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A COTANGENT ANALOGUE OF CONTINUED FRACTIONS
By D. H.|LEaMER

The continued iteration of a rational function j(z, y) of two variables provides
an algorithm for the expression of a real number as a sequence of rational
numbers. Thus the function
(1) . f(xl ) ]‘(Zg )f(l‘\'-‘ y )))

becomes an infinite series for f(x, %) = « 4 y and an infinite product for f(z, y) =
zy. Forflz,y) = = + 1/y we obtain the regular continued fraction
1 1
2

11+—-——T-=Ix+g‘+?ﬂ
T2 + -

+ o

x3+...-

By iar the most frequently used function is flz, y) = = + y/c, which gives
the “‘power series”

[

o |2

I3
+ 24
c

where the z’s are the coefficients, used when ¢ = 10 for the decimal representa-
tion of real numbers.! The algorithm associated with f(z, y) = z(1 — y) has
been discussed by T. A. Pierce.?

This paper is concerned with the case of

flz,y) = @y + /@y — 2) =

so that (1) becomes the function

cot (arc cot ¢ — arc cot ¥),

cot (arc cot z; — arc cot zz 4 arc cot 23 — - --).

This function, despite its aspect, is no more transcendental than a regular
continued fraction and both functions have many properties in common.
Furthermore, in order to obtain sequences of raticnal approximations to a real
number, we specialize the u's o be ulugeds, as i the continicd fraction, and
consider therefore expressions of the form

2) cot 2 (—1)” arc cot 1y,

y=0

Received November 24, 1937.

I This use of the function z + y/c is at least 4000 years old. See Amer. Jour. of Semitic
Languages and Literature, vol. 36(1920), No. 4. The Babylonians used ¢ = 60.

* Amer. Math. Monthly, vol. 36(1929), pp. 523-525.
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324 D. H. LEHMER

where the n, are integers. This expression will be called a “continued co-
tangent”’, and we shall use the adjective “fnite” or “infinite’” according as the
series in (2) terminates or not. Although finite and infinite sums of arc co-
tangents of integers have been considered many times, no systematic treatment
of such sums appears to have been given. '

Definition of a regular continued cotangent. The continued cotangent (2)
~will be said to be regular if

(a) m, is an integer®, = 0 for» 2 0.

(b) If (2) is finite and if 7y is the last n, then

(3) Nng > ’I'Li_l 4+ Ng—-1 + 1.
In all other cases '
4) Szt 4+ e+ L

The principal value of arc cotangent n, is understood. In fact, since n, is
ron-negative,

0 < arc cot n, = i7.

The inequalitics (3) and (4) seem at first sight unnatural. They are, however,
the analogues of the inequalities

(3,) qx > 1’
4" ¢ =1
for the incomplete quotients of the continied fraction
1], 1]
+—+ =+
* | g1 |2 ’
which terminates with - + \%‘ or is infinite. The reason for insisting on
&

the stronger inequality (3) in the case of a finite continued cotangent is the
same as the reason for (3') in the continued fraction: to insure for every rational
number a unique expansion. As a matter of fact, if (4) held for ny but not
(3), so that 1

(5) ne = na1 + e+ 1,
then the last two terms of (2) could be replaced by 2 single term, since
arc cot ng_y — arc cot (niy + me + 1) = are cot (ne—1 + 1),

just as in continued fractions we write
S R DU S

| ge— + T “‘Ik—1+1 '

3 As in continued fractions we might allow ne to be negative. However, this extra
generality is non-essential for our purposes. :
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1ence (3) may as well be assumed. It is perhaps worth noting that this con-
(raction of the last two terms cannot be repeated in the continued cotangent
ail

counterpart of (5)
ner+ 1 = nie + mpa + L.

This violates (4).
TueoreEM 1.  Every infinite regular continued colangent converges.
Proof. We need merely to note that

(6) arc cot ny — arc cot n; -+ arc cot npg — - .-

form an alternating series of terms monotonically decreasing in absolute value
in view of (4). Since (8) converges to a positive quantity, the cotangent of (6)
exists, and this proves the theorem. In fact, it is easy to see that (6) converges
not only absolutely but with tremendous rapidity, more rapidly, indeed, than
the series

1 1 -
_ v 4+ =
65536+ Fom T ’

1 1 1 1 '
statietamst o7

in view of (4) and the inequality

1
arc cot n, < —.
ny
This rapidity of convergence is a feature of the continued cotangent not enjoyed
by the continued fraction. The least rapidly converging continued fraction may
be said to be
1]

V5—1_ 1| 1]
™) V=0t At

whereas the least rapidly converging continued cotangent is

£ = cot (arc cot 0 — arc cot 1 4 arc cot §_— arc cot 13 + arc cot 183

— arc cot 33673 + arc cot 113390460_3 — ),

in which

2
Ny = Ny + 0w + 1.

Uniqueness theorem. Theorem 1 guarantees that every continued cotangent
represents a real positive number. Before treating the inverse problem of
finding the continued cotangent expansion of a given number, we prove the
following uniqueness theorem.

Turorem 2. Two regular continued cotangents can be equal only if they are
identically equal.

y more than in continued fractions. In fact we would need to have as a -

20L¢



e P

s b 4 s i s -
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Proof. Let ,
9) cot 2, (—1)" arc cot n, = cot > (—1) arc cot 7,

=0 y=0
be two equal regular continued cotangents, and suppose, if possible, that
n, = m, does not hold for all ». Then there exists a first instance, v =7, where
n, # m, while n, = m, forv <r i » 5 0. Then from (9) we have

(10) > (—1)" arc cot nrn = > (—1)" arc cot My = S.
A=0 r=0 Lo

Since n, ¥ m, , at least one of these sums contains two or more terms. Let
this sum be the left one, so that ’

A
S = 2, (—1)" arc cot ne = arc cot n, — arc cot frp1
A=0

(11) 2
= arc cot (nf -+ ﬁ’+—1—> > arc cot (n, + 1).

Npg1 — Tr

In fact, the first = sign reads = only if arc cot n,41 18 the last term of the leit
member of (10). Inthis case, however, (3) applies, so that

2
n,+1>nf+n,+1, or _n,_-/i—i < L.
Ny — Ny
Therefore the second = sign in (11) reads > in case the first reads =. Thatis,
(12) S > arc cot (n, + 1).

But since the left member of (10) contains at least two terms,
(13) S < arce cot n,.

We may now show that the right member of (10) contains two or more terms;
otherwise we could write from (10), (12) and (13)

arc cot (n, + 1) < 8 = arc cot m, < arc cot n, .

That is, n, + 1 > mr > Tr. But this is impossible, since these letters are’
in‘oegers.4 We conclude, therefore, that both members of (10) contain two or
more terms. Henece not only is S < are cot M, , 5O that

-

(14) | m, < n. + 1,

but also, since the reasoning used to establish (12) may be now applied to the
m’s, S > arc cot (mr + 1). Combining this with (13), we have n, < m. + 1.
Finally in view of (14) we may write 7, — 1 < m, < n- + 1. But this con-
tradicts m, # n,. Hence the theorem is proved.

« This is the first place that this part of the definition of the regular continued cotangent
is used. :
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Arc cotangent algorithm. We now describe an algorithm, analogous to that

s 3 (—1) arc cot m of Euclid, for generating from a given real positive number its regular con-
At v

=0 tinued cotangent expansion. '
ts, and suppose, if possible, tly,. Let z be the given positive numbel". We define two sets of r%umbers z, .
' and n, (v = 0, 1, 2, -..) called respectively the r-th complete and incomplete

-exists a first instance, v = 7, wh,,

Then from (9) we have cotangent of z as follows.’

- 1) arc cot my. = . Ty = 1, no = [zo],
o g = T+ 1 m = [z
contains two or more terms. [ YT o =’ P
15) m + i
oo ( Ty =, ne = [22],
» — arc cot n,4 , —n
O
n, + 1 .
Tor 4 —) = arc cot (n, + 1), _zn, + 1
Nr1 — Ny Typ1 = T — Nyt = [Zpya]

cot 2,41 1s the last term of the left

pplies, so that This algorithm 1s to be continued as long as r,.; exists, that is, as long as z,

| is not an integer n, = [z,]. We next prove
ny + 1 <1 TreoreM 3. The continued cotangent
i1 g My (16) cot 2, (—1) arc cot n,,
- ] r==0
in chhe first reads =. That i3, '
where the sum extends over all the incomplete cotangents n, of x, zs regular.
+ 1). Proof. Obviously (a) is satisfied. To show that (b) is satisfied we set
st least two terms, , z, =mn, + ¢ ,where 0 < ¢ < 1. Then (15) becomes
' - n + 1 2
Tor. (17) oyl = — +n,>n +n + 1
" (10) contains two or more terms; Hence
(13
( ) [IV+1] = Ny = 7’1,2, + n, + 17
ot m, < arc cot n, . _ so that (4) is satisfied for v ¥ k — 1. For» = k — 1 we have from (17)
impossible, since these letters arc: ‘ Te = M > Nt + Mo + 1,
‘t members of (10) contain two or . ;
M. . 50 that (10) o which is (3). Hence the theorem is true.
. TeEOREM 4. Ifng,ni,ne, --- are generated by x, then
]'I pu—1
_ (18) > (—1) arc cot n, = arc cot z — (—1)* arc cot Ty .
h (.12) may be now applied to the =0
‘Wlth (13), we have n, < m, + 1. Remark. This theorem justifies the name “complete cotangent” for z,.
<m, < n, + 1. But this con- Proof. Since
wved. Lo, +1
1 = z, —n, ’

tion of the regular continued cotangent
8 Here, as usual, [z] means the greatest integer < z.

¢ -
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we have
(—1)" arc cot n, = (1) (arc cot T,41 + are cot x,).

Settingy =0,1,2, -+, & — 1 and adding, we get the theorem.

THEOREM 5.

(19) z = cot 2 (—1) arc cot n,,
=0
where the sum extends over all sncomplete cotangents n, generated by z.

Proof. In case there exists only a finite number of m’s, the last being n,
we may set ¢ = kin (18) and transpose the term (—1)* arc cot i . Taking the
cotangent of both sides we obtain (19). . .

In case an infinite number of n’s are generated by z we can write in view of

(18) and (4),

a1 : .
lim 2 (—1)" arc cot n, = arc cot z — lim (—1)* arc cot z, = arc cot z.

p=co p=0 p=0

Hence in this case also

z =2, (—1) arccot n,.
y=0

Tarorem 6. FEvery positive number has a unique regular continued cotange'nt
expansion.

Proof. The existence of such an expansion follows from the arc cotangent
algorithm and Thecrem 5, while the uniqueness is provided by Theorem 2.

TuroreM 7. The number z 18 rational or irrational according as its continued
cotangent expansion (19) is finite or not.

Proof. 1f (19) is finite, it follows from the addition theorem of the cotangent
function that z is rational. This may be seen otherwise. In fact, if z were
irrational, so also would be z,, T2, --+ . Hence there could not exist a k for
which z; is an integer to terminate the algorithm. |

If (19) is infinite, then z is irrational. In fact, suppose that z = p/q, where
p and ¢ are Integers. It follows that =, = p,/¢ 1S also rational for every v.
From (15)

et
3
qv+1 o — Ny qs Ty

where, since n, = [z,] = p,/q), the denominator 7, is the remainder on division
of p, by q., so that 7, < ¢ Since we may suppose that the fraction pyw1/gu+
is in its lowest terms, we have the inequality

q'+l é Ty < qv

for every v. But this implies the existence of an infinite sequence qi, ¢z, *~ . of
strictly decreasing positive integers, and this is absurd. -Hence z is irrational.
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If z is a rational number p/q, the successive numerators p, and the denomi-
nators ¢, of z, can be found as in the greatest common divisor process as follows:

P+ ¢ = Ppi,

P =md+ ¢ 0=aqa<yg,
P1 = mgx + qa (0 = q2 < 111), YO +91 = D2,
P2 = TaGe + Qs 0= ¢ < @), Pz 4 @2 = Ds,

DTty + 4 = Dvt1,

In general, p, will not be prime to ¢, . In fact, any factor which they may have
in common will be a common factor of p,4; and ¢.4; and hence of all further
p's and ¢’s. For example, for z = 65/37, we find the following values of py, Qv
n, , and the greatest common divisor 8, of p, and ¢, . .

v 0 1 2 3

s 65 102 334 6030
g 37 28 18 10
n, 1 -3 18 603
5 1 2 2 10

Hence 65/37 = cot (arc cot 1 — arc cot 3 + arc cot, 18 — arc cot 603).

Convergents. Let ng, ny, na, --- be the incomplete cotangents generated
by . Then the curtate expansion of u terms

o.(z) = cot Z (—1)" are cot N,

re<()

is called the u-th convergent of z. It is clearly a rational number depending
only on p and z. The following expression relates z, o,(z), and the complete
cotangent z, by (18):

(=D)'z,z + 1
20 = - g —e——
(20) ou(x) = cot (arc cot z — (—1)* arc cot z,) = 1z, — 2
TrEOREM 8. If the integers A, and B, are defined by
A = 1, Ay = Avnv - _1 VB!;
21 0 +1 ( ‘)7 »
By, = O, By+l = anv + (“J‘)A" ’

then the u-th complete cotangent is given by

A,z + B,
2 = poum T e
(22) (—1y g2l
and the p-th convergent o.(x) is given by
(23) ou(z) = A./B,.

————
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Proof. TFormula (22) is easily established by induction. In fact (22) hold:
for u = 0, since Ag = 1, By = 0,20 = - 1f it is true for p = », we may write hy
(15) and (21) ‘

(=D Bn + A, B.z
= T2 Az + B) — m(4, — Bux)

y+1 (Avnv - (_1)"87):1: + B!nv + (_1)VAV
A,n, — (—1)B, — (B, + (=1) Az

= (1)

= (-1

1 Ao + By
‘ Ay — Bz’

so that the induction is complete. Having established (22), we see that (23)
follows from (20). In fact,

_ A,2" + Bux / A,z + By _ :
ot = (B2 P o} | (Gl =y

The numbers 4, and B, are, of course, the analogues of the numerator and
denominator of the u-th convergent of the regular continued fraction. How-
ever, the recurrence formulas (21) are of a different nature, A, or B, depending
not on the preceding 4’s or B’s, but on the preceding A and B. This fact
allows one to give an explicit formula for A, and B, in terms of the first u

incomplete cotangents 7o, 1, - a1 -
Ao = 1, ' Bo = 0,
A1 = Mo, Bl = 1,
A2=7’Lo’n1+1, B2=7L1—n0,
Ay = ngnmne + ng — M1 + N2, B; = neny — ngna + mune + 1,

Ay = monmang + et + Mne 4+ Tang 4 Mans — TuNs — Tellz + 1,
B, = nonyna — MenaNg + Maals — Metufiz + 71 + Mg — Mo — Tz

v

The general formula for the A, and the B, is given by

THEOREM 9.
A, + 1B, = (no + 1) — D) (2 + Dy — 2) -+ (M + (—=1)7)
24 5=l )
= = I_Io (n, + (=1)"9) (@ = —1).

In other words, if S, denotes the sum of the products of (— 1)'n, taken v at a time,
then for p > 0

(__1)[iu1A,, = S,. — S“_g + S“_4 -
(_l)ti“]B# S#—l — Sy_a -+ S“_‘:, e
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Proof. Formula (24) is easily established by induction, if we use (21). It
also follows readily from o

arccotu—llwu_'_i
2 Cu-—1

TaroreEM 10.

Au B,, 2 0 p—1 0
Aun \ = (—D"(4p + Bo) = (—1)MH(nv+1)-

BI-'+1 l ye=0
Proof. The first equality follows at once from (21) while the second equality
is obtained by taking the squarcs of the absolute values of both sides of (24). -
TeEOREM 11. .

(25)

A, B = |
@6) AyA,r + BuBus = ] A Bl By =n Il @+ D,
1By Aunr y==0

Proof. The theorem follows at once from (21) and (25).
For example, the values of 4,, B, for x = 65/37 are given in the following

table.

v 0 1 2 3 4
n, 1 3 18 603

A4, 1 1 4 70 42250
B, 0 1 2 40 24050

Here we find that 4./Bs = 65/37 and that A, and By have the common factoif

650 = (ns + 1)(nz + 1).
As a second example, we give the elements for z = 6954069/2559142.

v 0 1 2 3 4

Dy 6954069 16467280 133574025 9886258850

q 2559142 1835785 1781000 1780025

n, 2 8 74 5554

A, 1 2 17 1252 6954069

B, 0 1 6 461 2559142 .-

In this example 4, and B, have no common factor. It is clear from (23) that
any factor common to 4, and B, will divide (5} + D(nl 4+ 1) - (np_; + 1),
and this factor will also be common to (4,41, B,.1) by (21) and hence to all the,
further pairs (4, B).

Taporey 12. The convergents o.(x) approach z with errors which are alter-
nately positive and negative, but whose absolute values tend steadily to zero and are
less than :

(zo, + 1) tan o, ,

where @, is the smaller of (2] and 377"
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Proof. By definition of o, , ’
27) are cot ¢ = arc cot o, + (—1)" {arc cot n, — arc cot N1 + -+ ).
Since arce cot u is a decreasing function of u, we havé -
(28) (=1 z — ) 20,
which implies the first statement of the theorem. Moreover, .by (27) and (4),
| arc cot z — arc cot o, | = are cot 7, < nt <l < < < g
Hence if no = [z] > 1, we may write B
| arc cot  — arc cot o, | < [z,
If ne = [z] £ 1, then, by (4),n1 21,72 = 3. Therefore in this case
| arc cot z — arc cot o, | < 37
Hence in either case

| arc cot 7 - arc cot o, | < ¢y,

and the final statement of the thecrem follows by taking the tangent of both
sides of this inequality. It remains to show that the absolute value of the error
tends steadily to zero. Denoting this absolute value by A, , we have by (28)
and (20)

2
(29) &=|m—mhﬂ—nmh—a)=£fﬁ§%?
To show that A, is greater than Ay, it suffices to show that
(30) (A + 2Dk — A = Tep — @+ (—1)2z
is positive. From (15) and (4) -
Ty > W + 1, n, =3 v z2).

Hence Zy41 — T, > Ty — Lot L follows from (30) that
0+ AT = &) >m — 2 — 28 °

To show that the right member is positive we separate two cases. If z > 1,
thenny = 3,22 > &1+ 1, &1 > 7 + i =74 1. Heueein this case

Ig—x1—2x>2(x+1)+1—2z=3>0.‘

Iz <l letz!=58>1 Thenz = 5, m =38 —¢€(0< e <1),m: =
'[6(6 — € + 1]. Therefore

2 — 2 — 2z = (88 + 1) — 2¢)/de.
If 5 > 2, this is positive. If 1 <38 < 20 that n = & — e = 1, we have
o — 31 — 20 = (8 + DA — ¢/8e > 0.

This completes the proof of the theorem.
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The expression of a regular continued cotangent as an irregular continued
graction. The partial cotangents 7, of a number z may be used to represent
; by an irregular continued fraction of special type as the following theorem

shows.
TueoreM 13. If no, mi, --- are the partial cotangents generated by a real

positive number z, then

ng + 1| ﬁ+ﬂ+ﬁ+u+m_

Lf’lx‘-no \nz—nl ‘na—’ﬂz

(31) T = Ny +

Proof. Let ¢, be the fractional part of 2, so that z, = 7, + &. Su_bstifuting
for 2,41 and z, in (15) and solving for ¢ , we obtain o

n 41 _

€ — ——— -
Nyp1 — Ty + €y41

Setting» = 0,1,2, .- in succession, we sec that (31) follows fromz = no + €-
It is clear also that the numbers A,.1 and B,iiare the numerator and denomi-
nator of the u-th convergent of (31). '

Regular continued fraction for £. The number ¢ defined by (8) may be

expressed as a regular continued fraction as follows. Let no, n1, n2, - -~ be
the partial cotangents of £ so that

[ N/
(32) N1 — M» = nk + 1. 7{) & {,r

We define integers a, by
a =1, a; = 1. a = 2, a; = 5, ays = 34, as = 983

and in general
(33) Aoyt = (nv + M + 1)0,,,1 (V Z 1)7
so that

(34) Ayy1 = (nv + 1 + 1)(7%_2 + M3 + 1)(7)4'—4 -+ Ts + 1) Tt

where the last factor is ny 4+ no + 1 = 20rna + m + 1 = 5 according as » 18
even or odd. Then it is true that Co

(35) ay+10y = n;+1 —_-n, = nf + 1.

This fact is true for » = 0, since nt + 1 = 1, while aa; = 1. If it is ‘true for
vy = k — 1, it may be shown true for v = k as follows:

a .
Apy1Qx = a]il apdi_s = (Mg + N1 + D(ne — Ne_1)’
k—1

2 2 2
= ng 4+ Nk — Nk—1 — N1 = n; + L.

ey s r———
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This establishes (35). Returning to (31) and using (32) and (35), we obtain

N s=o+r%id %ai“i‘ wa|
@(ﬂcﬁzg_ o2 o @1 a0 | G203
/(£
‘ 1 1 1 1
=ﬁ+f+ﬁ+d+'
S (I VIR TR (Y B
_ 1], 1 1 1
i —_ — — —_ L~ R
Al ? S B
+ e = 4+
(1151138 ' 1116929202845
The successive convergents C,/D, to & are |
-x,/ﬂf‘f[r, i 1 1 3 16 547 538811 620243817465
s e " it — ' g 5 27 023’ 009is2’ 1046593950039’
el B o .
In decimals we have
3 A ( e 50263 27182 01636 10710 40786 04095 70146 90842
IN(°). £ =
¥

VAl 75407 19716 10710 99562 60815 82473 51869 72201 ...

An investigation into the nature of the number &, The writer has been un-
able to discover any simple connection between ¢ and other known constants.
As to the nature of £, it is neither rational nor the root of a quadratic equation
with rational coefficients, since its continued fraction is neither finite nor peri-
odic. In what follows we show that & is not a root of a cubic equation with
rational coefficients. We begin with

Tueoreym 14. Let a, and D, be the v-th partial quotient and the denominator
of the v-th convergent of the continued fraction (36). Then a, > D, for v £ 4.

Remark. Forv = 1,2,3, wehavea, = D,.

Proof. The theorem is true for v = 4 since ay = 34, and Dy = 27. If the
theorem is true for 4 £ » < k, we may prove it true for » = k by showing that
aits(a; — D) is positive. Using the fundamental recursion formula

37’ Do = a,D, + Dusa

foru=k—1,k—-2,k—3wehave . ',
_ o ., —D.
(38) aii2(ar — D) = ale {ak — (ap—s @z + 1) Dy2 — G Di%k—d_i}
3

If in (38) we introduce the hypothesis of the induction Dz £ G2, We get

(39) o (" _/Dk) > aparte — (@roraz2 + 1) —' Qo1 Bz




i

1 using (32) and (35), we obtaiy

| . 1 |

138 T 1116029202845 T

1620245817465
1046593950039 -

04985 70140
82472 51869

90842
72201 ... .
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orc £ and other known constants.
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raction is neither finite nor peri-
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tial quotient and the denominator
36). Then a, > D, for v < 4.

ray = 34, and Dy = 27. If the
t true for » = k by showing that
ntal recursion formula

)

p—1

D) Dyg — g, Do —&4}_

Qx-3

induction Dy_y < a4_s, we get

=2 + 1) - ak_la;_la.

o

- ———

—
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By (33) and (35) we may write (39) in the form
arsalar — D) Z nex + e+ 1 — (My — M2 + 1) — (g—z + nMx—s + 1)

2
= Np-o — Nkg-3 ™ 1 = ng—3 > 0. -

Hence the induction is complete.
TaeoreMm 15.  The number & does not salisfy a cubic equalion with rational

coefficients.
Proof. By Theorem 14 and the familiar inequality )

1 1 1
< DyDy+L - Dv(Dv,av + Dy—l) < ﬁ,

C,
=5,
it follows that the Diophantine inequality

1
<7

(40) '\s -2

has infinitely many solutions in integers (z,y). Now if £satisfied a cubic equa-
tion with rational coefficients, the cubic would be irreducible, since & is neither
rational nor a root of a quadratic equation. By a theorem of Siegel® the in-
equality (40) would in this case have only a finite number of solutions in integers
(z, ), contrary to fact.

To show that this type of argument cannot be used further to prove that £
is not an algebraic number of degree > 3, we give

Turoreym 16. If € > 0 and if ¢ is a positive constant, no matter how large, the
Diophantine inequality
c

< —

(41) y3+c

€3

has only a finite number of seluttons (z, y).
We first prove two other theorems.
TureoREM 17. For every k the sequence

Dy Diye Dy
sl
Az Ory2 Uk+d

tends to a limat.
Proof. Since -

N—1 .
P_/; _ {Dk+2)\ _ Dk+2(k+l)} :

Dk+21v _
- = )
Qj2) A 4+2(A+1)

Aryon Qx =0

¢ See Landau, Vorlesungen tber Zahlentheorie, vol. 3, 1927, pp. 37-65.

e —————————
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it is sufficient to show that this series tends to a limit as N — «. To examine
its general term we replace k£ + 2\ by v for simplicity. Now

DV+2 — Dv+1av+1 + Dv — Dvayav-H + Dy—lau—H + -Dy — —Dv(n% + 2) + DV—1H'7+1

———
Ayi2 Ayt2 Qyi2 Qyt2 Ayy2
D, a 2 D —1 2
=== (nv + 2) + ;—’ (nv+l + 1)-

Ay Qyi2 Q. 2

Hence the general term of the above series may be written

D, D,. D, a, Dia, ,
adac g (1 — (n} + 2)) — ' 5 nia 4+ 1).
a, ay42 a, Ay42 Qy—-1 G?+2

By Theorem 14 it is sufficient to show that as v runs over all numbers of the
same parity as k the two infinite series :

2(1 - (n3+2>>, T Oty 4 1)
Qyte dyi2

converge. The first of these may be written

Z(l_n'+l—nv+_l)=z 2n, <22%’

Nyy1 =+ 7 + 1 N1 + 7 + 1

a rapidly convergent series. As for the second series we have

ay—1 n‘i-}—l + 1 a,—1 1
ot Tl T L < -
)2 o (M + 1 + 1) 2 a’ 2. a,’

which also converges with rapidity. This completes the proof.
The two sequences

Dy Dy Ds g D DiDs

a’ ay’ as’ a’ as’ as’

tend to different limits. In fact we find ‘ i

Ds _ gopi1a7asins, D% = 9370558376,
g as

1;——8 = .7898114728192, 1—3—7 = .9370280114.
8 7 . .

These two limits we denote by Ro and Ei. That is, *
R, = lim Dy,/as, = 78981147 - -+,

y —>00

R, = lim Ds,1/as,41 = 93702801 - -~

y -0




.

1

a limit as N — .,
aplicity. Now

+ D, _ D,(nf + 2) + Dl'—laiﬂ-l

Q2 Ayyo

Du—l . 2
—— (M1 + 1).
ay+‘2

vy be written

Dv:;l ay_
n = + 1)

Ay—1 a4

s v runs over all numbers of the

D1 2 :
- 3 (nv+1 + ].)
av+2

2n,

= <23l
..%i 1 o

. series we have

o G- 1
: < E‘"’)
a,

4 2
a,

pletes the proof.

)2 D4 Dﬁ

) e
' ady ae’

= 9370558376,

= .9370280114.

at is,
47 -,

02801 ... .

@

To examip,

e
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It can be proved without difficulty that the two sequences above are both

strictly decreasing except for the fact that El = %. We are now in a position
1

3

to prove

TaeporeM 18. If v — «, then ¥
C C
Dilt— 1 —R 1 Dial|t— 2| =R
2 Do | — Lo an 201 | £ Doves | — Iy
Proof. Since '
¢ = limC,/D,,

we may write

£=%+G:+l_g+cv+2_gt+~«l+

5;:1 Dv Dv-{»z Dv+1
Using the fundamental relation
CuDu—l - Cu—an = (—1)“_11
we obtain
Gl D D
Dv Dr+1 Dy‘f-l Dy—}»‘Z Dv+2 Dv+3

(42) D}

The first term on the right may be shown to tend to Ryor Ry as follows:

_l)vrﬁ—l — Dvav + Dv—l — 9_" _LDP—,.
D, D} p, ' DI’

As » tends to infinity through integers of the same parity, D, /D3 tends rapidly
to zero, while a,/D, tends to R, or R7' according as the value of »is even or odd

by Theorem 17.
Each of the other terms of (42) tends to zero as» — since for A > 0

3 3 3
D, D; D, < D, < 1

D3
D%+1 (Dyav)2 ?‘E (—1—;

D»—}-)\ Dy+)+1

é —
DH—I Dv+2

4

by Theorem 14. Hence the theorem is proved.
Theorem 16 now follows from Theorem. 18 and frem the fact that the con-

vergents C,/D, are the fractions of best approximation to £.
We conclude with a theorem concerning the above-mentioned limits o
and R; . .
TaEOREM 19. .

1
ROR1 = l—q_’gé

For the proof of this theorem we need the following result of interest in itself.

Taeorem 20. If C,/D, is the y-th convergent of (36), then
Cva+1 —+ Dva+1 =

TNyl »
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Proof. Let A.4; and B, be the numerator and denominator of the (v + 1)-5t
convergent o, of the continued cotangent (8) defining £, or, what is the same¢
the numerator and denominator of the »-th convergent of the continued frac:
tion (31). From the theory of irregular continue(i fractions we have in view
of (32) the following recursion formulas for the A’s’and the B’s:

(43) Avp = (o + D4, + A,
(44) B = (i + 1)(B, + B,o).
We now prove that .
(45) A = Ctstystys - 0,
(46) By = Da,y_18s s -+ - G5 .

In fact, (45) is true for » = 0, since A; = 1o = 0 and Co = 0. If (45) 1s true for
y < u we may prove it for » = p as follows. By (43) and the hypothesis of
induction

Ap = 2y + 1)(Comi0u18us - -+ ag + Cu2@uz - -+ @)
= (n2oy 4+ 1)y 20, - - @o(Caci@u1 + Cuz) = QuGunrus -+ o Cy
by (35). (46) is established in the same way. By Theorem 11
(47)  Avndve + BaBop = nn(nl + Dl 1) -+ (06 4 1),
while by (45) and (46)
Ayid,ie + BoiBos = (C.Co + DDun)(@na) (@) - - (0a0)as
= (€. + DD, (% + Dty + 1) - (1} + Daa.

If we compare this with (47), the theorem is seen to follow from ao = 1. In
~ the same way Theorem 10 yields
TrEOREM 21.

2 2
C,+D,=a,+;. N

Theorem 19 is now a simple consequence of Theorem 20. In fact, we have
by definition of R, and E, ’

RoRy(¢ + 1) = lim (2" Din {a Cor 4 1})

0 ay, Ayl Dv Dy+1
~ lim (M) T
y—r0 ny-i—l —n, y—x nv+1 (M

Regular continiued cotangents of familiar constants. The converse problem
of discovering a law enjoyed by the partial cotangents of the regular continued
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Je = 0. If (45) is true for
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'heo‘, 11

1) (4 1),

Qay C“

b—1) -+ (a100)a,
w4 1) - () 4 Day.

) follow from gy = 1. In

rem 20. In fact, we have

m ol 1.
v TNypy — N,

-
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cotangent expansion of a familiar constant appears to be even more difficult
than in continued fractions. There are no periodic regular continued cotangents
in view of (4). In fact, a periodic continued cotangent would not converge.
Hence cquation (22) cannot be used as in continued fractions to study the roots
of a quadratic equation with rational coefficients. Furthermore, it is prac-
tically impossible to find more than 6 or 8 partial cotangents of a given irra-
tional number. By Theorem 12, ten terms of the continued cotangent expan-
sion of a number z between 10 and 11 would give z correctly to more than 1000
decimdl places, 20 terms would give more than a million digits. This dependence
of the continued cotangent expansion upon the “size’’ of x is brought out more
sharply by the fact that two numbers 2 and x> which merely differ by an in-
teger may have widely different continued cotangent expansions while their con-
tinued fraction expansions are essentially the same. Thus, for example, 13/25 =
cot (arc cot 0 — arc cot 1 4 arc cot 3 — arc cot 44), while 5 + (13/25) = cot
(arc cot 5 — arc cot 55).

The writer has been unable to discover any combination of familiar constants
whose regular continued cotangent expansion is in any way predictable; that is,
we have found nothing comparable with

3—e¢ 1 1| 1] 1|

= tno te ot

Tty T

or with the irregular continued cotangent

2 4+ +/2 = cot (arc cot 3 + arc cot 17 + arc cot 99 + arc cot 577 + <o)

whose partial cotangents satisfy the difference equation 7,44 = 6n, — 7.

The continued cotangents for 4/2, = and e begin as follows:
v/2 = cot (arc cot 1 — arc cot 5 4 arc cot 36 — arc cot 3406 2

4 are cot 14694817 — arc cot 727050997716715 + -+ ),

i .
« = cot (arccot 3_— arc cot 7_3__+ arc cot @ — arc cot 400091364 + -+ ), -

e = cot (arcTot 2 — arc cot 8 4 arc cof, 75 — arc cot 8949

+ are cot 11964723 .- - ).

Although this paper is concerned with developing the general properties of
regular continued cotangents, the reader cannot have failed to notice that many
of the theorems have number-theoretic implications. T he applications of the
above theory to Diophantine analysis will be given in another paper.

An interesting generalization of the regular continued cotangent is an ex-
pansion of the form
cot Z ¢, arc cot n,,

y=0

(48)

-
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in which ¢, are =1 and the n, satisfy certain inequalities. Thisis called a “‘semj-
regular” continued cotangent and has many properties in common with the
semi-regular continued fraction
1 1
qo - |_| —i :b “ee
1 | g2 v

A discussion of semi-regular continued cotangents will appear later. However,
if the coefficients ¢, of (48) are unrestricted, the analogy with continued fractions
breaks down. : |
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