, to be a constant & and solve the resulting linear difference
equation in the single variable j. Equation (5) now assumes the form

(©) (k—j —2) E Gln, j) — G'(n,j) = 0.
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If the variable change o
() u(n, j) = v(5)G'(n, J)
is made, where v(j) is defined to be
(8) Wp=Ek-—DEk—-2)---(k—j—1,
(6) may be reduced to the simple system
Q) u(n,j 4+ 1) — u(n, j) = 0.
Equation (9) has as a solution
(10) u(n, j) = ¢
which may be rewritten in the following form using (8):
(11) [e— 1]l —2] -+ - [k — (j+ D]GC'(n,5) = <.
This may then be expanded into the following operator (E,) equation:
(12) > ESHG () = 6
i=0

where S/T} is a Stirling number of the first kind.
This equation, (12), may be treated by the method of characteristic equa-
tions. The characteristic equation associated with (12) is

7 i1 i
(13) s T =o.
=0
The roots of this equation are 1, 2, 3, - - -, j+1, so that the general solution ou
(12) is of the form
(14) G'(n,7) = co(G + D"+ a(Dj* + « + - + ;1 ()N2* + ¢,

where the ¢,(j) are arbitrary, and as yet undetermined, functions of j.

A single value of the function P, will involve n(n+1)/2 of the functions,
c¢i(j), or rather functional values. In order to determine these functions it is
necessary to refer to the defining relationship (4). Examination of (4) allows the
following boundary conditions to be stated:

G'(n,7) =0 ifj>n
(15) o) -

G(ng) =1 ifj = mn.
If these restrictions are imposed on (14) the following family of simultaneous
equations is obtained:

G+ 1= =1
(16) ‘j"
2a(NGH1 -t =0 forl<k=<n

=0
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The determinant of this system is

(] 4 1)n—1 jnﬂ R Y U |

(17) I I . l=bp
G+D G o2 1
1 1t -1 1

which is Vandermonde’s determinant. # appears as a dummy variable in (17) as
may be seen by examining the restraints of (15) and the equations (16) from
which D is derived. The system is defined only for 0 <j=<mn, i.e., in solving for
the ¢;(j) only (j-+1) equations of the form given by (14) are considered of degrees

G+1), (), - -+, (2),(1). Thus (17) is a square (j4+1) X(j+1) determinant.
D is given by
(18) D=jl{(j— 1L 211!

Since the constant column to be introduced into D for the solution for the ¢;(5)
is a unique one, i.e., a one in the highest order position and zero in all other
entries, a very simple solution is possible, based on an expansion of D by minors
along the upper row. If one denotes the numerator matrices by N, then they
may be written in the following form:

G- DG -2 2ul

(19) i WG —1— )l

(— 1)‘.:
where 4 obviously ranges from 0 to j. The ¢;(j) may now be determined:

L == =] )

D i /7!

Thus the arbitrary functions ¢.(j) are determined and the solution may be writ-
ten for (14) with the c;(j) replaced by the appropriate functions of j.

j ; 1
@1 G = X () Gt =0
or
22) G i) = 3 (=0 )G+ 1 - o

The form assumed by the G’(n, j) is a well-known expression for the Stirling
numbers of the second kind, [2]. The solutions (21) and (22) may be con-

veniently written in a simpler form by the introduction of 8%

(21a) G'(n,§) = Shin

(222) Gn, j) = j1Sua-
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This completes the solution of the original partial difference equation (1;-"'(
and incidentally of the problem from which it was derived. Equation (2) maJ
be used with either (22) or (22a) to give as a final result

(23) P=3 3 ““‘(i—)” 1

j=1 =0
or
n . . 1
(23a) P, =3 jisi.
=1

The generating function for the P, is simply obtained from the latter form,
(23a), and is found to be:

, ST N '-
2 = =) g,
(24) dur\2e — 1/, !

where the nth derivative of the parenthetic term is to be evaluated at u=0.

It is of interest to tabulate some of the values of P, derived by use of
(23a), since they are the measure of security achieved by the family of combina-
tion locks on which this problem is based.

%go -

1. Charles Jordan, Calculus of finite differences, Chelsea, New York, 1950. =
2. John Riordan, An introduction to combinatorial analysis, Wiley, New York, 1958. [ '

‘12345 6 7 8 9 10
P el £ 1

- m ) 1)
1 5 25 149 1,081 9,366 94,5y 1,091,690 14,174,527 204,495,125

References

Reprinted from the MATHEMATICS MAGAZINE
Vol. 37, No. 3, May, 1964 !

N

Ao
Q\\Q‘Vb\ Y/ju 0 ‘

=



