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A002283 is the repdigit sequence [0, 9, 99, 999, 9999, ...]. The sequence terms
are given by

a(n) = 10n − 1.

For n >= 1, the simple continued fraction expansion of
√
a(2n) has period 2√

102n − 1 = 10n − 1 +
1

1 +
1

2(10n − 1) +
1

1 +
1

2(10n − 1) + · · ·
Written in �at notation√

102n − 1 = [10n − 1; 1, 2(10n − 1), 1, 2(10n − 1), ...].

Note the occurrence of the large partial quotients 2(10n − 1).

The simple continued fraction expansion of
√
a(2n+ 1) has a more

complicated structure. The initial terms in the expansion appear to depend on
the parity of n. Empirically, for n ≥ 2, the �rst 20 or so partial quotients seem
to be given by the formulas√

104n+1 − 1 = [1004n+1 − 0.5× 104n+1, 2, 1, 2, 0.05× 104n+1 − 1, 1, 2, 52, 1,
104n − 304

202
,

1, 1, 10, 2, 1, 28, 1, 1, 11, 2, 4, ...]

√
104n−1 − 1 = [1004n−1 − 0.5× 104n−1, 2, 1, 2, 0.05× 104n−1 − 1, 1, 2, 52, 1,

104n−2 − 302

202
,

1, 1, 18, 2, 16, 1, 17, 8, 12, ...]

Again, as n increases, we see the occurrence of large partial quotients.

A theorem of Kuzmin in the measure theory of continued fractions says that
for a random real number α, the probability that some given partial quotient
of α is equal to a positive integer k is given by

1

log(2)

(
log

(
1 +

1

k

)
− log

(
1 +

1

k + 1

))
.

For example, almost all real numbers have 41.5% of their partial quotients
equal to 1, 17% of their partial quotients equal to 2, 9.3% of their partial
quotients equal to 3 and so on. The probability that some given partial
quotient of a random real number is equal to 106 is 1.4 x 10−12. Thus large
partial quotients as in the expansions of

√
a(2n) and

√
a(2n+ 1) above are

the exception in continued fraction expansions.
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Empirically, we also observe unexpectedly large partial quotients early on in
the continued fraction expansions of the mth roots of the numbers a(mn) for
m = 3, 4, 5,... . For example,

3
√
a(9) = [999; 1, 2999998, 1, 998, 1, 4499998, 1, 798, 1, 5357141, 1, 5, 1, 13, 2, 2, 1,

5999999, 3, 1, 1, ...]

5
√
a(20) = [9999; 1, 49999999999999998, 1, 4998, 1, 99999999999999998, 1,

3332, 3, 15151515151515151, 5, 1, 1, 194, 3, 1, 5, 1, 2, 378787878787878, ...]

7
√
a(28) = [9999; 1, 6999999999999999999999998, 1, 3332, 3, 1749999999999999999999999,

1, 1, 1, 2050, 1, 1, 1, 1, 2, 134615384615384615384614, 1, 259998, 1, ...]

Let's examine the expansions of the cube root of a(3n) in a bit more detail. A
little numeric experimentation suggests the early terms in the continued
fraction expansion of the numbers 3

√
a(3n) depend on the value of n mod 6.

For example, consider the continued fraction expansion of numbers of the form
3
√
1018n − 1. The �rst three cases are

3
√
1018 − 1 =

[999999; 1, 2999999999998, 1, 999998, 1, 4499999999998, 1, 799998, 1,
5357142857141, 1, 5, 1, 14284, 1, 5, 1, 5999999999999, 7, 12986, 1, 6, 1, 2, 3,
53946053945, 1, 3, 11, 1, 2, 3496, 6, 4, 1, 1, 2, 57692307691, 1, 10, 1, 10, 1,
3289, 1, 10, 4, 1, 13,...]

3
√
1036 − 1 =

[999999999999; 1, 2999999999999999999999998, 1, 999999999998, 1,
4499999999999999999999998, 1, 799999999998, 1,
5357142857142857142857141, 1, 5, 1, 14285714284, 1, 5, 1,
5999999999999999999999999, 7, 12987012986, 1, 6, 1, 2, 3,
53946053946053946053945, 1, 3, 11, 1, 2, 3496503496, 6, 4, 1, 1, 2,
57692307692307692307691, 1, 10, 1, 10, 1, 3290826819, 3, 9, 1, 12, 6,...]

3
√
1054 − 1 =

[999999999999999999; 1, 2999999999999999999999999999999999998, 1,
999999999999999998, 1, 4499999999999999999999999999999999998, 1,
799999999999999998, 1, 5357142857142857142857142857142857141, 1, 5, 1,
14285714285714284, 1, 5, 1, 5999999999999999999999999999999999999, 7,
12987012987012986, 1, 6, 1, 2, 3, 53946053946053946053946053946053945, 1,
3, 11, 1, 2, 3496503496503496, 6, 4, 1, 1, 2,
57692307692307692307692307692307691, 1, 10, 1, 10, 1, 3290826820238584, 35,
4, 3, 4, 1,...]
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Notice the pattern of small partial quotients is identical in each case, up to the
block 1, 10, 1, 10, 1, and corresponding large partial quotients seem to follow a
predictable pattern . Further calculation leads to the conjecture that the
simple continued fraction expansion of 3

√
1018n − 1 begins

[106n−1; 1, 3× 1012n−2, 1, 106n−2, 1, 4.5× 1012n−2, 1, 0.8× 106n−2, 1, 37.5× 1012n − 13

7
,

1, 5, 1,
0.1× 106n − 12

7
, 1, 5, 1, 6× 1012n−1, 7, 10

6n − 78

77
, 1, 6, 1, 2, 3,

54× 1012n − 1055

1001
,

1, 3, 11, 1, 2,
106n − 144

286
, 6, 4, 1, 1, 2,

3× 1012n − 68

52
, 1, 10, 1, 10, 1, ...].

We have checked this result up to n = 50. Similar results seem to hold for the
simple continued fraction expansions of the numbers 3

√
1018n+3k − 1 for

k = 1, 2, 3, 4, 5.

Calculation suggests there will be analogous results for higher roots. For
example, it appears that the simple continued fraction expansion of
4
√
1024n − 1 begins

[106n − 1; 1, 4× 1018n − 2, 1,
2× 106n − 5

3
, 1, 1, 1, 0.8× 1018n − 1, 3,

10

21
(106n − 1),

7,
4

21
(1018n − 1), 21,

10

231
(106n − 1)− 1, 1, 229, 1,

4× 1018n − 3865

2145
, 1, 4, 6, 3, 1, 6, 1,

2

1001
(106n − 1)− 1, 1, 7, 1, 1, 1, 3, 1, 2, 2, 1, ...].

We have checked this result up to n = 50.

The behaviour of the sequence a(n) = 10n − 1 of having untypically large
partial quotients early in the continued fraction expansion of the mth roots of
a(mn) is shared with other sequences such as 10n + 1, 102n + 10n + 1,
102n − 10n + 1 and their ratios. See A000533, A066138 and A168624.

A particularly nice example is the continued fraction expansion of the numbers
3
√
103n + 1, which appear to start with six large (and predictable) partial

quotients. For example, the continued fraction expansion of 3
√
1030 + 1 begins

[10000000000; 300000000000000000000, 10000000000, 450000000000000000000,
8000000000, 535714285714285714285, 1, 2, 1, 1, 142857142, 3, 2,
599999999999999999999, 1, 1, ...].
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